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Abstract This paper is concerned with the image force in cubic piezoelectric quasicrystal semi-infinite space
and infinite space containing two dissimilar quasicrystal half-spaces. On the basis of the Stroh formalism,
the expressions of the Green’s function for generalized displacement and stress under multi-physical loading
conditions are obtained exactly. Also, the image force applied to a generalized line dislocation with different
boundary conditions is taken into account. The image force for the traction-free and electrically open surface
always attracts dislocation to the boundary, while that for clamped and electrically closed surface shows the
opposite tendency. Illustrative examples, such as generalized line force and line charge, are given to present
the mechanical behaviors of quasicrystals under different loading conditions and investigate the influences of
material parameters and dislocation scheme on image force. The results show that generalized line force has
little effect on atomic configurations, and image force F is the strongest when phonon and phason dislocations
interact together.

1 Introduction

The interaction between the dislocation and boundary,which is usually described as image force, is an important
factor affecting the mechanical behaviors of solids [1]. Asaro [2] discussed the image force between a semi-
infinite crack and a straight dislocation and found that it was not dependent on the dislocation’s angular
position. Ting and Barnett [3] investigated the image force in an anisotropic elastic half-space with a free or
fixed boundary as well as bi-material. Lubarda [4] examined the image force produced by the free surface
of a cylindrical void on a nearby straight dislocation under mixed type and got the expressions for the glide
and climb components. However, to the authors’ knowledge, these studies are related to crystal material, not
quasicrystals (QCs). The image force of QCs is more complex than that in traditional crystal materials because
of the existence of phonon and phason fields.

QCs possess long-range ordered structures, which were firstly found in Al–Mn alloy experiments by
Steinhardt et al. in 1984 [5]. Up to now, there are more than 100 dissimilar metal alloy systems available for

X. Mu · Z. Zhu · L. Zhang (B) · Y. Gao (B)
College of Science, China Agricultural University, Beijing 100083, China
e-mail: llzhang@cau.edu.cn

Y. Gao
e-mail: ygao@cau.edu.cn

X. Mu
College of Engineering, China Agricultural University, Beijing 100083, China

W. Xu
Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

W. Xu
University of Chinese Academy of Sciences, Beijing 100049, China

http://orcid.org/0000-0003-1728-6992
http://crossmark.crossref.org/dialog/?doi=10.1007/s00707-023-03651-x&domain=pdf


5332 X. Mu et al.

QC phases. As a result of their unique atomic arrangements, QCs possess numerous desirable properties, such
as corrosion resistance, oxidation resistance, and non-stick properties [6]. Based on these, QCs can be used
for hydrogen storage tank, solar thin film materials, sensors, and composite reinforcement phases [7].

Piezoelectric effect has a wide range of applications in electronic technology, such as sensors and actuators.
Before the piezoelectric effect in QCs was discovered, great efforts have been contributed to piezoelectric
material [8, 9]. By virtue of the finite element method, Zhu and Liu [10] took into account three-dimensional
(3D) planar crack and non-planar defects of piezoelectric materials. By means of the Stroh formalism, Wang
[11] established the relationship between the size of the strip saturation zone ahead of a crack tip and the
applied electric displacement field. Chen [12] explored the singularities of piezoelectric bonded wedges which
are subjected to thermal effect under mixed boundaries using generalized Lekhnitskii formulation and Mellin
transform. Yu et al. [13] obtained the stress intensity factors and electric displacement intensity factor with
complex interfaces for nonhomogeneous piezoelectric materials. These studies are important and provide an
academic reference for further studying the mechanical behavior of QCs.

In engineering applications, various defects such as dislocation, crack, and inclusion will have an adverse
impact on the performance of QCmaterials. Thus, it is very important to investigate the influences of defects on
mechanical behaviors for QCs. Fan et al. [14] studied one-dimensional (1D) hexagonal QC with a linear crack
in a thermoelastic framework by the extended displacement discontinuity method. Guo et al. [15] explored the
III-mode crack in a 1D hexagonal QC strip and obtained the explicit expressions of generalized stress intensity
factors around the crack tip. Zhou and Li [16] considered the mechanics characteristic of 1D piezoelectric
quasicrystals (PQCs) with anti-plane Yoffe-type moving cracks. Li et al. [17] analyzed the mutual effect
between a spiral dislocation and an elliptic hole containing two unsymmetrical cracks in a 1D hexagonal
piezoelectric QC and obtained the analytical expressions of image force. Recently,Mu et al. [18] researched the
planar problem of functionally graded two-dimensional (2D) PQC wedges and spaces and carefully discussed
the effects of line force, charge, and dislocation on electric potential and stresses. These theories can serve as
benchmarks for further research on QCs.

