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ABSTRACT

The influence of a porous wall on the nonlinear evolution of Mack modes in a hypersonic boundary layer is studied by solving the nonlinear
parabolized stability equations. The fundamental resonance of the second mode is particularly considered. It is found that the porous effect
leads to (1) a much stronger mean-flow distortion in an indirect way, (2) a greater suppression of the saturated fundamental mode, and (3)
slower amplification rates of the secondary instability modes, which eventually delays the transition onset. Detailed explanations of the three
mechanisms are provided.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148065

I. INTRODUCTION

Laminar-flow control (LFC) to postpone the laminar–turbulent
transition is a desired strategy in the aerodynamic design for high-speed
flying vehicles, because the drag and heat flux in the laminar phase are
smaller than those in the turbulent phase. At flight conditions, the level
of the environmental perturbations is usually low, and the lami-
nar–turbulent transition follows a natural route, for which the receptiv-
ity, linear instability, nonlinear breakdown, and turbulence appear in
sequence.1 For a quasi-two-dimensional hypersonic boundary layer, the
most unstable mode is the Mack second mode,2 which, in the high-
Reynolds-number asymptotic framework, shows a double-deck struc-
ture, an inviscid region in the bulk of the boundary layer and a viscous
Stokes layer in the vicinity of the wall.3,4 The pressure perturbation of
the inviscid mode oscillates in the bulk region of the boundary layer and
impinges on and reflects by the wall, so that the mode behaves as an
acoustic wave being reflected between the wall and the sonic line.5 Thus,
if the property of the wall is altered such that the reflected acoustic wave
changes its phase to cancel out partially the incident acoustic wave, then
the growth of the Mack second mode could be suppressed. Such an idea
is realized by replacing the smooth wall by a porous coating.5

Using a semi-transparent wall as a simplified model, Malmuth
et al.6 studied the linear instability of the Mack modes, and the sub-
stantial stabilizing effect on the second mode was observed. A more

practical model for a porous wall consisting of equally spaced micro-
holes was studied by Fedorov et al.,7 for which the perturbation trans-
verse velocity at the wall v̂w is related linearly to the perturbation wall
pressure p̂w with a complex admittance coefficient Ay, i.e., v̂w ¼ Ayp̂w,
where Ay is dependent on the porous-wall property and the instability
frequency. The results also suggested a strong stabilizing effect of the
porous coating on the majority of the second mode, but a weak
destabilizing effect on the first mode and the low-frequency band of
the second mode. More profound stabilization of the second
mode was observed for cold walls. These phenomena were subse-
quently confirmed by quite a few theoretical,8–10 numerical,11,12 and
experimental13–15 works. Additionally, if the surface is partially cov-
ered by porous coatings, then the junction of the smooth and porous
walls may lead to a scattering effect due to the sudden change of the
wall boundary condition of the perturbation, which was studied sys-
tematically by Song and Zhao16 based on the harmonic linearized
Navier–Stokes equations (HLNS).

The aforementioned studies only focus on the linear evolution of
Mack modes over porous coatings. Actually, in the widely used e-N
transition prediction method, the choice of the N factor, representing
the amplitude accumulation, relies on both the receptivity and the
nonlinear processes. The receptivity process determines the initial
amplitudes of the Mack modes, and for a rigid-wall configuration, the
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local receptivity mechanisms of the inviscid and viscous Mack modes
were studied theoretically by Refs. 3 and 17, respectively. As pointed
out by Song and Zhao,16 it is favorable to introduce a porous panel in
a downstream location, and so the study of the rigid-wall configura-
tion is sufficient. The nonlinear process determines the transition
threshold, which may be different for different nonlinear interaction
regimes.18 For example, the perturbations for the fundamental reso-
nance,19 appearing among a dominant planner mode and a pair of
small oblique modes with the same frequency, develop in a much lon-
ger streamwise region than that for the oblique breakdown regime.
Therefore, the equivalent transition thresholds for the two regimes
should be different. Experimental and numerical studies20–22 reported
that for the fundamental resonance, which is usually an efficient mech-
anism to trigger transition in hypersonic boundary layers, the applica-
tion of the porous wall would stabilize the perturbations in the
nonlinear phase, leading to a significant delay of transition. This phe-
nomenon was attributed to the disruption of the phase-locked regime
by the porous wall, which prevents the growth of the secondary insta-
bility.22 However, such an explanation was obtained only by observing
the growth rates, phase speeds, and perturbation profiles of the
Fourier modes, and the dynamic mechanism leading to the disruption
of the phase-locked regime is not well understood. Actually, the
porous walls can change the amplitude amplification of each unsteady
Fourier mode through an admittance boundary condition, which is
dependent on its frequency, and the mean-flow distortion (MFD)
induced by the Reynolds stress could be indirectly affected, the change
of which determines the movement of the transition onset. An in-
depth analysis is required to build the link between the porous effect
and the nonlinear transition, which is to be performed in this paper.

II. MATHEMATICAL DESCRIPTION
A. Physical model and governing equations

As sketched in Fig. 1, we consider a hypersonic boundary-layer
flow over a thin and isothermal flat plate. The oncoming flow is
assumed to be a perfect gas. A weak oblique shock wave forms from
the sharp leading edge of the plate. Most of the plate surface is coated
by a porous media made of fibrous absorbent material, as shown by
the blue region in Fig. 1, whose impact on the unsteady perturbations
can be formulated by an admittance boundary condition.8,10 For a
selected computational domain, we introduce a set of Mack instability
modes as inflow perturbations and calculate their evolution until the
nonlinear phase.

The three-dimensional (3D) Cartesian coordinate system
ðx�; y�; z�Þ is employed in this paper, with its origin located at the
leading edge of the plate. We introduce a reference length L�ref and
take the oncoming-flow velocity U�

1 as the reference velocity. The
coordinate system (x, y, z) and time t are normalized as

ðx; y; zÞ ¼ ðx�; y�; z�Þ=L�ref ; t ¼ t�U�
1=L�ref : (1)

The instantaneous density q, velocity field u ¼ ðu; v;wÞ, temperature
T, and pressure p are normalized as

ðq; u;T; pÞ ¼ q�=q�1; u�=U�
1;T�=T�

1; p�=ðq�1U�2
1Þ� �

; (2)

where q�1 and T�
1 are the oncoming density and temperature, respec-

tively. The oncomingMach number and Reynolds number are defined
as M ¼ U�

1=a�1 and R ¼ q�1U�
1L�ref =l

�
1, where a�1 and l�1 denote

the dimensional sound speed and dynamic viscosity of the oncoming
flow, respectively. The subscript 1 and superscript asterisk represent
the oncoming flow and dimensional quantities, respectively.

