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A B S T R A C T   

We utilize a machine-learning force field, trained by a neural network (NN) with bispectrum coefficients as 
descriptors, to investigate the chemical short-range order (SRO) influences on the BCC MoNbTaW alloy 
strengthening mechanism. The NN interatomic potential offers a transferable force field that exhibits accuracy 
comparable to density functional theory. This innovative NN potential is employed to examine the SRO effects on 
various aspects such as elasticity, vibrational modes, plasticity, and strength in the MoNbTaW multi-principal 
element alloy (MPEA). The findings reveal a significant attraction between Mo-Ta pairs, resulting in the for
mation of locally ordered B2 clusters. These clusters can be adjusted via temperature and enhanced by Nb 
content. The presence of SRO leads to an increase in high-frequency phonon modes and introduces additional 
lattice friction to dislocation motion. This approach facilitates efficient compositional screening, paving the way 
for computational-guided materials design of novel MPEAs with enhanced performance. Furthermore, it opens 
up avenues for tuning the mechanical properties through optimization of the processing parameters.   

1. Introduction 

The demand for higher fuel efficiency and lower carbon emission has 
led to a pressing need to discover, develop, and deploy novel materials 
that can sustain high mechanical and corrosion damage in extreme en
vironments. After many years of improvements, developing conven
tional high-temperature materials such as nickel or cobalt-based 
superalloys, stainless steel, and refractory alloys has plateaued. The 
emerging multi-principal element alloys (MPEAs) have a vast yet under- 
explored compositional space, and the numerous combinations of con
stituents offer considerable freedom in the material design [1–4]. 

Among a wide range of material properties observed on various 
compositions and microstructures, some MPEAs have shown exceptional 
mechanical properties and degradation resistance at elevated tempera
tures [5–9]. For example, Senkov et al. [10] compared the temperature 
dependence of the yield stress of NbMoTaW and VNbMoTaW refractory 

MPEAs and Ni-based superalloys. The results show the strength of 
Inconel 718 rapidly decreases above 800 ◦C. In contrast, the yield stress 
of the two MPEAs gradually decreases from 600 ◦C to 1600 ◦C. More
over, multiple components combined have a stronger resistance to 
high-temperature softening than the individual refractory element 
constituent [11]. 

Currently, the origin of the distinct properties in the BCC MPEAs 
remains elusive. Among all the MPEAs’ characteristics, chemical short- 
range order (SRO) has been suggested to play a vital role [12]. 
Compared to conventional alloys [13–16], MPEAs are likely to exhibit 
more substantial SRO effects due to the multi-principal components and 
high concentrations of constituent elements. As such, the local ordering 
can introduce unusual dislocation slip modes and deformation mecha
nisms [17], such as the comparable edge and screw dislocations veloc
ities in BCC MPEAs [18], to modify the macroscopic mechanical 
properties. To verify this hypothesis, it is necessary to conduct a detailed 
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study to characterize the impacts of SRO on the mechanical properties at 
the atomic level. 

Experimental determination of the SRO is exceptionally challenging. 
Although SRO has been characterized via various scattering technolo
gies (e.g., x-ray, neutron, and electron), more direct observations by 
advanced electron microscopy became available only recently [19–21]. 
Regarding the theoretical predictions, people use the cluster expansion 
approach to expand the alloy’s structure into multiple atomic clusters 
and, through the density functional theory (DFT), calculate energy to 
determine the interaction coefficient. After that, energy can be calcu
lated for various atomic configurations by Monte Carlo (MC) sampling 
[22]. Hybrid DFT and MC method was also employed to sample the 
multi-component solid solutions [23]. DFT-based linear response theory 
and concentration wave analysis were recently applied to directly pre
dict the SRO and assess the competing long-range order [24]. 