As we all know, the Green’s function is one of the most powerful tools to investigate planar problems.
Whereas, Green’s function for QCs is rather complicated due to the coupling of phonon and phason. In recent
years, Zhang et al. [19] obtained Green’s functions of displacements and stresses for 1D PQC bi-material
with multi-physics loadings by the Stroh formalism. Wu et al. [20] explored 1D PQC semi-infinite plane and
infinite plane under different loading conditions, utilizing the same method. Later on, Xu et al. [21] extended
Ref. [14] to 2D PQC and studied the influences of line force and dislocation on the mechanical behaviors
of QC in detail. Gao and Ricoeur [22] presented 3D Green’s function of infinite 2D QC bi-material. Wang
[23] obtained the time-harmonic dynamic Green’s functions of 1D hexagonal QCs with line forces along the
quasiperiodic axis and analyzed the asymptotic behaviors of the Green’s function in the far field. Li and Li
[24] obtained the explicit expressions of Eshelby tensors for some special cases, such as elliptic cylinder and
spheroid, for 1D hexagonal QCs through Green’s function method. These researches are beneficial for us to
pursue the complicated properties of QCs further.

Stroh formalism is a powerful and elegant method for 2D deformation problems [25–27], assuming that
displacement depends on x and y only. Ting [28] has successfully shown symmetrical expressions of stress and
strain in the Stroh formalism and obtained fundamental solutions for anisotropic wedges [29–32]. In this paper,
the Stroh formalism is used to research the image force and mechanical behaviors of cubic PQC semi-infinite
space and bi-material composite space under multi-physical loading conditions. At the same time, the explicit
expressions of Green’s functions for generalized displacement and stress are obtained, and the explicit form
of image force in terms of generalized line dislocation is deduced. Some results of numerical examples are
given to show the distribution of image force and the coupling behaviors of PQC.

2 The Stroh formalism

QCs possess phonon field and phason field that differs from crystals [33]. The phonon field depicts latticewaves
caused by small oscillations of atoms away from the equilibrium, similar to that found in usual crystals. The
phason field stands for the rearrangement or flip of atoms in the real structure [34]. The cubic QCs mean that
atomic arrangements exhibit quasiperiodicity in each direction (x1, x2, and x3). In the recent literature,
several studies have been conducted on cubic QCs. Long and Li [35, 36] paid attention to the Flamant problem
of a cubic QC half-plane and obtained the closed-form solution for a rotating cubic QC disk. In addition, they
derived a thermoelastic solution for a circular disk by the semi-inversion method [37]. Mu et al. [38] analyzed
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the singularities of cubic PQC composite wedges and spaces. It can be found that the planar problems of
cubic QCs have been studied to some extent, but not far enough. Thus, the image force of cubic QCs with
piezoelectric effect is worthwhile for further research.

On the basis of QC elastic theory [34], the basic equations of cubic PQCs polarized along the x3-direction
with point group 43 m are expressible as follows:

εi j � 1

2

(
∂ui
∂x j

+
∂u j

∂xi

)
, wi j � 1

2

(
∂wi

∂x j
+

∂w j

∂xi

)
, Ei � − ∂φ

∂xi
, (1)

σ11 � C11ε11 + C12ε22 + C12ε33 + R1w11 + R2w22 + R2w33,

σ22 � C12ε11 + C11ε22 + C12ε33 + R2w11 + R1w22 + R2w33,

σ33 � C12ε11 + C12ε22 + C11ε33 + R2w11 + R2w22 + R1w33,

σ23 � σ32 � 2C44ε23 + 2R3w23 − d14E1,

σ31 � σ13 � 2C44ε31 + 2R3w31 − d14E2,

σ12 � σ21 � 2C44ε12 + 2R3w12 − d14E3,

H11 � R1ε11 + R2ε22 + R2ε33 + K11w11 + K12w22 + K12w33,

H22 � R2ε11 + R1ε22 + R2ε33 + K12w11 + K11w22 + K12w33,

H33 � R2ε11 + R2ε22 + R1ε33 + K12w11 + K12w22 + K11w33,

H23 � H32 � 2R3ε23 + 2K44w23 − d123E1,

H31 � H13 � 2R3ε31 + 2K44w31 − d123E2,

H12 � H21 � 2R3ε12 + 2K44w12 − d123E3,

D1 � 2d14ε23 + 2d123w23 + ξ11E1,

D2 � 2d14ε31 + 2d123w31 + ξ22E2,

D3 � 2d14ε12 + 2d123w12 + ξ33E3,

(2)

∂ jσi j � 0, ∂ j Hi j � 0, ∂ j D j � 0. (3)

where i , j � 1, 2, 3, ui and wi represent the displacement components in the phonon and phason fields,
respectively; εi j and σi j are strain and stress components in the phonon field, respectively; wi j and Hi j are
strain and stress components in the phason field, respectively; Ei , φ, and Dj denote electric field intensities,
electric potential, and electric displacements, respectively; Ci j and Ki j are the elastic constants in the phonon
and phason fields, respectively; Ri are the phonon–phason coupled elastic constants; d14 and d123 are the
piezoelectric constants in the phonon and phason fields, respectively; and ξi j are the dielectric constants.