The dimensionless compressible Navier–Stokes equations gov-
erning the flow motion are

@q
@t

þr � ðquÞ ¼ 0;

q
Du
Dt

¼ �rpþ 1
R

2r � ðlSÞ � 2
3
rðlr � uÞ

� �
;

q
DT
Dt

¼ ðc� 1ÞM2 Dp
Dt

þ
2lS : S� 2

3
lðr � uÞ2

R

2
4

3
5

þr � ðlrTÞ
RPr

;

cM2p ¼ qT;

(3)

where c ¼ 1:4 is the ratio of the specific heats, Pr¼ 0.72 is the Prandtl
number, S ¼ ½ruþ ðruÞ>�=2 is the strain rate tensor, and ‘:’ repre-
sents the double-dot product of two second-order tensors. The dimen-
sionless dynamic viscosity l is approximated by the Sutherland’s law,
i.e., lðTÞ ¼ ð1þ TlÞT3=2=ðT þ TlÞ with Tl ¼ 110:4K=T�

1. The
instantaneous flow / � ðq; u;T; pÞ can be decomposed into a steady
base flow UB � ðqB;UB;TB; pBÞ and an unsteady perturbation
/0 � ðq0; u0;T 0; p0Þ, namely,

/ðx; y; z; tÞ ¼ UBðx; yÞ þ /0ðx; y; z; tÞ: (4)

B. Two-dimensional (2D) base flow

Since the streamwise and spanwise length scales of the porous
coating are much smaller than the boundary-layer thickness, the
porous wall has little impact on the base flow. For a selected 2D com-
putational domain ½x0; x0 þ xL� � ½0; yL�, we use the Navier–Stokes
solver to calculate the base flow by introducing the compressible
Blasius solution as the inflow perturbation. Our in-house
Navier–Stokes solver was also used in a few previous works.4,23–26 The
wall conditions are

UB ¼ VB ¼ WB ¼ 0; TB ¼ Tw at y ¼ 0; (5)

where Tw is the dimensionless wall temperature. The outflow condi-
tion is employed at the upper boundary, and a buffer zone is employed
at the outlet boundary.

FIG. 1. Sketch of the physical model, where the blue region at the wall denotes the
porous-coating panel.
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C. Perturbations

1. Admittance condition for the perturbation
at a porous surface

Following Fedorov et al.,8,10 the admittance of the porous coating
is given by

AyðxÞ ¼ � n
Z0

tanhðKhÞ; (6)

where n denotes the porosity, and h ¼ h�=L�ref represents the dimen-
sionless porous-layer thickness. The characteristic impedance Z0 and
propagation constant K are calculated based on the analytical solution
in Johnson et al.,27

Z0 ¼
ffiffiffiffiffiffiffiffiffi
~q=~C

q
M

ffiffiffiffiffiffi
Tw

p ; K ¼ � ixMffiffiffiffiffiffi
Tw

p
ffiffiffiffiffiffiffi
~q~C

q
; (7)

where

~q ¼ a1 1þ gðk1Þ
k1

� �
; ~C ¼ c� c� 1

1þ gðk2Þ=k2 ;

gðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a1l�wk

r�nr�2p

s
; k1 ¼ �ia1q�wx

�

nr�
; k2 ¼ 4Prk1;

(8)

wherex andx� are the dimensionless and dimensional instability fre-
quencies. l�w and q�w are the dimensional viscosity and density at the
wall. r� is the flow resistivity, and a1 is the tortuosity of the porous
layer. The characteristic pore size r�p is related to the fiber diameter d�

through the porosity n,

r�p ¼ pd�

2ð1� nÞð2� nÞ : (9)

2. Linear stability theory (LST)

The evolution of an infinitesimal perturbation can be approxi-
mately predicted by the LST under the parallel-flow assumption. We
express the perturbation field /0 � ðq0; u0;T 0; p0Þ as a travelling-wave
form,

/0ðx; y; z; tÞ ¼ e/̂ðyÞeiðaxþbz�xtÞ þ c:c:; (10)

where i ¼ ffiffiffiffiffiffi�1
p

, x is the perturbation frequency, a is the streamwise
wavenumber, and b is the spanwise wavenumber. /̂ � ðq̂; û; T̂ ; p̂Þ is
the shape function, e � 1 is the amplitude, and c:c: is the complex
conjugate. For a spatial mode, the frequencyx and the spanwise wave-
number b are given to be real, and a ¼ ar þ iai is complex with �ai
denoting its streamwise growth rate. Substituting Eq. (10) in the
Navier–Stokes equations and neglecting the non-parallelism of the
base flow and the Oðe2Þ terms, we obtain the compressible
Orr–Sommerfeld (O-S) equations,

LOS û;
dû
dy

; v̂; p̂; T̂ ;
dT̂
dy

; ŵ;
dŵ
dy

 !>

¼ 0; (11)

where the O-S operator LOS is a function of UB and can be found in
Refs. 28 and 29. Unless the wall temperature is extremely cold, for

which a radiation mode with an oscillatory far-field boundary condi-
tion appears around the upper-branch neutral frequency (see Refs. 25
and 30), most of the instability modes are attenuated in the far field,
leading to the boundary conditions,

û ¼ v̂ ¼ ŵ ¼ T̂ ! 0 as y ! 1: (12)

For a porous wall, the no-slip, isothermal, and admittance boundary
conditions are employed at the wall,

û ¼ ŵ ¼ T̂ ¼ 0; v̂ ¼ AyðxÞp̂ at y ¼ 0: (13)

However, for a smooth wall, the boundary condition in Eq. (13)
should be replaced by the non-penetration condition,

û ¼ v̂ ¼ ŵ ¼ T̂ ¼ 0 at y ¼ 0: (14)

The O-S equations [Eq. (11)] with the homogeneous boundary condi-
tions [Eqs. (12) and (13) or Eq. (14)] form an eigenvalue problem,
which can be solved following the numerical approach in Ref. 28.

