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Abstract: Recent advancements have led to the synthesis of novel monolayer 2D carbon structures,
namely quasi-hexagonal-phase fullerene (qHPC60) and quasi-tetragonal-phase fullerene (qTPC60).
Particularly, qHPC60 exhibits a promising medium band gap of approximately 1.6 eV, making it
an attractive candidate for semiconductor devices. In this study, we conducted comprehensive
molecular dynamics simulations to investigate the mechanical stability of 2D fullerene when placed
on a graphene substrate and encapsulated within it. Graphene, renowned for its exceptional tensile
strength, was chosen as the substrate and encapsulation material. We compared the mechanical
behaviors of qHPC60 and qTPC60, examined the influence of cracks on their mechanical properties,
and analyzed the internal stress experienced during and after fracture. Our findings reveal that
the mechanical reliability of 2D fullerene can be significantly improved by encapsulating it with
graphene, particularly strengthening the cracked regions. The estimated elastic modulus increased
from 191.6 (qHPC60) and 134.7 GPa (qTPC60) to 531.4 and 504.1 GPa, respectively. Moreover, we
observed that defects on the C60 layer had a negligible impact on the deterioration of the mechanical
properties. This research provides valuable insights into enhancing the mechanical properties of 2D
fullerene through graphene substrates or encapsulation, thereby holding promising implications for
future applications.

Keywords: monolayer fullerene; fracture behavior; molecular dynamics simulation; tensile property;
pre-crack system; graphene substrate

1. Introduction

Carbon-based materials have garnered significant attention due to their versatile and
promising applications, in particular, extensive research has focused on the exploration of
two-dimensional (2D) carbon materials [1–3]. The excellent mechanical properties have
been widely studied in many aspects, for example, the tensile strength on monolayer and
bilayer graphene, the defect influence, the magic angle graphene and the phase transition
induced by strain [4–25]. On the other hand, the fullerene system is one of the prominent
candidates for future electronic applications as recently proposed in [26]. However, despite
significant research efforts, a comprehensive understanding of the formation mechanism
and stability of fullerene molecules remains elusive [27–29]. In a recent breakthrough,
the experimental realization of a novel 2D carbon material exhibiting a semiconductor
band gap of approximately 1.6 eV has been accomplished. This fabricated material can
be fabricated into quasi-hexagonal-phase fullerene (qHPC60) and quasi-tetragonal-phase
fullerene (qTPC60) structures [30]. The synthesis of these intriguing structures has opened
new avenues for investigating their properties and exploring potential applications.
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Many studies have been carried out on the mechanical properties and thermal sta-
bility of qHPC60 and qTPC60 [31–36]. Ying et al. comprehensively studied the properties
of the newly synthesized monolayer qHPC60 film under axial tension using density
functional theory (DFT) calculations and molecular dynamics (MD) simulations, using
machine learning neuroevolutionary potentials [34]; the elasticity and fracture behavior
of monolayer qHPC60 are found to be strongly anisotropic. Peng [37] carried out de-
tailed DFT studies to compare the mechanical, kinetic, or thermodynamic stability of
qTPC60 and qHPC60. Zhao et al. found through DFT that the ultimate tensile strength
and fracture work of single-layer qHPC60 reached a maximum at 15 and 75◦, respec-
tively [38]. Shen et al. studied the thermodynamic stability of qHPC60, as well as its
adhesive properties, ductility and mechanical properties [39]. Ribeiro et al. calculated
the thermodynamic stability and fracture mode of qHPC60 and qTPC60 by MD [40]; the
results showed that these structures have similar thermal stability, and the sublimation
points are 3898 and 3965 K, respectively. qTPC60 undergoes a structural mutation after a
critical strain threshold, breaking completely. The crack growth of qHPC60 (qTPC60) is
linear (non-linear). The estimated elastic moduli of qHPC60 and qTPC60 are 175.9 and
100.7 GPa, respectively.

The effect of substrate and encapsulation on 2D fullerene is still not well explored,
especially concerning its mechanical properties. The fullerene systems are also being found
on the substrate or within the multi-layer heterostructure. An experiment reported mixing
graphite oxide in toluene followed by heat treatment to obtain a multilayer structure con-
sisting of graphene and fullerene layers [41]. Another study obtaining a film composed
of a layer of closely packed fullerene sandwiched between two layers of graphene [42];
Young’s modulus of the material was more than an order of magnitude higher than that of
the molecular fullerene. Mutual partial polymerization of fullerenes and partial polymer-
ization of adjacent graphene flakes have also been studied [43]; the study showed that all
considered compounds were energetically more stable when covalent bonds were formed
between the components and that the cycloaddition reaction of fullerenes to fullerenes or
graphene can be controlled using both pressure and temperature [44], or obtained under
UV irradiation [45]. Graphene/fullerene/graphene sandwiches demonstrate switchable
interfacial thermal resistance and show promising potential applications in switchable
thermal devices [46].