When a straight dislocation or a Griffith crack exists along the direction of the atom quasiperiodic arrange-
ment, a 3D problem can be considered as a 2D deformation problem. For 2D deformation, the displacement
fields are assumed as dependent on the x1 and x3, and independent of x2. Therefore, the general solution of
displacement meeting Eqs. (1), (2), and (3) is expressed as follows:

u � a f (z), z � x1 + px3, (4)

where

u � [u1, u2, u3,w1,w2,w3,φ]
T , (5)

a and p are the material eigenvectors and eigenvalues, f is an arbitrary function of z, and the superscript
“T” denotes matrix transpose.

By virtue of Eqs. (1), (2), (3), and (4), we have[
Q + p

(
R + RT

)
+ p2T

]
a � 0, (6)

where Q, R, and T are 7 × 7 real matrices associated with material constants, which can be denoted by Eq.
(A1) in the Appendix.

With the aid of Eqs. (2), (4), and (6), the generalized stress function ϕ has the following form

ϕ � b f (z). (7)

b is a vector associated with a and obtained by Eq. (6).



5334 X. Mu et al.

Fig. 1 Generalized line force f̂ and dislocation b̂ co-exist at the point (0, d)

We have [39]

N
[

a
b

]
� p

[
a
b

]
, (8)

N �
[

N1 N2

N3 NT
1

]
, N1 � −T−1RT ,N2 � T−1,N3 � RT−1RT − Q, (9)

where

pα+7 � pα , Impα > 0,

aα+7 � aα , bα+7 � bα , (α � 1, 2, ..., 7).
(10)

“Im” and overbar represent the imaginary part and complex conjugate, respectively.
u and ϕ can be rewritten as [3],

u � Im
[
A < f(zα) > q

]
, ϕ�Im

[
B < f(zα) > q

]
, zα � x1 + pαx3, (11)

in which

A � [a1, a2, a3, a4, a5, a6, a7], B � [b1,b2,b3, b4,b5, b6,b7],

f(zα) � [ f1(z1), f2(z2), f3(z3), f4(z4), f5(z5), f6(z6), f7(z7)]
T ,

(12)

and “< >” denotes diagonal matrix. A and B have the orthogonal relation

BT A + AT B � I � B
T

A + A
T

B,

BT A + AT B � 0 � B
T

A + A
T

B.
(13)

Barnett–Lothe matrices S, H, and L are introduced

S � i
(
2ABT − I

)
, H � 2iAAT , L � −2iBBT , (14)

where i is an imaginary number, and I is a 7× 7 identity matrix. Moreover, they satisfy the following equation

HL − SS � I. (15)

3 The Green’s functions of cubic PQC semi-infinite space

Considering the semi-infinite space of a cubic PQC, phonon line forces f ‖
i (i � 1, 2, 3), phason line

forces f ⊥
j ( j � 1, 2, 3), line charge λ, phonon line dislocations b‖

i (i � 1, 2, 3), phason line dis-

locations b⊥
j ( j � 1, 2, 3), and electric potential jump bφ act simultaneously at the point (0, d),(

f̂ �
[
f ‖
1 , f ‖

2 , f ‖
3 , f ⊥

1 , f ⊥
2 , f ⊥

3 , −λ
]T

, b̂ �
[
b‖
1, b

‖
2, b

‖
3, b

⊥
1 , b

⊥
2 , b

⊥
3 , b

φ
]T)

, as depicted in Fig. 1.

(x1, x3) � (0, d), (16)
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Take the form f(zα) as < ln zα > and insert it into Eq. (11) to obtain [3]

u � 1

π
Im

[
A < ln(zα − pαd) > q

]
+

1

π
Im

7∑
β�1

[
A < ln

(
zα − pβd

)
> qβ

]
,

ϕ � 1

π
Im

[
B < ln(zα − pαd) > q

]
+

1

π
Im

7∑
β�1

[
B < ln

(
zα − pβd

)
> qβ

]
,

(17)

where

q � AT f̂ + BT b̂, (18)

and

< ln
(
zα − pβd

)
>� diag

[
ln

(
z1 − pβd

)
, ln

(
z2 − pβd

)
, ..., ln

(
z7 − pβd

)]
.