3. Parabolized stability equation (PSE)

When the perturbations acquire, through accumulated linear
growth, finite amplitudes, the nonlinearity needs to be taken into
account, and so the LST prediction ceases to be valid. Thus, the PSE
approach,31–36 which takes both the non-parallelism and nonlinearity
into account, is employed. Now, the perturbation /0 is expressed in
terms of a truncated Fourier series,

/0ðx; y; z; tÞ ¼
XM

m¼�M

XN
n¼�N

em;n
~/m;nðx; yÞe

i
Ð x

x0
am;nð�xÞd�xþnb0z�mx0t

h i
;

(15)

where x0 and b0 are the fundamental frequency and spanwise wave-
number, respectively, m and n denote the orders of x and b, respec-
tively, em;n; ~/m;n � ð~qm;n; ~um;n; ~Tm;nÞ, and am;n represent the
amplitude, shape function, and complex wavenumber of the harmonic
mode, respectively, andM andN denote the limiting order of the trun-
cation for the frequency and spanwise wavenumber, respectively. The
shape function ~/m;n varies slowly with x.

Substituting Eq. (15) in the compressible Navier–Stokes equa-
tions [Eq. (3)], subtracting out the terms governing the base flow, and
neglecting the terms with @xx and @xy , we obtain the parabolized stabil-
ity equations,

~Am;n
@

@x
þ ~Bm;n

@

@y
þ ~Dm;nþVyy

@2

@y2

 !
~/m;n ¼ ~Fm;ne

�i
Ð x

x0
am;nð�xÞd�x

;

(16)

where the coefficient matrices ~Am;n; ~Bm;n; ~Dm;n; Vyy and the nonlin-
ear term ~Fm;n can be found in Refs. 34 and 36. Since the @xx terms are
neglected, the elliptic N-S equations are parabolized, leading to a sig-
nificant simplification of the system. We neglect the @xy terms here
only for simplicity because they are numerically small.

If the terms on the right-hand side of Eq. (16) is set to be zero,
then the system is linearized, which is referred to as the linear parabol-
ized stability equation (LPSE). To be distinguished, the approach by
taking into account a non-zero ~Fm;n is referred to as the nonlinear
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parabolized stability equation (NPSE). In the nonlinear phase, the
amplitudes of ~u and ~T reach Oð0:01Þ, but the perturbation pressure ~p
and the perturbation transverse velocity ~v in the near-wall region are
still small, and so the admittance boundary condition [Eq. (13)] is still
valid for each individual Fourier component.

4. Direct numerical simulation (DNS) with the
admittance condition

To confirm the accuracy of the PSE calculations, the DNS
approach for the porous-wall configuration is employed. For a
smooth-wall configuration, the DNS approach is the same as our pre-
vious works.4,23–26 However, for porous walls, the wall boundary con-
dition needs to be modified. For the linear evolution of the Mack
mode over a porous wall, Song and Zhao16 developed a numerical
treatment to consider the admittance boundary condition, which,
however, does not apply if perturbations with more than one fre-
quency are considered. The latter is of our concern in this paper, and
an improved treatment is developed in the following.

We express the wall perturbations of the pressure p0 and the
transverse velocity v0 in terms of a Fourier series,

ðp0; v0Þðx; 0; z; tÞ ¼
XM

m¼�M

ð~pm;~vmÞðx; zÞe�imx0t ; (17)

where ~pm and ~vm denote the shape functions of the Fourier mode for
x ¼ mx0. According to Eq. (13), we know that

~vmðx; zÞ ¼ Ayðmx0Þ~pmðx; zÞ: (18)

For a zero frequency, we have Ayð0Þ ¼ 0. Then, the transverse velocity
perturbation in the physical space is expressed as

v0ðx; 0; z; tÞ ¼
XM

m¼�M

Ayðmx0Þ~pmðx; zÞe�imx0t : (19)

In the numerical process, we can calculate ~pmðx; zÞ at any time t0
> Tp using the data p0ðx; 0; z; tÞ from t ¼ t0 � Tp to t¼ t0,

~pmðx; zÞ ¼
x0

2p

ðt0
t0�Tp

p0ðx; 0; z; tÞeimx0tdt; (20)

where Tp ¼ 2p=x0 represents the time period based on the frequency
of the fundamental mode.

III. RESULTS AND DISCUSSION
A. Flow parameters

The flow parameters are presented in Table I, and they are the
representative experimental configuration37 and have been used for
many numerical studies.16,23,38 The wall temperature Tw is almost the
same as the adiabatic temperature of the Blasius solution, and thus,
the heat flux at the wall in the early laminar phase is almost zero.

The parameters of the porous-wall property introduced in Eqs. (7) and
(8) are listed in Table II, which are the same as those in Refs. 8 and 16.

In this paper, we also perform calculations for a smooth-wall
configuration for comparison, and the porous-wall and smooth-wall
cases are referred to as case P and case S, respectively. In the calcula-
tion of the base flow, we set x0 ¼ 300, xL¼ 400, and yL¼ 100. We use
2001 uniform grid points in the streamwise direction, and 151 nonuni-
form grid points that are clustered near the wall are employed in the
wall-normal direction. An additional sponge region is introduced for
x 2 ½700; 900�, with 100 nonuniform grid points allocated. Such a
mesh system was also employed in our previous study.16 In the PSE
calculations, the same computational domain and wall-normal mesh
system are employed, and the number of the grid points in the stream-
wise direction is reduced to 201. A careful resolution test has per-
formed to confirm the accuracy of the PSE calculations.