We propose to enhance the tensile strength and mechanical stability of 2D fullerene,
including qHPC60 and qTPC60, by using the substrate or encapsulation of graphene sheets,
illustrated in Figure 1. As shown Figure 2, the tensile strength and mechanical stability of
2D fullerene has been greatly improved by using graphene sheet. Compared to other carbon
materials, graphene-encapsulated 2D fullerene (Gp/qHPC60/Gp and Gp/qTPC60/Gp)
has enhanced its tensile strength more than its monolayer counterpart, and the fullerene
intermediate by the van der Waals force; however, it still has a smaller fracture tensile
strength than a graphene sheet, carbon nanotube or diamond. The improved mechanical
stability can potentially lead to a higher chance of employing qHPC60 or qTPC60 as a new
generation of carbon functional nanomaterial.

In this article, we first outline our methods in Section 2. We test the mechanical
stability of monolayer qHPC60 and qTPC60 of different system size, different strain rates,
and different crack sizes in Section 3.1. We study how the use of a graphene substrate
or encapsulation impact the mechanical stability of qHPC60 and qTPC60 in Section 3.2.
We performed an internal stress analysis on qHPC60 with a substrate or encapsulated by
graphene sheets in Section 3.3.
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Figure 1. (a) Monolayer fullerene encapsulated with graphene sheets; (b) pre-cracked qHPC60; (c) 
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Figure 2. Comparison of the theoretical fracture strain and tensile strength of different carbon ma-
terials including van der Waals C60 [47], graphyne [48], single-wall carbon nanotubes [49], diamond 
[50], graphene [51,52]. Our proposed scheme of stabilizing 2D fullerene with graphene substrate 
and encapsulation are found to significantly enhance its tensile strength, leveraging the strength of 
the strong graphene layer. 

2. Materials and Methods 
We carried out extensive MD simulations in LAMMPS (large-scale atomic/molecular 

massively parallel simulator) [53]. OVITO (open visualization tool) [54] and VMD (visual 
molecular dynamics) [55] were utilized to generate the atomistic simulation results and 
figures. We carried out ful atomistic MD simulations with the reactive force field ReaxFF 
(employing the parameter set for C/H/O [56,57]), a reactive potential allowing the for-
mation and breaking of chemical bonds during fracture dynamics investigation. The sim-
ulation model of qHPC60 encapsulated with graphene sheets was established as shown in 
Figure 1. The distance between the graphene sheet and the fullerene layer is 3.4 Å [58]. All 
simulations were conducted at 300 K and zero pressure, using a simulation time step of 
0.1 femtosecond (fs). Our calculation time was 500 fs. We used LAMMPS to calculate the 
stress of the materials, and its main theory is as follows. The stress tensor for atom I is 
given by the following formula, where a and b take on values x, y, z to generate the com-
ponents of the tensor [59]: 𝑆 = െm𝑣 െ 𝑊 

Figure 1. (a) Monolayer fullerene encapsulated with graphene sheets; (b) pre-cracked qHPC60;
(c) pre-cracked qTPC60.
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Figure 2. Comparison of the theoretical fracture strain and tensile strength of different carbon materi-
als including van der Waals C60 [47], graphyne [48], single-wall carbon nanotubes [49], diamond [50],
graphene [51,52]. Our proposed scheme of stabilizing 2D fullerene with graphene substrate and
encapsulation are found to significantly enhance its tensile strength, leveraging the strength of the
strong graphene layer.