In the above, qβ are unknown complex coefficient vectors to be settled. The first terms of Eq. (17) denote
Green’s function for an infinite space with multiple loadings applied at the location shown by Eq. (16). The
second terms about sum in Eq. (17) are the disturbed solutions satisfying the boundary condition at x3 � 0.

Suppose that the surface x3 � 0 is traction-free and electrically open, namely,

ϕ � 0, at x3 � 0. (19)

Substituting Eq. (17)2 into Eq. (19) gets an alternative expression

Im
[
B < ln(x1 − pαd) > q

]
+ Im

7∑
β�1

[
ln

(
x1 − pβd

)
Bqβ

] � 0, (20)

the first term can be replaced by the negative of its complex conjugate, to wit

Im
[
B < ln(x1 − pαd) > q

] � −Im
[
B < ln

(
x1 − pαd

)
> q

]
, (21)

where

< ln
(
x1 − pαd

)
>�

7∑
β�1

[
ln

(
x1 − pβd

)
Iβ

]
,

Iβ � diag
[
δβ1, δβ2, δβ3, δβ4, δβ5, δβ6, δβ7

]
,

(22)

where δβi are the Kronecker’s delta.
By Eqs. (21) and (22), Eq. (20) is simplified as

Bqβ � BIβq, (23)

which obtains

qβ � B−1BIβq. (24)

Assume that the surface x3 � 0 is clamped and electrically closed, i.e.,

u � 0, at x3 � 0. (25)

Due to the similarity, we derive

qβ � A−1AIβq. (26)

Ref. [3] provided the foundations of the present study and attached importance to the anisotropic elastic
material, while our work conducted the cubic PQC. It is more complicated because of the coupling effect of
the phonon, phason, and electric fields. Since mathematical expressions of the Stroh formalism are simple and
compact, the method and formulation can be easily extended to other materials, such as 1D and 2D QCs.
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4 Image force for semi-infinite space

The image force F induced by the line dislocation and the boundary x3 � 0 is [40]

F � −σ d
i1bi � bTϕd

,3, (27)

where σ d
i1 is the stress derived from the second term in Eq. (17)2 at the point (0, d).

With the aid of Eq. (22), we have

F � 1

πd
Im

7∑
β�1

bT

[
B <

pα

pα − pβ

> qβ

]

� 1

πd
Im

7∑
β�1

7∑
α�1

bT

[
pα

pα − pβ

BIαqβ

]
. (28)

When the boundary is traction-free and electrically open, substituting Eq. (24) with q � BT b into Eq. (28)
and using Eq. (14) obtains

F� −1

2πd
Re

7∑
β�1

7∑
α�1

bT

[
pα

pα − pβ

(
BIαB−1)L

(
BIβB

−1
)T

]
b. (29)

We have

F� −1

2πd
Re

7∑
β�1

7∑
α�1

bT

[ −pβ

pα − pβ

(
BIαB−1)L

(
BIβB

−1
)T

]
b, (30)

the above derivation process is shown in Eqs. (A2) and (A3) in the Appendix.
Equation (29) is superposed on Eq. (30) to yield

F� −1

4πd
Re

7∑
β�1

7∑
α�1

bT
[(

BIαB−1)L
(

BIβB
−1

)T
]

b, (31)

Equation (31) is reduced to

F� −1

4πd
bT Lb, (32)

Equation (32) refers to the image force caused by the traction-free and electrically open surface, which
can be downgraded to the solution of image force caused by crack [41] by replacing the coefficient 1/4 to 1/8.
Owing to the positive definiteness of L, F <0, the image force always attracts the dislocation to the boundary.

When the boundary is fixed, substitution of Eq. (26) into Eq. (28) and using Eq. (14) yields

F� 1

2πd
Re

7∑
β�1

7∑
α�1

bT

[
pα

pα − pβ

(
BIαA−1)H

(
BIβA

−1
)T

]
b. (33)

Following the similar operation of Eqs. (30) and (31), we have

F� 1

4πd
bT [

H−1 − H−1SS
]
b, (34)

by means of Eq. (15), we get

F� 1

4πd
bT (

2H−1 − L
)
b. (35)

With the help of Eqs. (A4) and (A5) in the Appendix, we can draw the conclusion that F >0. This means
that the image force always rejects the dislocation to the boundary.
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Fig. 2 Generalized line force f̂ and dislocation b̂ are applied to the point (0, d) in the composite infinite space

5 Image force for bi-material composite space

Considering a composite infinite space contains two dissimilar cubic PQC half-spaces. Generalized line force
and dislocation are applied to the point given by Eq. (16) as shown in Fig. 2.