Despite the efforts mentioned above, the DFT-based methods are 
difficult to perform large-scale simulations and examine the influences 
of SRO on the deformation mechanisms. Instead, conventional inter
atomic potentials were used to study the dislocation structures and 
mobilities [25]. But this method heavily depends on the availability and 
reliability of potential models. Meanwhile, several analytic models were 
developed to provide a generalized prediction [26], but the theory be
comes complicated considering the energy contribution beyond the pair 
interactions. 

Recently, machine learning methods have been widely applied in 
materials modeling. The machine learning potentials (MLPs) are trained 
by minimizing the cost function to deliberately attune the model to 
describe the DFT data. The cost of atomistic simulation is orders of 
magnitude lower than the quantum mechanical simulation, allowing the 
system to be scaled up to 1 million atoms [27,28]. To date, several 
regression techniques, including neural networks (NN) [29], Gaussian 
process regression [30], and linear regression [31,32], are popular 
choices for MLP development. Compared to other regression techniques, 
the NN approach has an unbiased mathematical form that can be 
adapted to any set of reference points through an iterative fitting process 
on an extensive training data set. To gain better predictive power, 
several types of symmetry-invariant structure descriptors have been 
developed to represent the local atomic environment that goes beyond 
the traditional representation in Cartesian coordinates [33]. Many ap
plications based on different MLP models have shown that the machine 
learning approach works remarkably well in various atomistic simula
tions [34–36]. In particular, several MLP models have been developed to 
investigate the MPEA systems [35–38]. These encouraging results 
promise using MLP to resolve the dilemma of compromising accuracy 
and cost for traditional models based on DFT or classical force fields. 

In this work, we apply the MLP-aided atomistic simulation to eluci
date the fundamental impacts of SRO on the various properties in a 
model BCC MoNbTaW MPEA through a comprehensive computational 
attack on the details, including chemical SRO and its temperature 
dependence, the compositional effects on SRO, the SRO influences on 
the elastic constants, phonon density of states, generalized stacking fault 
energies, Peierls stress, and tensile behaviors of the MoNbTaW alloys. 
The collective results will enable us to understand what matters and 
what does not and lay the basis for understanding SRO effects. In the 
following sections, we will introduce MLP development and other 
necessary computational approaches employed in this study. The MLP is 
then applied to different simulations (e.g., hybrid molecular dynamics/ 
Monte Carlo, vibrational analysis, and mechanical deformation) to 
construct the models with and without SROs and map the relation be
tween SRO and the target mechanical properties. Based on the simula
tion results, we will discuss the interplay between SRO, phase stability, 
dislocation core structures, plasticity, and strength. Our general ap
proaches can be used to investigate other MPEA systems and tune the 
mechanical properties through structure-composition-processing 
optimization. 

2. Machine-learning potential development 

Several software packages have been developed to promote the 
application of MLPs through different protocols [39–43]. Among them, 
we have developed the PyXtal_FF package [44] that can train different 
MLP models via the customized choices of machine learning regressions 
and descriptors. According to our experience with many other systems 
[44], we chose the NN regression of Spectral Neighbor Analysis Poten
tial (NN-SNAP). This model has been interfaced with the ML-IAP pack
age in the LAMMPS software [45]. In addition to the available data 
(5529 configurations from MD simulation and special quasi-random 
structure modeling) in a recent work [37], we added hundreds of con
figurations with large elastic strains and different crystallographic di
rections to improve the model’s predictive capability. Finally, we 
carefully designed the model to deal with two extreme scenarios that 
might appear under high-temperature MD simulations. The first case is 
the atomic contact at a short distance due to sizable thermal fluctuation. 
Such configurations are often far from equilibrium and cannot be 
interpolated by the training data. Therefore, we added an explicit 
physical term to express the short-range repulsion through the 
Ziegler-Biersack-Littmark empirical potential [46]. The second case is 
that a model with a large size may possess defects where the local atoms 
have low coordination. Such extreme environments have been largely 
ignored when people construct the DFT training data set from small-size 
structure periodic models. To address this issue, we also included a set of 
dimer and trimer configurations (e.g., Mo-Mo, Mo-Ta-Mo with different 
atomic distances) in our training data to ensure that the trained model 
understands such distinct environments. 