2. Materials and Methods

We carried out extensive MD simulations in LAMMPS (large-scale atomic/molecular
massively parallel simulator) [53]. OVITO (open visualization tool) [54] and VMD (vi-
sual molecular dynamics) [55] were utilized to generate the atomistic simulation results
and figures. We carried out ful atomistic MD simulations with the reactive force field
ReaxFF (employing the parameter set for C/H/O [56,57]), a reactive potential allowing the
formation and breaking of chemical bonds during fracture dynamics investigation. The
simulation model of qHPC60 encapsulated with graphene sheets was established as shown
in Figure 1. The distance between the graphene sheet and the fullerene layer is 3.4 Å [58].
All simulations were conducted at 300 K and zero pressure, using a simulation time step
of 0.1 femtosecond (fs). Our calculation time was 500 fs. We used LAMMPS to calculate
the stress of the materials, and its main theory is as follows. The stress tensor for atom
I is given by the following formula, where a and b take on values x, y, z to generate the
components of the tensor [59]:

Sab = −mva − Wab
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The first term is a kinetic energy contribution for atom I. The second term is the virial
contribution due to intra and intermolecular interactions, where the exact computation
details are determined by the computation style. The virial contribution is:

Wab = 1
2
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)
+ 1

2
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The first term is a pairwise energy contribution where n loops over the Np neighbors
of atom I, r1 and r2 are the positions of the 2 atoms in the pairwise interaction, and F1 and
F2 are the forces on the 2 atoms resulting from the pairwise interaction. The second term
is a bond contribution of similar form for the Nb bonds which atom I is part of. There are
similar terms for the Na angle, Nd dihedral, and Ni improper interactions atom I is part of.
There is also a term for the KSpace contribution from long-range Coulombic interactions,
if defined. Finally, there is a term for the Nf fixes that apply internal constraint forces
to atom I. The size of the equilibrated simulation box was 64 × 64 × 200 Å3. Our strain
rate ranged from 108 to 1010 s−1, and the final selected strain rate was 109 s−1, with the
tensile direction along the positive x-axis. We used the built-in calculation stress–strain
command in LAMMPS to calculate the stress–strain in the x-direction. Our calculation
time was 500 fs.

Young’s modulus, fracture stress and fracture strain were obtained from the simulated
stress–strain curve. Young’s modulus was calculated as the initial slope of the stress–strain
curve. Young’s modulus is the slope of the linear part of the stress–strain curve, taking the
first 5% of the strain, while the fracture stress and fracture strain are defined at the point
where the peak stress is reached. The total strain energy is defined as the area under the
curve from the origin (0,0) to the breaking point. This is the energy that can be absorbed by
the material before fracture, which is proportional to the area under the stress–strain curve.

3. Results and Discussion
3.1. Monolayer Fullerene
3.1.1. Effect of System Size

We obtained the stress–strain curves for monolayers of both qHPC60 and qTPC60 with
different lattice sizes, from 32 Å × 32 Å to 128 Å × 128 Å, in which we employed a square
box as the simulation cell in the x–y plane. As shown in Figure 3, the larger lattice size
would lead to a smaller fracture stress in both qHPC60 and qTPC60. We found that this
trend is consistent with the literature [34]. Based on the above analysis, our following
experiments all selected 64 Å × 64 Å as the x–y plane size of the simulation cell to strike a
balance between numerical precision and computational time.

3.1.2. Effect of Strain Rate

We investigated the tensile behavior of qHPC60 and qTPC60 at different strain rates.
As shown in Figure 4a,b, the maximum stress and corresponding fracture strain increased
with the increase in strain rate, indicating that single-layer qHPC60 and qTPC60 are more
difficult to fracture at higher strain rates, and the bonds between the atoms are less prone
to fracture. Through the above analysis, we chose a moderate strain rate of 1 × 109 s−1 as
the study fracture for other situations.
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3.1.3. Presence of Cracks

We investigated the tensile behavior of qHPC60 and qTPC60 in the presence of
a crack. The crack size was determined by the number of missing C60 molecules in
the 2D fullerene layer. From Figure 5a,b, the maximum tensile stress continuously
decreased with the increase in the crack size. The presence of pre-existing cracks in the
2D fullerene reduced its mechanical stability compared to the perfect lattice. As the crack
size increased, the material’s elastic properties and fracture resilience deteriorated. In
the linear elastic regime, the Young’s modulus of the monolayer qHPC60 and qTPC60
decreased from 191.8 (138.3 GPa) to 144.8 GPa (80.1 GPa), respectively, when increasing
the crack size from one molecule to three molecules, as shown in Figure 5e. The crack
size also influenced the fracture behavior, making the material more fragile. The fracture
stress decreased from 21.5 (14.1 GPa) to 12.3 GPa (8.7 GPa), while the fracture strain
decreased from 0.11 (0.12) to 0.09 (0.09).

3.2. qHPC60 and qTPC60 with Graphene Substrate

Through the analysis of the monolayer qHPC60 and qTPC60, we observed that the
artificially synthesized monolayer 2D fullerene material was not very stable. Compared to
the Young’s modulus of graphene, which is as high as 1000 GPa [59], the Young’s modulus
of the 2D fullerene material was quite small. Therefore, to improve its tensile strength and
stability we used graphene as a substrate for 2D fullerene.
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modulus ratio comparison.