B. Base flow and linear instability characteristics

The base-flow profiles of the streamwise velocity UB and temper-
ature TB at x¼ 300 are shown in Fig. 2, where the nominal boundary-
layer thickness d99 	 3:04 is marked in panel (a). Based on this base
flow, the contours of the growth rates in the b� x plane for the
porous (right) and smooth (left) walls are compared in Fig. 3(a). Two
unstable regions are observed for each case: (1) The first mode appears
in the low-frequency band, for which the most unstable mode is a 3D
oblique wave, and (2) the second mode appears in the high-frequency
band, for which the most unstable mode is a 2D planar wave. The sec-
ond mode is more unstable than the first mode. In most of the
second-mode frequency band, the growth rate for case P is consider-
ably smaller than that for case S, indicating a significant stabilizing

TABLE I. Parameters of the oncoming stream.

M R T�
1 (K) Tw q�1 (kg/m3) L�ref (m)

5.92 13200 48.69 6.88 5:32� 10�2 1:00� 10�3

TABLE II. Parameters of the porous wall.

a1 r� [kg/(m3s)] n d� (m) h� (m)

1.00 1:66� 105 0.75 3:00� 10�5 7:50� 10�4

FIG. 2. Base-flow profiles of the streamwise velocity UB (a) and temperature TB (b)
at x¼ 300.
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effect of the porous wall. However, when the frequency is relatively
low (lower than around 0.7), the porous wall plays a weak destabilizing
effect. The eigenfunctions of ðjûj; jv̂j; jq̂j; jT̂ jÞ for cases S and P are
compared in Fig. 4, which are normalized by the maximum of jûj for
each case. The shapes of each quantity for the two cases are quite close,
and the only difference is that the transverse velocity perturbation jv̂j
is slightly greater in the near-wall region for case P, due to the presence
of the admittance boundary condition.

Since the boundary-layer thickness grows with x, the instability
property changes as the perturbation propagates downstream. The
accumulated amplitude of a linear perturbation can be predicted by
the N factor, defined by NðxÞ ¼ Ð xx0 �aið�xÞd�x . Choosing three repre-
sentative frequencies, Fig. 3(b) compares the N-factor evolution of the
planar Mack modes for cases S and P. For a high frequency, x ¼ 0:7,
the N value for case P is lower than that for case S, while the opposite

is true for a low frequency (x ¼ 0:5). The fundamental frequency of
the following calculations for the fundamental resonance is selected to
be x ¼ 0:6, for which the linearly accumulated amplitudes for cases S
and P are similar in the whole domain.

C. Nonlinear evolution of the Mack modes

1. Calculations for the fundamental resonance

The initial perturbations for the NPSE calculation consist of a
high-amplitude (e1;0 ¼ 0:005) 2D second mode with x0 ¼ 0:6
(denoted by the fundamental mode) and a pair of low-amplitude
(e1;61 ¼ 1� 10�5) oblique second mode with the same frequency but
the opposite spanwise wavenumber (6b0 with b0 ¼ 0:4). For conve-
nience, we denote a Fourier mode with a frequency mx0 and a span-
wise wavenumber nb0 by (m, n), and thus, the introduced 2D and 3D
perturbations are denoted by (1,0) and (1,61), respectively. In the
nonlinear phase, the low-amplitude oblique waves gain energy from
the finite-amplitude 2D mode and are amplified by a much greater
growth rate. Meanwhile, the high-order harmonics (2,0), (2,61), � � �,
the stationary streaks (0,61), (0,62), � � �, and the MFD (0,0) are also
excited.

The amplitude evolution of representative Fourier modes for
cases S and P is shown in Figs. 5(a) and 5(c) and Figs. 5(b) and 5(d),
respectively. First, the accuracy of the NPSE calculations shown by the
solid lines is confirmed by comparing with the DNS results, shown by
the dashed lines in Figs. 5(a) and 5(b). Then, for the smooth case,
shown in Fig. 5(c), the growth of the 2D fundamental mode (1,0)
agrees with the linear prediction (shown by the red circles) until
x 	 560, after which it becomes saturated due to nonlinearity. The
oblique waves (1,61) grow at exactly the same rate, and only the
amplitude evolution of (1,1) is plotted. It agrees with the linear predic-
tion shown by the pink circles until x 	 490, after which a drastic

FIG. 3. (a) Comparison of the contours of �ai in the b� x plane between cases S and P at x¼ 300 and (b) N-factor evolution of the 2D Mack modes for different frequen-
cies predicted by LST.

FIG. 4. Eigenfunctions of the 2D Mack second mode for x ¼ 0:6 at x¼ 300.
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amplification is observed, agreeing with the observations in Ref. 19.
This is due to the secondary instability as will be illustrated in Sec.
IIIC 4. The other Fourier components are not seeded at the inlet of
the computational domain, but they are excited due to the nonlinear
interaction of the introduced perturbations. The MFD (0,0) and the
first harmonic of the fundamental mode (2,0) are induced by the self-
interaction of the fundamental mode (1,0). Therefore, their amplitudes
are almost square of the amplitude of (1,0) in most of the computa-
tional domain, as indicated by the red crosses. For x> 600, due to the
influence of other Fourier components with finite amplitudes, the
amplitude of (0,0) becomes much greater than that of (2,0). For
x> 490, the streak component (0,1) and the high-order harmonics

(2,1) grow at almost the same rate as (1,1), but their amplitudes differ
by a certain amount. For x> 640, the streak component (0,1) becomes
the greatest among these modes, which is the same as the oblique
breakdown as in Song et al.39 The stronger amplification of the streak
mode in the nonlinear phase is attributed to the “lift-up” mechanism.
Since the streamwise length scale of the streak mode is much larger
than its transverse and lateral length scales, balance of the inertia terms
in the momentum equation determines that the amplitude of its
streamwise velocity perturbation is much greater than that of its trans-
verse velocity perturbation. The latter is directly driven by the nonline-
arity and has an amplitude comparable with component (1,1).
Additionally, the streak component (0,2), which is the harmonic of

FIG. 5. Streamwise evolution of the u-amplitudes of representative Fourier components. Left column: case S and right column: case P. Top row: comparison between the
NPSE and DNS results and bottom row: comparison between the NPSE and LPSE results.
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(0,1), shows an even greater growth rate for x> 520, which is twice
that of (0,1).