With the augmented data, we performed DFT calculations using the 
Perdew-Burke-Ernzerhof functional implemented in the VASP code 
[47], with a plane-wave cutoff energy of 520 eV. For each structure, we 
computed the SNAP descriptor for each configuration with a band limit 
(2jmax) up to 6, corresponding to 30 bispectrum components. The NN 
training was executed with two hidden layers with 30 nodes for each 
layer while energy, force, and stress contributions were trained simul
taneously. The importance coefficients of force and stress were set to 
10− 3 and 10− 4, respectively. The results of the NN potential training are 
illustrated in Fig. 1. We include 5564 structures and 137, 076 atomic 
environments for the training data set. The mean absolute errors (MAE) 
are 3.76 meV/atom for energy, 0.100 eV/A for force, and 0.537 GPa for 
stress tensors. In addition, our test data set includes 700 structures and 
14, 212 atomic environments, which yield the MAE errors of 9.039 
meV/atom for energy, 0.117 eV/A for force, and 0.641 GPa for stress 
tensors. The MLP accuracy is comparable with other recent works 
[35–37], thus warranting its application for the studies to be discussed 
in the following sections. 

3. Results 

3.1. Chemical SRO and its temperature dependence in MoNbTaW 

The local chemical orders in BCC MoNbTaW solid-solution alloy 
were investigated by the LAMMPS software using NN-SNAP. MC swaps 
of atoms at the specified temperature were performed with the accep
tance probability based on the Metropolis criterion [48]. All atoms in the 
simulation domain were moved using time integration on the 
Nose-Hoover style and sampled from the canonical ensembles, resulting 
in a hybrid MC/MD simulation. 

To quantify the chemical ordering around a specific element, we 
calculated the Warren–Cowley (W-C) parameters of the atomic config
urations after hybrid MD/MC sampling at different temperatures using 
the following equation [49]: 

αk
ij = 1 − pk

ij

/
cj (1)  
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where pk
ij is the probability of finding atom i in the kth coordination shell 

surrounding the atom j. cj is the nominal concentration of element j. In 
the case of αk

ij < 0, it suggests attractive interactions between the two 
atom types, while an αk

ij > 0 suggests repulsion. 
From the results in Fig. 2(a) for various first nearest-neighbors, Mo- 

Ta, Ta-W, Mo-Nb, and Nb-W pairs show attraction, among others, while 
Mo-Mo, Ta-Ta, Nb-Ta, and Mo-W pairs show repulsion. Moreover, the 
SRO is temperature dependent with a disorder-order transition tem
perature at approximately 1000 K. Above 1000 K, the alloy tends to a 
random solid solution, and the SRO becomes more potent at lower 
temperatures below 1000 K. Fig. 2(b) compares the equilibrium atomic 
configurations at 300 and 1200 K respectively, the squares label the 
local atomic clusters with B2 structure formed by Mo-Ta pairs. The 
fraction of short-range B2 order increases as the temperature decreases, 
which is consistent with our W-C parameters predicted and prior results 
reported [22,36,37]. 

In the subsequent investigation of SRO effects, we chose the atomic 
configurations after MD/MC at 300 and 1200 K as representative 

ordered (with SRO) and disordered (without SRO) models and calcu
lated several mechanical properties for comparison. These two types of 
samples will be referred to as SRO and Random, respectively. 

3.2. Element effects on SRO in non-equiatomic alloys 

To investigate the alloy composition’s impact and multiple elements’ 
synergy effects on the SRO, we constructed several non-equiatomic 
MoTaNbW quaternaries to evaluate the variation in the local chemical 
environments. More specifically, we focus on the influence of Nb and W 
on the Mo-Ta pairs and their local B2 clusters. Two more alloy compo
sitions of Mo25Ta25Nb10W40 (i.e., Nb10) and Mo25Ta25Nb40W10 (i.e., 
Nb40) were constructed, where Mo and Ta concentrations were fixed at 
25 at.%, and the Nb and W concentrations varied. We simulated five 
samples for each composition and subjected the samples to a longer 
annealing time (i.e., an order of magnitude increase in MC steps from 
20,000 to 200,000), considering that a higher Nb content could take 
longer to achieve thermodynamic equilibrium. 

