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Abstract 

For an aeroelastic system of a two-dimensional elastic panel subjected to an 

impinging inviscid oblique shockwave, the nonlinear flutter characteristics are 

affected by many factors such as shock impingement location, cavity pressure and 

initial perturbation. The effects of the above factors on the variation of system 

bifurcation type and dynamic behaviors are investigated numerically. A low-fidelity 

computational method coupled with local piston theory and van Karman plate model, 

and a high-fidelity computational method coupled with Euler equations and finite 

element model are used for fluid-structure interaction simulations. Two sets of new 

findings are unveiled. First, either the variation of shock impingement location or 

cavity pressure can induce the aeroelastic system to transition between a subcritical 

bifurcation and a supercritical bifurcation. For some cases, the system bifurcation 

characteristics exhibit strong sensitivity to these two factors. Second, it is found that 

in addition to the limit cycle oscillation (LCO) in the form of a combination of the 

second and third structural modes, multiple stable LCOs due to the coupling of 
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higher-order modes can be triggered by proper initial perturbations. These LCOs are 

attributed with high frequencies and some of them even have high amplitudes, which 

indicates the higher risk of structural fatigue failure. 

 

Key Words: Shock wave; Panel flutter; Subcritical Bifurcation; Supercritical 

Bifurcation; Fluid-structure interaction; Limit cycle oscillation 

 

1. Introduction 

As the aircraft design moves toward lighter-weight and faster supersonic vehicles, 

shockwave related aeroelastic problems of thin-wall structures become increasingly 

import. In recent years, the aeroelastic problem of elastic panels associated with 

impinging shock waves has attracted a lot of attention from researchers. 

Miller et al[1] studied the fluid-thermal-structural interactions on compliant 

surface panels subjected to shock impingements. The coupling effects as well as the 

responses to shock motion were investigated. Results showed large initial responses to 

the imposed loads and shock motion, followed by an obvious reduction of oscillation 

as the bulking amplitude of the panel became significant. Beberniss et al. [2], and 

Spottswood et al. [3] carried out several experiments to study the thin panel subject to 

an impingement oblique shockwave and found clear evidence of fluid-structure 

coupling that the dynamic response of the structure was greatly increased in the 

presence of the shock impingement. Willems et al. [4], Pasquariello et al. [5] and 

Daub et al. [6] also performed similar experiment studies, additionally configuring a 

fast-moving shock with different ramp angles [7]. Pasquariello et al [5] also carried 

out a large eddy simulation based fluid-structure coupling analysis of the 

corresponding experiment. Later, Gogulapati et al. [8] conducted a series 

computational studies based on the experiments of Beberniss et al. [2] and 

Spottswood et al. [3] using CFD surrogates combined with Local Piston theory and 

both full and reduced order structural models. These studies identified several 

sensitive factors that affect the aeroelastic system, such as thermal state and shock 



 

 

unsteadiness. 

While earlier studies had shown clear coupling features between the shock waves 

and compliant surfaces, Visbal [9,10], for the first time, elucidated the flutter 

characteristics of an elastic panel subject to an impinging oblique shock wave by 

performing high-fidelity computational fluid dynamics/computational structural 

dynamics coupling simulations in both inviscid and laminar flow regimes. The results 

showed that the aeroelastic system with shock impingement behaves completely 

different from that of the traditional panel flutter. Depending on the shock strength, 

either supercritical or subcritical bifurcations emerged at a value of dynamic pressure 

which could be considerably lower than that corresponding to classic panel flutter [9]. 