Due to displacements and stresses continuity along the interface, we have

u1 � u2, ϕ1 � ϕ2, at x3 � 0, (36)

for material 1, Eq. (17) can be rewritten as

u1 � 1

π
Im

[
A1 < ln

(
z(1)α − p(1)α d

)
> q

]
+

1

π
Im

7∑
β�1

[
A1 < ln

(
z(1)α − p(1)β d

)
> q(1)

β

]
,

ϕ1 � 1

π
Im

[
B1 < ln

(
z(1)α − p(1)α d

)
> q

]
+

1

π
Im

7∑
β�1

[
B1 < ln

(
z(1)α − p(1)β d

)
> q(1)

β

]
,

(37)

for material 2,

u2 � 1

π
Im

7∑
β�1

[
A2 < ln

(
z(2)α − p(1)β d

)
> q(2)

β

]
,

ϕ2 � 1

π
Im

7∑
β�1

[
B2 < ln

(
z(2)α − p(1)β d

)
> q(2)

β

]
.

(38)

In the above, all quantities with subscripts 1 and 2 or the superscripts (1) and (2) correspond to material 1
and material 2, respectively. q(1)

β and q(2)
β are unknown constants to be determined.

We have

B2q(2)
β � 2

(
M−1

1 + M
−1
2

)−1
L−1
1 B1Iβq,

B1q(1)
β �

[
I − 2

(
M−1

1 + M
−1
2

)−1
L−1
1

]
B1Iβq.

(39)

The derivation process of Eq. (39) is shown in Eqs. (A6)–(A14) in the Appendix.
Using Eq. (39)2, the image force can be derived

F � 1

πd
Im

7∑
β�1

7∑
α�1

bT

[
p(1)α

p(1)α − p(1)β

B1Iαq(1)
β

]

� −1

4πd
bT

[
L1 − 2D̂

]
b, (40)
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Table 1 Material constants of the cubic PQC

Material constants PQC 1 PQC 2

Phonon field (GPa) C11 � 166,C12 � 77,

C44 � 88

C11 � 286,C12 � 173,

C44 � 170.5

Phason field (GPa) K11 � 24, K12 � 14, K44 � 19 K11 � 145, K12 � 57, K44 � 33
Couple field (GPa) R1 � 8.85, R2 � 4.85, R3 � 5.85 R1 � 13.7, R2 � 7.5, R3 � 10.4
Piezoelectric constant

(
Cm−2

)
d14 � −0.138, d123 � −0.16 d14 � −0.247, d123 � −0.2674

Dielectric constants
(
10−9 C2/

(
Nm2

))
k1 � 11.2, k2 � 8.2, k3 � 4.2 k1 � 22.4, k2 � 14.3, k3 � 6.9

where

D̂�
[

L−1
1 + L−1

2 +
(

S1L−1
1 − S2L−1

2

)(
L−1
1 + L−1

2

)−1(
S1L−1

1 − S2L−1
2

)]−1

(41)

One point worth emphasizing that the solutions of generalized displacement and stress depend upon x1
and x3 for the whole theoretical deduction. Owing to the similarity, the solutions for x1 and x2 can be readily
acquired.

6 Numerical examples and discussion

Although the preparation technology of QCs has made great progress, the material constants of the cubic QCs
with the point group 43 m have not been fully obtained due to the difficulty of the experiment. From the works
of Wang et al. [33] and Fan [34], the physical parameters of cubic PQC satisfy the following properties of
symmetry and positive definite

Ci jkl � C jikl � Ckli j�Ci jlk , Ki jkl � Kkli j , Ri jkl � R jikl , eli j�el ji , ξ jl � ξl j , Ci jklεi jεkl > 0,

Ki jklwi jwkl > 0, ξ jl E j El > 0.
(42)

Based on the positive definite conditions, the material constants of cubic PQC can be assumed as follows
(Table 1):

To conduct the numerical calculation, the dimensionless method below is employed to keep all the values
in the matrix stay in the same order so that to eliminate the matrix singularity, where “l” is the unit length.

x∗
1 � x1/ l, x

∗
3 � x3/ l, u

∗
i � ui/ l, w∗

i � R1wi/(C11l),

σ ∗
i j � σi j/C11, H

∗
i j � Hi j/R1, D

∗
j � Dj/d14, φ∗ � d14φ/(C11l),

(43)