Fig. 3a presents the W-C parameters of the Mo-Ta pair in the two 

Fig. 1. The performance of (a) energy, (b) force, and (c) stress tensor with training and testing dataset by the current MLP.  

Fig. 2. (a) W-C parameters versus the temperatures in MoNbTaW alloy. (b) Atomic configurations at 300 K and 1200 K after MD/MC sampling, respectively, the red 
and gold squares label the ordered B2 structures formed by Mo-Ta pairs. 
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alloys, along with the equiatomic MoTaNbW for comparison. The W-C 
parameters of the Mo-Ta pair, especially for longer annealing time, 
decrease with Nb content in the SRO structures equilibrated at 300 K, 
indicating Nb enhances the ordering of Mo and Ta. We further counted 
the number of Mo-Ta B2 clusters in all the alloys, where eight first 
nearest Mo neighbors surrounded one centered Ta atom and vice versa. 
As shown in Fig. 3b, the Nb element monotonically increases the Mo-Ta 
B2 clusters among the three compositions, even though the Mo and Ta 
concentrations remain unchanged. On the other hand, W exhibits a 
negative effect on forming the Mo-Ta B2 clusters. 

3.3. Elastic constants 

In order to understand the elastic behavior under small deformations 
and the SRO effect, the elastic constants were calculated for samples of 
BCC MoNbTaW alloys after hybrid MD/MC at 300 and 1200 K. In the 
first step, the samples containing 8192 atoms were equilibrated with the 
NPT (isothermal-isobaric) ensemble at zero pressure and a finite tem
perature varying from 100 to 1200 K for approximately 15 ps. The MD 
equilibrations were stopped when the fluctuating pressure was closer to 
zero. In the second step, a negative and a positive strain of 1% was 
applied separately to the computational cells for each of the Voigt 
deformation directions (xx→1, yy→2, zz→3, yz→4, xz→5, xy→6). In the 
final step, the deformed computational cells were equilibrated with the 
NVT (canonical) ensemble at the same initial temperature for 10 ps. At 0 
K, conjugate gradient energy minimizations were performed instead of 
MD equilibrations. 

The resultant average changes in stress were used to compute one 
row of the elastic stiffness tensor for each Voigt deformation component, 
considering the average of the negative and positive deformations. 
Therefore, the elastic constants were calculated using the cubic sym
metries as 

C11 = (C11 +C22 +C33)/3 (2)  

C12 = (C12 +C21 +C13 +C31 +C23 +C32)/6 (3)  

C44 = (C44 +C55 +C66)/3 (4) 

Fig. 4 shows the elastic constants of the BCC MoNbTaW alloy as a 
function of temperature obtained from one random and two SRO sam
ples with different initial structures. The results show an approximately 
linear relationship of the elastic constants with respect to temperature. 
As expected, the alloys are more compliant at higher temperatures. C11 

is more sensitive to temperature, which corresponds to uniaxial de
formations. Both SRO samples appear to have consistently higher C12 
and C44 values than the random alloy. For C11, the random solid solution 
tends to have a bit high value at very low temperatures. Considering the 
statistical fluctuation, these differences are nearly negligible, indicating 
that the SRO has a minimal impact on the elastic constants. 