The NPSE calculation for case S blows up at x¼ 630, indicating
that the laminar state nearly breaks down and the emergence of turbu-
lence is not far.32,33,35 This can also be inferred by observing the coeffi-
cient of the surface friction Cf � 2R�1½�lð@�u=@yÞ�y¼0 and heat flux
qw � �R�1Pr�1½�jð@�T=@yÞ�y¼0 as displayed by the red circles in Fig.
6, where the overbar denotes the time- and spanwise-averaging, and j
represents the dimensionless heat conductivity. Both the Cf and qw
curves for case S start from the laminar phase in the upstream loca-
tions [shown by the dot-dashed line in Fig. 6(a)] and undergo a
remarkable increase from x 	 450, indicating a moderate MFD
appearing there. Both curves reach their first peaks at x 	 560, and
after a mild decrease, they show rather sharp increases until the
blowup position. The double-increase phenomenon is typical for the
fundamental resonance, as also reported by a few previous works.41,42

The first increase is associated with the saturation of the fundamental
mode, while the second increase is attributed to the secondary instabil-
ity supported by the 2D wavy base flow. For comparison, we also carry
out an NPSE calculation by only introducing the 2D fundamental
mode as the inflow perturbation (marked by case S_2D), and the
results are shown by the red solid lines in Fig. 6. The curves agree with
the fundamental resonance results before x¼ 600. Because the 3D per-
turbations are absent, the second rise in the Cf curve is not seen, and
the calculation does not blow up, confirming the role of the 3D pertur-
bations in the late phase of the nonlinear transition process.

For case P, as shown in Fig. 5(d), the amplitude evolution shows
three distinguished features. First, the amplitude of the MFD (0,0) is
much greater for case P, and its amplification rate cannot be predicted
by twice the growth of (1,0) as for case S. Second, the fundamental
mode deviates from the linear amplification earlier (x 	 490) due to
the greater MFD, and the amplitude of mode (1,0) in the nonlinear
saturation state is smaller than that for case S. Third, the growth rates
of the secondary instability modes [including (0,1), (1,1), and (2,1)]
are much smaller for case P. As a consequence, the calculation for case

P does not blow up even until x¼ 700, as shown in Fig. 6, the results
for the calculations with (blue circles) and without (blue solid lines)
3D perturbations agree throughout the computational domain, indi-
cating a significant delay of the transition onset by the porous coating.
These three features are to be explained in Subsections IIIC 2–IIIC 4.

2. Stronger amplification of the MFD for case P

As indicated in Figs. 5(a) and 5(c), the amplitude of the MFD for
case S is well predicted by twice of the j~u1;0j-amplitude; however, the
MFD for case P undergoes a stronger amplification, as shown in Figs.
5(b) and 5(d). To explain this phenomenon, we compare the perturba-
tion profiles of (1,0) and (0,0) for the two cases in Figs. 7(a) and 7(b),
respectively. As shown in Fig. 7(a), although the j~u1;0j-amplitude for
case P in the late phase (x 
 600) is smaller than that for case S, the
shapes of the profiles for the two cases are quite similar, i.e., j~u1;0j
shows a peak at y 	 0:6 for each case. According to the high-R asymp-
totic analysis,3,4 we know that the Mack mode shows a double-deck
structure in the transverse direction, i.e., a main layer where y ¼ OðdÞ
and a Stokes layer where y ¼ OðR�1=2dÞ, where d measures the char-
acteristic boundary-layer thickness, and R is the Reynolds number
based on d. A critical layer may appear when the linear mode is nearly
neutral. However, since for the present configuration, the Mack
growth rate is not very small, the critical layer is not obvious in the
plot of j~u1;0j.

As shown in Fig. 7(b), the shapes of the MFD for cases S and P
are quite different. The amplitude of j~u0;0j for case P is much greater
than that for case S. These differences must be attributed to the admit-
tance boundary condition employed at the wall. However, the mecha-
nism is not obvious since the MFD with a zero frequency is not
affected by the admittance boundary condition directly.

Now, let us carry out a simple asymptotic analysis. For simplicity,
the analysis is performed in the early nonlinear phase, where the fun-
damental mode grows almost linearly before reaching the saturation
state. As shown in Fig. 5, such a condition is satisfied when x< 560 for

FIG. 6. Streamwise evolution of the Cf (a) and qw (b) curves. The empirical predictions of Cf for the laminar and turbulent states are from Ref. 40.
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case S and x< 490 for case P. The j~u0;0j-profiles at x¼ 400 are com-
pared in Fig. 8. The peak of j~u0;0j for case S is close to the boundary-
layer edge, while j~u0;0j for case P shows a double-peak feature, and the
lower peak is greater.

In the main layer, we denote the 2D fundamental Mack mode
and the MFD by

~/
S;P
1;0 ¼ E 1/̂

S;P

1 ðy; xÞeiðaS;Px�xtÞ; (21)

~/
S;P
0;0 ¼ E 2

1/̂
S;P

0 ðy; xÞerS;Px; (22)

respectively, where E 1 � 1 measures the amplitude of the fundamen-
tal mode, the superscripts S and P denote cases S and P, respectively,
/̂1 � ðû1; v̂1; p̂1; q̂1; T̂ 1Þ; /̂0 � ðû0; v̂0; p̂0; q̂0; T̂ 0Þ, and aS;P vary

slowly with x, and rS;P ¼ �2aS;Pi � 1. (In the present calculation, the
boundary-layer thickness is O(1), and (aS,rS) and (aP,rP) are quite

close.) /̂
S;P

1 to leading order satisfies the Rayleigh equation,3,4 and the
attenuation condition is applied for both cases S and P. The non-
penetration condition is applied at the wall for case S, while according
to Eq. (6), the wall boundary condition for case P is v̂P1 ¼ Ayp̂

P
1 .