As can be seen from Figure 6a,b, both qHPC60 and qTPC60 of the substrate show
improved stability. Moreover, the stability of the 2DC60 material becomes stronger when
increasing the number of layers (these data can be seen in Table 1). From Table 2, we
can see that the Young’s modulus, fracture stress and strain increases with the number
of graphene layers, which is almost twice as much as the number of graphene substrate
layers. This shows that adding a substrate to a single-layer fullerene material can increase
its tensile mechanical stability. We also conducted substrate analysis on defective qHPC60
and qTPC60 and compared them with data from different substrates. We found that the
time for the first fracture of defective fullerene was extended backwards, but the overall
fracture stress, strain energy, and Young’s modulus decreased slightly. This suggests that
the stability of the defective fullerenes, when “protected” by the graphene substrate, did
not undergo significant changes as previously observed.
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Figure 6. Comparison of the stress–strain curves of monolayer fullerene, (a) qHPC60 and
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Table 1. Comparison of the fracture stress, strain energy and Young’s modulus for qHPC60 and its
associated structures.

Substrate Fracture Stress
(GPa)

Strain Energy
(J/m3)

Young’s Modulus
(GPa)

qHPC60 24.5 1.6 191.6

Gp/qHPC60 39.5 6.1 322.7

Gp/qHP C60/Gp 78.7 11.4 531.4

Gp/qHPC60/Gp-Crack 77.4 11.1 518.7

Table 2. Comparison of the fracture stress, strain energy and Young’s modulus for qTPC60 and its
associated structures.

Substrate Fracture Stress
(GPa)

Strain Energy
(J/m3)

Young’s Modulus
(GPa)

qTPC60 17.6 1.1 134.7

Gp/qTPC60 37.4 5.7 295.9

Gp/qTPC60/Gp 76.7 10.7 504.1

Gp/qTPC60/Gp-Crack 75.3 10.2 489.1

3.3. Analysis of Internal Atom Stress
3.3.1. Without Defects

To analyze the influence of substrates on the internal stress of atoms, we selected the
more stable qHPC60 with a monolayer graphene substrate (Gp/qHPC60) and a bilayer
graphene substrate (Gp/qHPC60/Gp) as the objects of analysis. We used the OVITO
software to compare the tensile stress tensor, strain tensor, deformation gradient, and stress
in the tensile direction (measured in Pa) before and after fracture, as shown in Figure 7.
From Figure 7a, it can be observed that qHPC60 starts to fracture when the strain reaches
0.14. Stress concentrates in the tensile direction (the x-axis in this case), and the maximum
positions of the tensile stress and strain tensors are mainly located at the fracture site, while
deformation also concentrates around the fracture site.

After adding the substrate, the positions of stress concentration shift sequentially.
Compared to qHPC60, both Gp/qHPC60 and Gp/qHPC60/Gp exhibit increased fracture
strain, changing from the original 0.14 to 0.17 and 0.26, respectively. This indicates a longer
time required for fracture, and the material’s resistance to deformation and tensile strength
increases. Combined with the previous Young’s modulus and fracture stress data, this
further supports the significant role of substrates in the tensile capability and stability of
fullerene materials.

Therefore, we suggest appropriately increasing the substrate when using 2D fullerene
materials in practical applications to enhance material stability. To analyze the effect of
substrates on the internal stretching of atoms in 2D fullerene materials, we selected the
more stable qHPC60 with a single-layer graphene substrate and a two-layer graphene
substrate as the objects of analysis. We utilized the OVITO software to compare various
parameters such as the tensile tensor, strain tensor, deformation gradient, and stress (in Pa)
along the tensile direction during and after fracture, as illustrated in Figure 7.

From Figure 7a, it can be observed that the single-layer fullerene begins to fracture at
a strain of 0.13 to 0.14. The strain tensor serves as a measure of local deformation, and the
tensile stress is concentrated along the tensile direction (in this case, the x-axis). The tensile
and strain tensors in the stretching direction mainly concentrate at the fracture position,
and deformation is also localized at the fracture point. An increase in these quantities
induces the formation of different types of defects, such as vacancies and cracks.
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graphene encapsulation.