3.4. Phonon density of states 

To understand the SRO’s influence on vibrational properties, we 
calculated alloy samples’ phonon density of states (PDOS) with different 
degrees of SRO. The PDOS was estimated using the Fourier transform of 
the velocity-velocity autocorrelation function (VACF) derived from the 
MD trajectories [50]. This standard procedure is formulated as 

g(ω) =

∫∞

0

eiωt 〈 v→(t) v→(0)〉
〈 v→(0) v→(0)〉

dt, (5)  

where ω is the vibrational angular frequency of a normal mode and g(ω)

Fig. 3. (a) W-C parameters of the Mo-Ta pair, and (b) the number of Mo-Ta local B2 clusters in Mo25Ta25Nb10W40 (Nb10), Mo25Ta25Nb25W25 (Nb25), and 
Mo25Ta25Nb40W10 (Nb40) alloys subjected to annealing at 300 K for 20, 000 and 200, 000 MC steps. 

Fig. 4. At various temperatures, the elastic constants of BCC MoNbTaW alloy 
were obtained from MD/MC simulations for two SRO samples with different 
initial structures and one random sample. 
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is the PDOS. v→(t) is the velocity of an atom at time t, and v→(0) is the 
initial velocity. Therefore, the VACF 〈 v→(t) v→(0)〉 can be obtained 
directly from the instant velocity of each atom from the output of any 
molecular dynamics code. 〈⋯〉 denotes an ensemble average. The inte
gral goes sufficiently long to guarantee all the vibrational modes are 
included. The time resolution should be high enough in simulation to 
avoid statistical error and huge fluctuation in DOS. Furthermore, the 
supercell should be large enough to include the long wavelength 
vibrational mode with low frequency. Our simulation model had 
520,000 atoms with 64×64×64 BCC lattices, which is believed to be 
large enough to produce physically sound VACF and reliable phonon 
features [51]. 

Fig. 5(a) shows the velocity-velocity autocorrelation functions 
(VACFs) of specific alloys at 10 K. The VACFs decay very quickly and 
fluctuate around zero within a few picoseconds. The PDOS can be ob
tained from this feature by Fourier transform according to Eq. (5) and 
illustrated in Fig. 5(b). Several characteristics can be noticed from the 
vibrational properties. First, the MD/MLP calculations are reliable if one 
compares the DOS of a random sample (blue curve) to the reported DFT 
results (gray area) using a special quasi-random structure supercell 
model [52]. At very high frequencies above 30 meV, DOS estimated 
from MLP vanishes, but there are still some high-frequency modes from 
the DFT prediction. Second, no alloy has the imaginary vibrational 
frequency, indicating thermodynamically and elastically stable. 

Compared to the random structure, the SRO’s (red curve) low- 
frequency modes (mainly corresponding to the elastic waves) remain 
nearly unchanged; however, the high-frequency modes beyond 25 meV 
change significantly. The results indicate that SRO enhances the local 
modulus, and the local hardening may raise extra resistance to the 
dislocation motion, as shown in the following Peierls stress results. In 
contrast, the overall modulus, mainly related to low-frequency modes 
[53,54], will not change much. This is consistent with our aforemen
tioned results that SRO does not remarkably increase elastic constants. 
We also calculated the Mo-Ta B2 phase (green curve) to compare the 
long-range order with the SRO effect. The single Mo-Ta B2 phase is 
apparently of higher frequency, and therefore it is harder than the SRO 
and random solid solution models. 

3.5. Generalized stacking fault energies 

Generalized stacking fault (GSF) energies are essential parameters 
that influence dislocation mobility, deformation twinning, and phase 

transformation. Here, the GSF energies of the primary slip system 
<111>{110} in BCC MoNbTaW were performed using a large supercell 
containing about 36,000 atoms with and without SRO. The supercell 
was set to be periodic along 〈111〉 and 〈112〉 directions and non-periodic 
along 〈110〉. 

To take into account the local chemical variations, GSF energies were 
calculated on five consecutive {110} planes along with the slip direction 
〈111〉, as shown in Fig. 6(a). The averaged GSF in Fig. 6(b) shows that 
the unstable stacking fault energy (maxima on the GSF energy curve) 
increases by ~100 mJ/m2 in the SRO model compared to the random 
one. The error bars in the energy curves for each displacement indicate 
the impacts of chemical fluctuation at various locations in this multiple 
components alloy; however, the variation is less than 20 mJ/m2. 
Therefore, the significant contribution to the GSF energy increment and 
resulting resistance to dislocation slip and dissociation is due to the 
break of SRO bonding. As an example shown in Fig. 6(a), the Mo-Ta B2 
clusters were broken on the (110) slip plane during the shift of two 
crystal halves relative to each other. 