Since rS;P � 1, balance of the momentum and continuity equa-
tions leads to the following scaling estimate:

ûS;P
0 � ðrS;PÞ�1; ðv̂S;P0 ; p̂S;P0 Þ � 1: (23)

Thus, we introduce u
^ S;P

0 ¼ rS;PûS;P
0 , and the governing equations to

leading order reduce to

T�1
B UBu

^ S;P
0 þ dUB

dy
v̂S;P0

� �
¼ FS;P

10 ; (24)

dp̂S;P0
dy

¼ FS;P
20 ; (25)

u
^ S;P

0 þ dv̂S;P0
dy

¼ FS;P
30 ; (26)

where the inhomogeneous forcing terms are

FS;P
10 ¼ �ðq̂S;P

1 Þ† SS;P0 ûS;P
1 þ dUB

dy
v̂S;P1

� �

� T�1
B ðiaS;PÞðûS;P

1 Þ†ûS;P
1 þ ðv̂S;P1 Þ† dû

S;P
1

dy

" #
þ c:c:; (27)

FS;P
20 ¼ �ðq̂S;P

1 Þ†SS;P0 v̂S;P1

� T�1
B ðiaS;PÞðûS;P

1 Þ†v̂S;P1 þ ðv̂S;P1 Þ† dv̂
S;P
1

dy

" #
þ c:c:; (28)

FS;P
30 ¼ �TB

(
ðq̂S;P

1 Þ† ðiaS;PÞûS;P
1 þ dv̂S;P1

dy

" #
þ ðiaS;PÞðûS;P

1 Þ†q̂S;P
1

þ ðv̂S;P1 Þ† dq̂
S;P
1

dy

)
þ ðT̂ S;P

1 Þ†SS;P0 q̂S;P
1 � ðq̂S;P

1 Þ† dTB

dy
v̂S;P1

þ ðc� 1ÞM2 ðiaS;PÞðûS;P
1 Þ†p̂S;P1 þ ðv̂S;P1 Þ† dp̂

S;P
1

dy

" #

� T�1
B ðiaS;PÞðûS;P

1 Þ†T̂ S;P
1 þ ðv̂S;P1 Þ† dT̂

S;P
1

dy

" #
þ c:c:; (29)

FIG. 7. Eigenfunctions of j~u1;0j (a) and j~u0;0j (b) for cases S and P.

FIG. 8. Comparison of the j~u0;0j for x¼ 400 between cases S and P.
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with SS;P0 ¼ iðaS;PUB � xÞ, and the superscript “†” denotes the com-
plex conjugate. Here, Eq. (25) is obtained by inserting the energy equa-
tion into the continuity equation, such that the density and
temperature of the mean-flow distortion are eliminated.

Solving Eqs. (24) to (26), we obtain

v̂S;P0 ¼ UB

�ðy
aS;P

HS;P
0 dy þ bS;P

�
; (30)

u
^ S;P

0 ¼
TBF

S;P
10 � dUB

dy
v̂S;P0

UB
; (31)

where

HS;P
0 ¼ FS;P

30 � TBF
S;P
10 =UB

UB
; (32)

and aS;P and bS;P are constants to be determined by the wall boundary
conditions.

For a smooth wall, where v̂S1ð0Þ ¼ 0, applying the Rayleigh equa-
tions for the fundamental mode at the wall leads to

ûS
1!

aS

x
Twþ aS

x
kT þkM2

� �
yþOðy2Þ

� �
p̂S1ð0Þ;

v̂S1! i xM2�ðaSÞ2
x

Tw

� �
yp̂S1ð0ÞþOðy2Þ;

q̂S
1!

M2

Tw
þ �2M2

T2
w

þ ðaSÞ2
Twx2

" #
kTyþOðy2Þ

( )
p̂S1ð0Þ;

T̂
S
1! ðc�1ÞM2Twþ cM2�TwðaSÞ2

x2

� �
kTyþOðy2Þ

	 

p̂S1ð0Þ;

(33)

as y ! 0, where k ¼ ðdUB=dyÞy¼0 and kT ¼ ðdTB=dyÞy¼0. Here,

p̂S1ð0Þ is taken to be unity for normalization, and ðdp̂S;P1 =dyÞy¼0 ¼ 0.

Since rS � aSr , we can take aS to leading order to be real, and the
inhomogeneous forcing terms in the near wall region behave as

FS
10 ! Oðy2Þ; FS

30 ! Oðy2Þ as y ! 0: (34)

Thus, HS
0 ! 0 as y ! 0. Considering the non-penetration boundary

condition at the wall, we simply take aS ¼ 0 and bS ¼ 0. The no-slip
boundary condition is automatically satisfied.

However, for a porous wall, for which v̂P1 ð0Þ ¼ Ayp̂
P
1 ð0Þ, we find

that

ðFP
10; F

P
30Þ ! Oð1Þ as y ! 0: (35)

Then, as y ! 0; HP
0 ! Oðy�2Þ, and

v̂P0 ! TwFP
10ð0Þ
k

þ FP
30ð0Þy ln y þ � � � ; (36)

u
^ P

0 ! �FP
30ð0Þ ln y þ � � � : (37)

It is seen that the perturbation velocity field is singular at the wall. To
remove the singularity, the viscosity has to be taken into account in a
thin layer near the wall. Balancing the convection terms with the vis-
cous terms in the momentum equation, we obtain

rUBû
P
0 � rkyûP

0 � R�1d2ûP
0=dy

2; (38)

which leads to y � ðrRÞ�1=3. This indicates that the thickness of the
viscous wall layer is dv ¼ OððrRÞ�1=3Þ. The solution of ûP

0 should be
an integral of the Airy function, which is similar to the wall-layer solu-
tion in Dong et al.3

In fact, we do not need to show the detailed mathematics for the
wall-layer solution here. The most important observation is that the
leading-order solution of the MFD for case S satisfies the no-slip and
non-penetration boundary conditions without any singularity; how-
ever, the MFD for case P shows a logarithmic singular as the wall is
approached. This answers why the admittance condition could have a
severe impact on the steady MFD. Additionally, the lower peak of
j~u0;0j for case P is related to the wall-layer solution.

The above analysis reveals the mechanism that the MFD for case
P undergoes a stronger amplification before the fundamental mode
reaches its saturation state. Although at further downstream locations,
such an analysis is not rigorously valid, because the feedback of the
MFD and harmonics to the fundamental mode must be considered
there (the nonlinear-critical-layer analysis as in Ref. 43 may be an
appropriate tool), we may expect a similar mechanism for the stronger
amplification of the MFD there. It is seen from Fig. 7(b) that for
x¼ 600, the double-peak feature of j~u0;0j is replaced by one single
peak, but the peak value for case P is much greater than that for case S.