Upon the addition of a substrate, the stress concentration position shifts, and it is no
longer like the single-layer qHPC60. The presence of a single- or double-layer graphene
substrate protects the fullerene, resulting in an increased fracture strain from the original
0.14 to 0.17 and 0.26, respectively. This suggests that the fracture time becomes longer, and
the material exhibits enhanced resistance to deformation and stretching, complementing
the previously increased Young’s modulus. By comparing these key parameters during
stretching and the changes that occur, it further demonstrates the significant role of the
substrate in the tensile strength and stability of fullerene materials. Hence, in practical
applications of 2D fullerene materials, the addition of a substrate is essential to enhance
their tensile strength and stability.

3.3.2. With Defects

From our previous analysis, we found that cracks have a greater impact on fullerene.
When a fullerene molecule does not exist, the material is easy to fracture, and the Young’s
modulus and fracture stress are continuously reduced. Therefore, even if only one fullerene
molecule is missing, the tensile strength of fullerene will decrease.
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In this section, we compare the fullerene (GP/qHPC60/GP) on the strongest double-
layer graphene substrate with the same single-layer qHPC60. Their stress–strain curves
are shown in Figure 8. From the figure, it can be seen that the single-layer qHPC60 with a
substrate fractured earlier. From Table 3, it can be seen that the monolayer qHPC60 with
the substrate has a higher Young’s modulus and fracture stress, with the fracture stress
increasing from 17.3 to 77.4 GPa, fracture strain increasing from 0.1 to 0.26, and Young’s
modulus increasing from 107.1 to 518.7 GPa. This shows that the graphene substrate
improves the tensile capacity of the single-layer qHPC60, and also makes the single-layer
qHPC60 material more difficult to deform, making it more rigid and brittle.
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without being encapsulated between graphene sheets.

Table 3. Comparison of fracture stress and Young’s modulus data of single-layer qHPC60 with cracks
(qHPC60-crack) and cracked qHPC60 with double-layer substrate (Gp/qHPC60/Gp-crack).

Substrate Fracture Stress
(GPa) Fracture Strain Young’s Modulus

(GPa)

qHPC60-crack 17.3 0.12 170.1

Gp/qHPC60/Gp-crack 77.4 0.36 518.7

Further observations of the tensile nephogram results (Figure 9) show that when
a monolayer of qHPC60 has cracks, the monolayer of qHPC60 (qHPC60-crack) with-
out a substrate is not at the crack position but transferred to other positions com-
pared with the monolayer of fullerene material with a bilayer of graphene substrate
(GP/qHPC60/Gp-crack). This is because the graphene substrate slows the volume
strain of the monolayer qHPC60. Combined with the tensile tensor, strain tensor and
deformation gradient tensor in the figure, their values increase continuously during
the tensile process, further indicating this point. The above analysis further shows
that graphene is effective as the substrate of monolayer qHPC60, and can improve
the mechanical stability and tensile capacity of monolayer qHPC60, attributed to the
excellent mechanical properties of graphene.
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4. Conclusions

In this study, we conducted a comprehensive investigation into the mechanical stability
of 2D fullerene on a graphene substrate and under encapsulation using molecular dynamics
simulations. We examined the presence of cracks on both qTPC60 and qHPC60, observing
a slight degradation in the mechanical properties, including tensile strength, fracture stress
and Young’s modulus, in the presence of cracks.

We compared the mechanical behaviors of qHPC60 and qTPC60 with and without the
graphene substrate and encapsulation. Our results clearly demonstrate that encapsulating
2D fullerene with graphene significantly enhances its mechanical reliability, particularly in
strengthening the cracked region. The estimated elastic modulus exhibited a substantial
increase from 191.6 (qHPC60) and 134.7 GPa (qTPC60) to 531.4 and 504.1 GPa, respectively.
Furthermore, we investigated the influence of cracks on the mechanical properties and
examined the internal stress experienced during and after fracture. Interestingly, when
encapsulated between graphene sheets, the position of the crack exhibited minimal imapct;
on the other hand, in the absence of a substrate, the location of the initial fracture was
highly determined by the crack position.

For future research directions, it would be advantageous to enhance the precision and
scale of our molecular dynamics study by incorporating machine learning neuroevolution-
ary potentials [34]. Moreover, as both the inter-fullerene carbon single bonds and [2 + 2]
cycloaddition bond exist, the orientation of the 2D fullerene would have great impact on
the mechanical properties [34,37,38], which is worth further investigation in the system
with graphene substrate. Furthermore, considering that C60 often exists in a multilayer
form, investigating the mechanical stability of multilayer C60 warrants further exploration.
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