3.6. Peierls stress 

To estimate the role of SRO plays in strength, we computed the 
Peierls stress of a screw dislocation in both ordered and disordered 
samples. Peierls stress is the threshold stress when dislocation starts to 
glide at 0 K in an infinite crystal without other defects. It indicates the 
lattice friction of dislocation, thus a baseline for the strength of metals. 
For computing the Peierls stress, an athermal quasistatic shear defor
mation was applied with a small increment of strain 10− 4 until a critical 
point where the dislocation started to move. The model was fully relaxed 
to its local energy minimum at each strain. 

For Peierls stress simulation, a 12 〈111〉 screw dislocation was modeled 
in the supercell of Fig. 7(a), and the burger vector was along the x [111] 
direction. The strain-stress curves are shown in Fig. 7(b). Notice that 
there are a series of stress fluctuations around strain 0.02 in the random 
structure (blue line). This fluctuation is due to the local structural 
relaxation rather than Peierls stress. The calculated Peierls stresses in 
MoNbTaW are 2.47 and 2.91 GPa, for the random and SRO structures, 
respectively. Therefore the SRO increases the lattice friction of dislo
cation motion and thus the strength of alloy, which is consistent with the 
enhancement in high-frequency vibrational modes and GSFs due to SRO. 

Fig. 5. Vibrational features of BCC MoNbTaW alloy. (a) The VACFs were obtained from MD simulations for samples with the SRO and random ones. (b) Phonon DOS 
of alloys with different SROs. Normal modes move to high frequency with increasing chemical SRO. MD calculation with the present MLP is validated by DFT 
calculations on random structures [52]. 
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3.7. Tensile behaviors 

Uniaxial deformations were performed for the tensile strain-stress 
relations. Before deformation, the samples were equilibrated at zero 
pressure and the desired temperature with the NPT ensemble for 10 ps. 
After that, uniaxial tensile deformations were loaded along the [001], 
[110], and [111] crystallographic directions with a strain rate of 1×108 

s− 1. The stress was measured along the deformation direction, main
taining zero pressure in the transverse directions at a constant temper
ature. For deformations along the [001] direction, the simulations were 
carried out using a periodic conventional orthogonal cell containing 
8192 atoms with 16×16×16 BCC lattices. On the other hand, for the 
deformations along the [110] and [111] directions, a rotated compu
tational cell containing 7128 atoms was used, changing the conventional 
orthogonal orientations by ([1,1,1], [1,1,− 2], [− 1,1,0]). 

Fig. 8 shows the stress-strain response is anisotropic, depending on 

crystallographic orientations. The SRO slightly increases the modulus 
(slope) in the elastic deformation stage for all three directions, consis
tent with our previous results. SRO and random samples exhibit similar 
yield stress. Still, the SRO sample shows more deformation resistance in 
the [100] and [110], as evidenced by the higher stress level to keep 
deforming after yielding. 

The dominant mechanisms in [110] and [111] directions comply 
with the dislocation-mediated deformation, as shown in Fig. 8(b) and 
(c). The majority dislocation type is ½<111> with minor 〈100〉 type. 
The following work hardening after yielding is due to the interplay 
among the dislocations. In contrast, Fig. 9 presents the [100] tensile 
stress-strain curve, along with several critical moments denoted on it. No 
defect was found in the initial sample before the start of the tensile 
process. It is noted that mechanical instability occurs around a strain of 
11% and stress of 16 GPa, driving the simulated sample away from the 
elastic limit. As the stress increases, <112>{111} twinning is observed 

Fig. 6. (a) The side view images of atomic configurations in the original SRO structure and stacking fault. The red and gold squares label the ordered Mo-Ta B2 
structures. (b) Averaged GSF of MoNbTaW with and without SRO. The error bars denote chemical fluctuation at various locations. 