3. Greater suppression of the fundamental modes
by the MFD for case P

As shown by the red lines in Fig. 5, the growth rate of the 2D fun-
damental mode in the nonlinear phase becomes smaller than the linear
prediction, because the mean flow is severely distorted by the (0,0)
component. To quantify this, we perform the linear stability analysis
based on the distorted mean flow �U, including UB and the MFD, for
two representative streamwise positions, which is compared to the
LST results based on UB, as shown in Fig. 9. For both cases S and P,
the growth rates based on �U are smaller than those based on UB for
the considered frequencies, indicating a suppression effect of the MFD
on the fundamental mode. This suppression effect is greater for case P,
implying that the fundamental mode for case P is likely to accumulate
to a lower saturated amplitude. A further comparison of the ampli-
tudes obtained by LST based on UB and �U is shown in Fig. 10. For
both cases, the LST predictions based on UB agree overall with the
LPSE calculations, while the LST predictions based on �U agree overall
with the NPSE calculation until the blowup position (x¼ 630). This
confirms the reliability of the method that explains the suppression
effect of the MFD by linear stability analysis. For case S, the agreement
of the LST and PSE results is not as good as that for case P, indicating
that a stronger non-parallelism appears for this case.

In Fig. 11, we show the NPSE calculations of the amplitude evo-
lution for each Fourier component by removing artificially the MFD
for the two cases, which are compared with the original NPSE calcula-
tions. For case S, shown in Fig. 11(a), the difference between the two
families of curves is rather limited. The only difference is that the
blowup position for the calculation without the MFD shifts upstream
slightly, namely, from x¼ 630 to x¼ 616. For case P, as shown in Fig.
11(b), when the MFD is absent, the fundamental mode saturates at a
higher amplitude, and the calculation blows up at x 	 644. The impli-
cation is that the enhanced MFD by the porous wall plays a significant
suppression effect on the 2D fundamental mode, and the blowup of
the NPSE calculation without MFD is attributed to the secondary
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instability supported by the fundamental mode with a higher
amplitude.

4. Secondary instability analysis (SIA)

When the 2D fundamental mode for case S or case P reaches a
finite amplitude, the secondary instability modes are likely to be ampli-
fied rapidly due to the fundamental resonance, as studied previously
based on the Floquet theory.41,42,44 Taking the frequency and wave-
number of the 2D fundamental mode to be x and ar, the base flow

/
^

B for the Floquet analysis consists of the Blasius base flow in a mov-
ing frame and the Fourier transformed perturbations,

/
^

Bð~x; yÞ ¼ qB;UB � c; 0; 0;TB½ �ðyÞ þ
XMS

m¼�MS

~em;0
~/m;0ðyÞeimar~x ;

(39)

where the Galilean transformation ~x ¼ x � ct is introduced to remove
the time-dependent terms, with c ¼ x=ar denoting the phase speed of
the 2D fundamental mode. MS is the truncation order of the Fourier

FIG. 9. Comparison of the LST predictions of the Mack-mode growth rates based on �U and UB: (a) case S and (b) case P.

FIG. 10. Streamwise evolution of the ju0j-amplitude for the fundamental mode (1,0): (a) case S and (b) case P.
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series, and ~em;0 and ~/m;0 � ð~qm;0; ~um;0; ~vm;0; ~wm;0; ~Tm;0Þ denote the
amplitude and shape function of each 2D Fourier component obtained
by NPSE calculations, respectively. Here, the growth of the fundamen-
tal mode is neglected because jaij � ar .

According to the Floquet theory, the secondary instability mode
can be given by

/0
Sð~x; y; z; tÞ ¼ �eei cð~xþctÞþbz½ �eirdar~x/

^

Sð~x; yÞ þ c:c:;

/
^

Sð~x; yÞ ¼
XNS

n¼�NS

~/S;nðyÞeinar~x ;
(40)

where c ¼ cr þ ici is the complex streamwise wavenumber with �ci
denoting its growth rate. �e is the amplitude, b is the spanwise
wavenumber, and NS is the truncation order of the Fourier series.
rd 2 ½0; 0:5� is a detuning parameter that identifies the distinct reso-
nance stages of the secondary instability, and we take rd ¼ 0 for the
fundamental resonance. Substituting Eqs. (39) and (40) in the linear-
ized Navier–Stokes equations and neglecting the non-parallel terms,
we arrive at a linear equation system,

M0 þ ðicÞM1 þ ðicÞ2M2�/
^

Sð~x; yÞ ¼ 0;
h

(41)

where

M0 ¼ ðAþ ibVxzÞ @

@~x
þ ðBþ ibVyzÞ @

@y

þ ibC þ Dþ ðibÞ2Vzz

� �
þ Vxx

@2

@~x2

þ Vyy
@2

@y2
þ Vxy

@2

@~x@y
;

M1 ¼ ðAþ ibVxzÞ þ 2Vxx
@

@~x
þ Vxy

@

@y
þ cC; M2 ¼ Vxx;

(42)

where the coefficient matrices A; B; C; D; C; Vxx; Vxy;Vxz; Vyy;
Vyz; Vzz can be found in Ref. 23. The boundary conditions are the
same as Eqs. (12) and (13) for a porous wall or Eqs. (12) and (14)
for a smooth wall. Again, the system [Eq. (41)] with the homoge-
neous boundary conditions forms an eigenvalue problem with c
appearing as the eigenvalue, and the same numerical approach as
in Eq. (11) is employed. The code validation is provided in
Appendix B.

Performing the SIA for x> 500, we calculate the growth rate
�ci of the secondary instability mode for b ¼ 0:4 at each position.
Integrating these growth rates along x, we obtain the accumulated
amplitude of the secondary instability modes, as shown by the
crosses in Fig. 12. The growth rates for both cases S and P
agree with the NPSE calculations of modes (0,1), (1,1), and (2,1).
Figure 13 compares the eigen-profiles of the Fourier components
(0,1) and (1,1) obtained by NPSE and SIA at x¼ 550. The agree-
ment for case S is perfect, but a small discrepancy between the
NPSE and SIA results is observed for case P. The reason is that
since the amplification of the secondary instability mode for case P
is weaker, the contributions by other factors, such as the nonlinear-
ity, are not negligible. The growth rate for case P is much lower
than that for case S, because the amplitude of the saturated funda-
mental mode is smaller for case P. This implies that the transition
occurs later for case P.