In addition, the laminar cases [10] showed the coupling of boundary layer instabilities 

with higher-order structure modes, and complex non-periodic self-excited oscillations 

of multiple higher frequencies were observed. Shahriar et al. [11] also studied the 

shock wave laminar boundary layer interaction over a compliant surface, and effects 

of different thermal boundary conditions were investigated. Building on Visbal’s work 

[9], Boyer et al. [12] examined the features of shock-induced panel flutter in 

three-dimensional inviscid flow and found very similar dynamic characteristics near 

the centerline. However, away from the centerline, the three-dimensional effects 

showed significant influence on the solution. Shinde et al. [13] continued the work of 

[9,10,12] and further studied the transitional shock boundary layer interaction over a 

flexible panel by performing direct numerical simulations. It was found that the 

presence of flexible panel can promote flow transition. They also investigated the 

effect of several structural parameters on the shock wave boundary layer induced 

panel flutter [14]. In addition to these studies, recently, more experiments and 

numerical studies focus on the fluid-structure coupling of flexible panels with shock 

turbulent boundary layer interactions [15-22]. Among them, Daub et al. [20] observed 

panel flutter phenomena in the experimental study of fluid-structure interactions 

between elastic panel and incident shock wave boundary layer interaction. It was 



 

 

identified that the dynamics of the panel were strongly influenced by the thermal state 

of structure, and the structure failure due to flutter were found in the experiment. 

Shinde et al. [21] investigated the shock wave turbulent boundary layer interaction 

over a flexible panel by performing large eddy simulations (LES) with fluid-structure 

coupling method, and modal analysis were carried out to identify the coupling 

between system components. Zope et al. [22] studied dynamics of the oblique shock 

wave and turbulent boundary layer with a flexible panel by using hybrid Reynolds 

averaged Navier-Stokes/large eddy simulation (RANS/LES) methods and compared 

the predictive capabilities of low-fidelity and high-fidelity turbulence modelling 

approaches. 

Although experimental studies are the most direct way to explore the 

fluid-structure coupling phenomena of the shock dominated aeroelastic problems, the 

research can be impeded by experimental facilities and measurement methods. In 

contrast, the high-fidelity multi-physics simulations are not limited by these 

limitations, and complete physical field data can be obtained much easier. However, 

the high-fidelity turbulent modelling method such as LES and DNS are 

computationally expensive and not suitable for long-time fluid-structure coupling 

simulations. Moreover, even using RANS-based or Euler-based fluid-structure 

coupling methods may also be unaffordable for detailed parameter studies on 

three-dimensional problems. It is probably for these reasons that most of the 

published literatures only address a few system states and lack detailed system studies. 

Driven by the needs for fast prediction of long-time nonlinear responses, there are 

ongoing researches on the system modelling methods and their applications [8,23-29]. 

Brouwer et al. [24] proposed an enriched piston theory for aerodynamic loads 

prediction in the presence of shock impingements, and it was then extended to 

incorporate flow nonlinearities by combining a nonlinear autoregressive with 

exogenous inputs model [25]. Ye et al. [27,28] conducted theoretical analyses of the 

aeroelastic stability of heated elastic and viscoelastic panels in shock dominated 



 

 

inviscid flows based on the local piston theory. The Subsequent study [29] identified 

the importance of interplay between the static pressure differential and the unsteady 

dynamic pressure. 

Despite the influence of boundary layer in practical scenarios, the inviscid cases 

can still provide a good theoretical reference for related studies. In the studies 

mentioned above, the subcritical bifurcation characteristics of the shock induced panel 

flutter were observed in both the inviscid and viscous flow [9,10,25]. As the 

subcritical bifurcation tends to be more dangerous than supercritical bifurcation in 

engineering [30-33], understanding the system bifurcation behavior is of great 

importance in the aircraft structural design. Visbal [9] noted that increasing the shock 

strength can drive the system transition from a subcritical bifurcation to a supercritical 

bifurcation. In general, the bifurcation type of an aeroelastic system does not depend 

solely on one factor. Identifying all factors that affect the bifurcation characteristics of 

the system will be helpful for future bifurcation control. However, to date, there are 

very few published literatures have considered whether other factors can affect the 

bifurcation type of the current aeroelastic system.  