Fig. 7. Resistance of dislocation mobility in MoNbTaW alloys. (a) Schematic illustration of the simulation cell geometry for assessment of Peierls stress of a screw 
dislocation. (b) Shear stress-strain curves for the SRO and random sample. 
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in the crystalline lattice (Fig. 9 Strain=0.13). The first significant stress 
drop to a lower value of ~ 6.2 GPa, followed by a serration flow with 
slight hardening. Such stress serration is associated with twin boundary 
migration (Fig. 9 Strain=0.16). At a strain of 0.2, the second major stress 
drop occurs, forming a set of cross-twins (Fig. 9 Strain=0.21). Very few 
dislocation activities are captured. One is shown in Fig. 9 (Strain=0.21), 
where a dislocation nucleated from one twin boundary, propagated 
across, and was absorbed by another twin boundary. 

4. Discussion 

Compared to pure BCC metals and dilute alloys, the strength of some 
refractory MPEAs exhibits weak temperature dependence over a wide 
temperature range [10]. Currently, the origin of the outstanding prop
erties doesn’t have a clear mechanistic picture. One possible reason is 
that the multiple principal elements and local chemical fluctuation lead 
to a rugged energy landscape and considerable variation in barriers of 
dislocation motion. Another mechanism is through the prevailed SRO in 
MPEAs, which impacts the structure and mobility of dislocations and 
enhances the mechanical property. However, the dominant factor in the 
BCC MPEAs strengthening has yet to be elucidated. 

This study scrutinizes the temperature and composition dependence 
of SRO and their effects on the elastic constants and phonon density of 

states, generalized stacking fault energies, Peierls stress, and tensile 
deformation in the MoNbTaW alloys to deconvolute the complexity of 
strengthening in MPEAs into individual mechanisms. The results show 
the strong attraction among Mo-Ta pairs forming the short-range or
dered B2 clusters. While SRO slightly changes the elastic constants, it 
evidently redistributes high-frequency phonon modes, which is critical 
to the material’s thermodynamic properties at elevated temperatures. 

The remarkable improvement of GSF and Peierls stress indicates 
SRO’s extra lattice friction of dislocation motion besides the multiple 
principle elements introduced in the rough energy landscape. SRO does 
not change the twinning initiation in our current [100] tensile defor
mation compared to the random structure. But it could be expected that 
the SRO would influence the dislocation structure and velocity after the 
twin formation. 

The strength of BCC MPEAs results from synergistic interactions of 
various deformation mechanisms influenced by the atomic environment 
(e.g., SRO), microstructure (e.g., crystallographic orientations), as well 
as external conditions (e.g., temperature). Here, we reveal a pronounced 
enhancement in intrinsic lattice resistance of screw dislocation motion 
due to the presence of SRO despite its minimal effect on elastic con
stants. However, it is noted that the screw dislocation strengthening 
processes involve kink-pair nucleation, kink migration, and cross-kink 
[55]; at high temperatures, thermal diffusion and edge dislocation 

Fig. 8. (a) Uniaxial tensile stress-strain response of the SRO (solid line) and random MoNbTaW (dashed line) samples along [100], [110], and [111] directions at 
300 K. Atomic configurations of (b) [110] and (c) [111] tensile strains after yield. 

Fig. 9. Atomic configurations at various tensile strains along the [100] direction.  

P.A. Santos-Florez et al.                                                                                                                                                                                                                       



Acta Materialia 255 (2023) 119041

8

motion are hypothesized to gain importance in BCC MPEAs [56]. 
Whether SRO will strengthen the alloy depends on specific compositions 
and their interaction with the dislocation [57]. Moreover, crystallo
graphic orientations are vital in deformation mechanisms, microstruc
ture evolution, and dislocation activities. Deformation-induced 
twinning is favored in tensile loading along [100] directions, whereas 
dislocation activities dominate along [110] and [111] directions. 
Therefore, our results suggest a tailorable grain texture along with 
tunable chemical orders collectively impact the mechanical behaviors of 
BCC MPEAs. 