IV. CONCLUSIONS

In this paper, we study the nonlinear evolution of the Mack
modes over a hypersonic boundary layer coated by a porous
wall by the use of the NPSE approach. To quantify the impact of
the porous effect, a calculation over a smooth wall is also con-
ducted for comparison. The inflow perturbations are selected
to include a finite-amplitude 2D Mack mode and a pair of
small-amplitude 3D Mack modes with the same frequency as

FIG. 11. Comparison of the streamwise evolution of the ~u-amplitude between the NPSE calculations (solid lines) and those by removing artificially the MFD (dashed lines): (a)
case S and (b) case P.
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FIG. 12. Comparison of the amplitudes of modes (0,1), (1,1), and (2,1) with the SIA predictions: (a) case S and (b) case P.

FIG. 13. Normalized eigen-profiles of j~u0;1j (top row) and j~u1;1j (bottom row) obtained by NPSE and SIA. Left column: case S and right column: case P.
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the 2D mode but opposite spanwise wavenumbers. These
perturbations satisfy the fundamental resonance, which is found
to be a rather efficient means to trigger transition to turbulence
in hypersonic boundary layers. The NPSE calculations are con-
firmed to be sufficiently accurate in comparison with the DNS
results.

For both the smooth and porous cases, the evolution of each
Fourier component follows overall the same feature. The 2D funda-
mental mode grows exponentially in the early laminar phase; when
the mean-flow distortion driven by the self-interaction of the funda-
mental mode reaches a high level, it can act back on the fundamental
mode and lead to the nonlinear saturation of the latter; meanwhile, the
streak mode and high-order harmonics grow under the secondary
instability. However, three distinguished features are highlighted and
explained in detail.

(1) When the amplitude of the fundamental mode reaches a finite
level, the amplification of the MFD for case P is remarkably
greater than that for case S. An asymptotic analysis is per-
formed to explain this phenomenon by considering the
main-layer response of the MFD to the self-interaction of the
fundamental mode. For case S, the solution is regular and
peaks near the boundary-layer edge, whereas for case P, the
solution shows a logarithmic singularity near the wall, and an
additional viscous wall layer appears. This singularity ensures
a much greater amplitude of the MFD for case P.

(2) In the nonlinear phase, the fundamental mode undergoes a
reduction in its growth rate, which can be predicted overall by
analyzing the linear instability property based on the time-
averaged mean flow consisting of the base flow and the MFD.
The implication is that the presence of the MFD plays a stabiliz-
ing role on the development of the fundamental mode. Since
the MFD for case P is greater, the corresponding saturated
amplitude of the fundamental mode is smaller due to the stron-
ger suppression effect.

(3) When the fundamental mode reaches a sufficiently high ampli-
tude, the Fourier components with the same spanwise wave-
number, namely, (0,1), (1,1), (2,1), � � �, are amplified rapidly
due to the secondary instability, which is confirmed by compar-
ing the growth rates and the eigen-profiles between the NPSE
and SIA results. For case P, since the saturated amplitude of the
fundamental mode is lower, the growth rate of the secondary
instability mode is smaller, leading to a delay in the down-
stream transition location.

Although the above calculations are based on a particular
configuration, the theoretical analysis is quite generic, and so
can be applied to more broad cases as long as the fundamental
resonance appears. Inspired by the findings of the present work,
one may evaluate the laminar-flow control strategy by applying
the porous section in a more efficient way. Since the porous
effect could suppress the saturation amplitude of the fundamen-
tal 2D mode, the nonlinear phase can be lengthened remarkably.
Therefore, the equivalent transition threshold for the e-N
transition prediction method should be increased to compensate
the lengthened nonlinear phase. Also, the analytical model in
Sec. III C 2 provides a means to obtain quantitatively the mean-
flow distortion induced by the nonlinearity of the fundamental

mode, which can be used to evaluate the increment in the transi-
tion threshold due to the porous effect. Admittedly, the funda-
mental resonance is not the only nonlinear regime in the
transition process of hypersonic boundary layers, and the porous
effect on the nonlinear Mack modes under other nonlinear
regimes is also an attractive issue and worth to be done in the
future.

ACKNOWLEDGMENTS

This research was supported by the NSFC (Grant Nos.
U20B2003, 12002235, and 11988102).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Qinyang Song: Data curation (lead); Formal analysis (equal);
Investigation (equal); Validation (equal); Writing – original draft
(equal). Lei Zhao: Conceptualization (equal); Funding acquisition
(equal); Investigation (equal); Methodology (lead); Resources (equal);
Software (lead); Supervision (equal). Ming Dong: Conceptualization
(equal); Formal analysis (lead); Funding acquisition (equal); Project
administration (lead); Resources (equal); Supervision (equal); Writing
– review & editing (lead).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

APPENDIX A: RESOLUTION TESTS FOR THE NPSE
CALCULATION

The NPSE resolution tests for cases S and P are shown in
Fig. 14, where the computational configurations are the same as
that in Fig. 5. The present results for the standard mesh agree
well with those obtained by increasing the x� direction grid
points to 251 and increasing the y� direction grid points to 301,
separately, confirming the reliability of the calculations in the
current paper.

APPENDIX B: VALIDATION OF THE SIA CODE

To verify our SIA code, we perform calculations for the sub-
harmonic resonance as studied in Ng and Erlebacher.45 The physi-
cal model is a Mach-4.5 boundary layer over an adiabatic flat plate,
where R ¼ 1� 104 (R is the Reynolds number based on the
boundary-layer displacement thickness), and T�

1 ¼ 61:11K. The
fundamental mode is a 2D Mack mode with a ¼ 2:52, and the tem-
poral SIA is performed for three amplitudes of the 2D mode,
namely, e ¼ 0:02, 0.03, and 0.06. As shown in Fig. 15, our calcula-
tions agree perfectly with the results in Ref. 45, confirming the reli-
ability of our SIA code.
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