Case 1 The generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T and dislocation b̂ � [0, 1, 0, 0, 0, 0, 0]T

co-exist at the point (0, 2) in a semi-infinite space with a traction-free surface.
Figure 3 displays the distributions of dimensionless phonon displacement u∗

1 and phason displacement w∗
1

due to a generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T and dislocation b̂ � [0, 1, 0, 0, 0, 0, 0]T . Obviously,
the distribution curves of u∗

1 and w∗
1 are symmetric about the axis x∗

1 � 0. The absolute values of u∗
1 and w∗

1
slowly increase away from the loading position. Moreover, u∗

1 is several orders of magnitude bigger than w∗
1 ,

which reflects that f̂ � [1, 0, 0, 0, 0, 0, 0]T and b̂ � [0, 1, 0, 0, 0, 0, 0]T have a small influence on atomic
rearrangement.

The variations of dimensionless phonon stress σ ∗
11 and phason stress H∗

32 in the rectangular area{(
x∗
1 , x

∗
3

)|−3 ≤ x∗
1 ≤ 3, 0 ≤ x∗

3 ≤ 3
}
are shown in Fig. 4. The change curves of σ ∗

11 and H∗
32 are anti-

symmetric about the axis x∗
1 � 0 and exhibit butterfly-shaped patterns. More importantly, a local stress

concentration exists at the loading position.
Figure 5a shows that the image forces Fp, Fs, and Fm are induced by generalized line dislocations b̂ � [1,

0, 0, 0, 0, 0, 0]T , b̂ � [0, 0, 0, 1, 0, 0, 0]T , and b̂ � [1, 0, 0, 1, 0, 0, 0]T , while Fig. 5b exhibits image
forces Fc, Fe, and Fq caused by b̂ � [1, 0, 0, 0, 0, 0, 0]T for different materials such as crystal material,
piezoelectric material, and PQC material, respectively. In Fig. 5a, the image forces are negative, which means
that they always attract the dislocation to the free boundary. That is because the solid is more likely to deform,
and the energy of the dislocation will be reduced near the free surface. By comparing the magnitude, the Fp
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Fig. 3 Distributions of dimensionless phonon and phason displacements: a u∗
1 and b w∗

1

Fig. 4 Distributions of dimensionless phonon and phason stresses: a σ ∗
11 and b H∗

32

is much weaker than Fs and Fm, while Fm is the strongest when phonon and phason dislocations interact
together. Moreover, the absolute values of image forces decrease with the increase in d, indicating that the
farther the dislocation is from the boundary, the weaker the image force. In Fig. 5b, since there are no evident
changes for crystal, piezoelectric material, and PQC, the material properties have little effect on image force
under b̂ � [1, 0, 0, 0, 0, 0, 0]T .

Case 2 Both generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T and dislocation b̂ � [0, 1, 0, 0, 0, 0, 0]T are
acting at the point (0, 2) in a semi-infinite space with a fixed surface.
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Fig. 5 Image force with a traction-free surface: a under different dislocation loadings and b for different materials

Fig. 6 Variations of dimensionless phonon and phason displacements with a fixed surface: a u∗
1 and b w∗

1

The changes of phonon displacement u∗
1 and phason displacement w∗

1 are plotted in Fig. 6. Apparently,
the symmetries of u∗

1 and w∗
1 are the same with those in Fig. 3. The displacements which are induced by a

generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T and dislocation b̂ � [0, 1, 0, 0, 0, 0, 0]T increase gradually
near the loading position. Remarkably, the shape of the contour in Fig. 6a is analogous to that in Fig. 6b, which
reflects the cubic crystallographic symmetry of cubic QC.

Figure 7 shows the contours of dimensionless electric potential φ∗ and electric displacement D∗
1 . φ

∗ is an
even function about variable x∗

1 , while D∗
1 is an odd function concerning x∗

1 . The values of φ∗ approach zero,
indicate that line force and line dislocation have negligible effects on electric potential. Moreover, the isopleth
map of D∗

1 under a single line force shows that the piezoelectric effect of cubic PQC is very evident.
The variations of image forces Fp, Fs, Fm, Fc, Fe, and Fq with d are presented in Fig. 8. Clearly, image

forces are greater than zero, namely, image force is easy to push the dislocation away from the boundary x∗
3 � 0.
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Fig. 7 Contours of dimensionless electric potential and electric displacement: a φ∗(10−5) and b D∗
1

Fig. 8 Image force with a fixed surface: a under different dislocation loadings and b for different materials

By comparing the magnitudes of graphs, the image force Fm is the greatest under both generalized line force
and line dislocation, and image forcesFc,Fe, andFq have negligible changes for crystal, piezoelectricmaterial,
and PQC, which are consistent with Fig. 5.