Rich in SROs is one of the salient features inherent to MPEAs, dis
tinguishing them from traditional alloys. Experimentally, the MPEAs are 
processed, homogenized, and annealed at temperatures below their 
melting points, unavoidably accommodating SROs [4]. Tuning the SROs 
could offer a new strategy to tailor novel multi-component alloys’ 
structural, chemical, magnetic, and mechanical properties. In CrCoNi 
FCC alloys, it has been shown that tempering to promote SRO has 
increased hardness, enhanced SFE, and a subsequent increase in planar 
slip [20]. Similarly, our temperature dependence results map out the 
tunable SRO degree in MoNbTaW with temper, which facilitates pro
cessing optimization to achieve the alloy’s applicable property. 

In addition to thermal processing, we demonstrate that properly 
designing the alloy composition by increasing Nb content can enhance 
the chemical SRO and local Mo-Ta B2 clusters in the non-equiatomic 
MoTaNbW alloys. Considering that Nb is the lightest element in the 
MoTaNbW system and further promotes the SRO effect, it is reasonable 
to anticipate an enhanced specific strength, which guides the experi
mentalists in the composition search of this refractory alloy for light
weight applications. 

All the aforementioned simulations heavily rely on the availability of 
the MLP model. Our MLP model is similar to the previous efforts based 
on linear regression [35,36]. However, we believe that using neural 
networks makes the model more flexible in capturing target functions’ 
nonlinear behavior, such as the potential energy surface. More impor
tantly, the execution cost of NN is similar to linear regression when the 
same set of descriptors is used. Therefore, it is perhaps more suitable for 
large-scale simulation of multiple-component systems in which 
nonlinear effects are more pronounced. 

Moreover, it is essential to remember that nearly all MLP models 
suffer from the extrapolation problem. A typical MLP model is usually 
trained with the atomic configurations near the equilibrium. Therefore, 
it cannot reasonably extrapolate the non-equilibrium configurations 
with either too short or too long atomic distances. In our experience, the 
inclusion of dimer data and explicit repulsion terms can generally pre
vent the explosion of MD simulation due to MLP’s nonphysical predic
tion when the system departs strongly from the equilibrium. In addition, 
one should never apply the model to predict the configuration that has 
not yet been considered in the training process. Although our initial MLP 
model correctly predicted all elastic and vibrational properties and the 
deformation responses in the [100] direction, it yielded an unphysical 
amorphization behavior for the deformation at [110] and [111]. To 
improve the MLP, we intentionally included more deformation config
urations in our training database. This example highlights the extrapo
lation challenge in MLP development. It is essential to ensure that the 
simulation stays within the training domain for diverse application 
cases. This precaution is necessary to maintain the reliability and ac
curacy of the simulation results across different scenarios and applica
tions. Otherwise, the training database must be fed additional data to 
guarantee the model’s interpolative capability. Only when the training 
data has been efficiently sampled the MLP-based interpolation can be 
considered a compelling solution to bridge the gap between DFT and 
classical force field simulations. 

5. Conclusion 

In summary, we report the application of well-trained MLP to 

simulate the model MPEA system of MoNbTaW. We trained a neural 
network potential based on a large set of structure-properties data and 
MD configurations from DFT calculation. Combining the MLP with 
hybrid molecular dynamics/Monte Carlo simulations, we thoroughly 
investigate the impacts of SRO on phase stability, dislocation core 
structures, plasticity, and strength in the MoNbTaW MPEA. In addition 
to the MoNbTaW with equal proportions, the combination of MLP with 
other contemporary computational techniques is also suitable for 
rapidly screening target compounds in a vast compositional space, thus 
paving the way for computation-guided materials design of new MPEAs 
with better performance. 
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