Case 3 A generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T exists at the point (0, 2) of the bi-material
composite space.

The contours of the dimensionless phonon and phason displacements are illustrated in the quadrate area{(
x∗
1 , x

∗
3

)|−3 ≤ x∗
1 ≤ 3, −3 ≤ x∗

3 ≤ 3
}
are shown in Fig. 9. The contours of u∗

1 and w∗
1 are symmetric with

respect to x∗
3 axis, if generalized line force f̂ � [1, 0, 0, 0, 0, 0, 0]T is applied at the point (0, 2) of the

bi-material composite space. Since generalized line force is acting at this point, the displacement distribution
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Fig. 9 Variations of dimensionless phonon and phason displacements of infinite space: a u∗
1 and b w∗

1

Fig. 10 Variations of dimensionless phonon stresses of infinite space: a σ ∗
11 and b σ ∗

33

in the upper half-space is relatively dense, along with local stress concentration. In addition, u∗
1 and w∗

1 are
continuous at the interface to satisfy the boundary condition.

As shown in Fig. 10, the distribution of phonon stresses is antisymmetric with respect to x∗
3 axis. The values

in the non-polarization direction are slightly larger than those in the polarization direction; thus, the influence
of line force on the phonon field along the non-polarization direction is bigger than that along the polarization
direction. Another point to note is that the further away from the action point, the less influence the line force
has on the phonon field.

Case 4 A line charge f̂ � [0, 0, 0, 0, 0, 0, 1]T and generalized dislocation b̂ � [0, 0, 0, 1, 0, 0, 0]T are
applied at the point (0, 2) in the composite infinite space.
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Fig. 11 Variations of dimensionless phonon and phason stresses of infinite space: a σ ∗
13 and b H∗

11

Fig. 12 Variations of image force with: a the changes of R2 and b the changes of d123

In Fig. 11, the contours of dimensionless phason stresses H∗
11 are symmetric about x∗

3 axis. The stresses
produced by the line charge reflect the inverse piezoelectric effect. By comparing the magnitude of graphs,
the effects of line charge f̂ � [0, 0, 0, 0, 0, 0, 1]T and generalized dislocation b̂ � [0, 0, 0, 1, 0, 0, 0]T on
phason stress are more obvious than those on phonon stress.

As shown from Fig. 12, the image force F of bi-material composite space is bigger than zero when the
upper half-space is subject to a line dislocation b̂ � [0, 0, 0, 1, 0, 0, 0]T , implying that the image force
separates the dislocation far from the interface. When the dislocation is closer to the interface, the greater
image force is obtained. From Fig. 12, the image force has little effect with phonon–phason coupling constant
R2 and the piezoelectric constant d123.
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Fig. 13 Variations of image force with different elastic constants of PQC 2

Figure 13 shows the variations of image force F1, F1.5, and F2 when the elastic constants of PQC 2 are
1 times, 1.5 times, and 2 times of those of PQC 1, respectively. Obviously, the image force enlarges with the
increase in elastic constants of PQC 2.

7 Conclusions

Based on the Stroh formalism and Barnett–Lothe matrices, we developed Green’s function of displacements
and stresses on the 2D deformation problem of cubic PQC semi-infinite space and bi-material composite space
under multi-physics loadings. The image forces of semi-infinite space with traction-free or fixed surface are
obtained. Moreover, the image force of PQC bi-material composite space is also taken into account. By virtue
of numerical examples, we further revealed the electro-elastic and phonon–phason coupled properties of PQC,
and the variation laws betweenmaterial properties and image force.We discovered that thematerial parameters
and loading scheme have more obvious effects on image force. The influences of multiple loads, such as line
force, dislocation, and charge, on displacements and stresses are analyzed in detail. Some valuable conclusions
are as follows:

(1) The image force attracts the dislocations to the surface when the boundary condition is traction-free
and electrically open, while separates the dislocations from the surface when the boundary is fixed and
electrically closed.

(2) The phonon force has no effect on the image force for different kinds of materials, such as crystals,
piezoelectric materials, and PQCs, while the loading condition has significant effect on the image force.

(3) The image force F of bi-material is independent on the phonon–phason coupling constant R2 and the
piezoelectric constant d123.

Wang and Zhong [42] investigated a line dislocation near a semi-infinite crack due to the presence of the
free surface in a decagonal QC. Jiang and Liu [43] discussed the influences of the wedge angle and dislocation
location on the image force for 1D hexagonal PQC. Referring to Ref.[44], with the aid of the conformal
mapping method, the theory and results presented here are helpful for settling a conventional Griffith crack
with traction-free or fixed boundaries. In addition, the models and method can be extended to theoretical
analysis of other QCs, such as 1D and 2D QCs, even more complicated problems.
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Appendix

By using Eqs. (1), (2), and (3), we have

(A1)

Q �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 0 0 R1 0 0 0
0 C44 0 0 R3 0 0
0 0 C44 0 0 R3 0
R1 0 0 K11 0 0 0
0 R3 0 0 K44 0 0
0 0 R3 0 0 K44 0
0 0 0 0 0 0 −ξ11

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, R �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 C12 0 0 R2 0
0 0 0 0 0 0 d14

C44 0 0 R3 0 0 0
0 0 R2 0 0 K12 0
0 0 0 0 0 0 d123
R3 0 0 K44 0 0 0
0 d14 0 0 d123 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

T �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C44 0 0 R3 0 0 0
0 C44 0 0 R3 0 0
0 0 C11 0 0 R1 0
R3 0 0 K44 0 0 0
0 R3 0 0 K44 0 0
0 0 R1 0 0 K11 0
0 0 0 0 0 0 −ξ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

By Eq. (29), we introduced a new function

F∗�Re
7∑

β�1

7∑
α�1

[
pα

pα − pβ

(
BIαB−1)L

(
BIβB

−1
)T

]
(A2)

For Eq. (A2), first, the right side is replaced by its complex conjugate, then the α and β are interchanged,
and finally, matrix transpose is applied on the right. Based on these operations, we can obtain that Eq. (A3) is
equal to Eq. (A2).

F∗�Re
7∑

β�1

7∑
α�1

[ −pβ

pα − pβ

(
BIαB−1)L

(
BIβB

−1
)T

]
. (A3)

Using Eq. (15), we get

L − H−1SS � H−1. (A4)

Since H−1S is antisymmetric, Eq. (A4) can be re-expressed as follows:

H−1 − L � ST H−1S. (A5)

In the above, H−1 andL are positive definite, while S is singular [40]. We can conclude that H−1-L is
positive semi-definite.

Substituting Eqs. (37) and (38) into Eq. (36) to yield

1

π
Im

[
A1 < ln

(
x1 − p(1)α d

)
> q

]
+

1

π
Im

7∑
β�1

[
A1

(
ln

(
x1 − p(1)β d

))
q(1)β

]
� 1

π
Im

7∑
β�1

[
A2

(
ln

(
x1 − p(1)β d

))
q(2)β

]
,

1

π
Im

[
B1 < ln

(
x1 − p(1)α d

)
> q

]
+

1

π
Im

7∑
β�1

[
B1

(
ln

(
x1 − p(1)β d

))
q(1)β

]
� 1

π
Im

7∑
β�1

[
B2

(
ln

(
x1 − p(1)β d

))
q(2)β

]
.

(A6)

Similar manipulation of Eq. (21), we have

1

π
Im

[
A1 < ln

(
x1 − p(1)α d

)
> q

] � − 1

π
Im

[
A1 < ln

(
x1 − p(1)α d

)
> q

]
, (A7)



5346 X. Mu et al.

By Eqs. (A7), (A6)1, and Eq. (22)1, we derive

(A8)

−Im
7∑

β �1

[
A1

(
ln

(
x1 − p(1)β d

))
Iβq

]
+ Im

7∑
β �1

[
A1

(
ln

(
x1 − p(1)β d

))
q(1)

β

]

� −Im
7∑

β�1

[
A2

(
ln

(
x1 − p(1)β d

))
q(2)

β

]
,

hence, Eq. (A8) has the expression

A1q(1)
β + A2q(2)

β � A1Iβq. (A9)

With the aid of Eq. (A6)2, the following equation is obtained due to similarity

B1q(1)
β + B2q(2)

β � B1Iβq. (A10)

Equation (A9) has an alternative expression(
A1B−1

1

)
B1q(1)

β +
(

A2B
−1
2

)
B2q(2)

β �
(

A1B
−1
1

)
B1Iβq. (A11)

Making use of Eqs. (A10) and (A11) give(
A1B−1

1 − A2B
−1
2

)
B2q(2)

β �
(

A1B−1
1 − A1B

−1
1

)
B1Iβq, (A12)

or (
M−1

1 + M
−1
2

)
B2q(2)

β � 2L−1
1

(
B1Iβq

)
, (A13)

where

M � −iBA−1 � H−1 + iH−1S, M−1 � iAB−1 � L−1 − iSL−1. (A14)
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