The current study serves as a complementary work of the shock-dominated 

aeroelastic problems in inviscid flow regime. The effects of several factors on the 

variation of system nonlinear bifurcation characteristics are addressed, including the 

shock impingement location, cavity pressure and initial perturbation. Although one or 

more of these factors were discussed in some of the reviewed studies, none of them 

have clarified that how the system bifurcation characteristics, especially the 

bifurcation type, are affected by these factors due to the limited parameter states 

studied. In this paper, the variation trends of the system bifurcation type as well as the 

changes of system dynamic behaviors with these factors are unveiled through detailed 

numerical simulations. A low-fidelity and a high-fidelity computational framework 

are established for the fluid-structure coupling analysis. The low-fidelity framework is 

used for fast prediction and drawing basic conclusions due to its high efficiency, while 



 

 

the high-fidelity framework is used for performing confirmatory calculations on the 

obtained conclusions, thereby improving the overall analysis efficiency. 

The remainder of this paper is organized as follows. A brief description of physis 

modelling and introduction of numerical methods are given in section 2. The results 

and discussions of are detailed in section 3. Concluding remarks are summarized in 

section 4. Validations of developed computational frameworks are provided in 

Appendix. 

 

2. Physics modelling 

The physical domain of the present work is shown in Fig. 1. An elastic panel 

with length l  and thickness h  is placed in an inviscid supersonic fluid domain with 

an impinging shock and a reflecting shock.   denotes the shock wave angle of the 

impinging shock and ix  denotes the impingement location. M , U  and 

 denotes the Mach number, velocity as well as the density of the incoming flow. 

The fluid domain is divided into three subdomains by the shock waves, whose static 

pressures are 1p , 2p  and 3p  respectively. cp denotes the cavity pressure. Noted 

the current research focuses on the two-dimensional analysis and the conclusions 

drawn in this study may only be applicable to the panels with high aspect ratio. 

However, the results in Ref. [34] show that the aeroelastic properties of the centerline 

of the three-dimensional cases are very close to that of two-dimensional cases. This 

indicates that the two-dimensional cases are still of practical reference value to the 

three-dimensional problems, and the effects of aspect ratio are left for future 

investigations. In this study, a low-fidelity and a high-fidelity computational 

framework are established for the fluid-structure coupling analysis. 



 

 

 

2.1 Fluid Modeling 

For the low-fidelity computational framework, the instantaneous fluid pressure 

( ), ,p x y t acting on the panel upper surface is modeled by local piston theory [35]. 

Considering the low Mach number flow regime behind the reflecting shock wave, the 

second order supersonic flow theory of Van Dyke [36] is used to define the piston 

theory coefficient 

 ( )
( ) ( )
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where, lp  and la  denote the local surface pressure and the local sonic speed 

respectively. l
M  denotes the local Mach number. nw  is the piston speed, 

sometimes referred to as downwash speed. It is defined by 

 n l

z z
w U

x t

 
= +

 
                          (2) 

where lU  denotes the local flow velocity. The local flow flied properties denoted by 

the subscript l  can be extracted from the steady computational fluid dynamics (CFD) 

simulation results over an undeformed panel surface, which is considered to capture 

the prominent characteristics of the flow field with shock impingement. 

 
Fig. 1 Panel geometry and flow condition 



 

 

For the high-fidelity computational framework, the fluid pressure is obtained 

through the CFD method. A well validated in-house CFD solver HUNS3D [4,5] with 

mesh deformation capabilities is used to solve the flow field. The Arbitrary 

Lagrangian-Eulerian formulation of the Euler equation is adopted to model the fluid 

field with boundary movement, and the integral form of the governing equation for a 

bounded control volume   with boundary   is as follows 

( ) 0
grid

d , dS =
t  





+ 

  U F U V n                   (3) 

In Eq. (3), T{ , , , , }u v w E    =U  represents the conservative variables, and 

F denotes the convective flux. 
grid

V denotes the grid velocity vector. The equation is 

discretized on unstructured meshes with the cell-centered finite volume method. For 

each mesh cells i


 

, Eq. (3) can be written as 
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where the ( )N i  denotes the total number of faces of each mesh cell. The flux term 

is discretized using Roe’s [37] method, and the second order accuracy is achieved by 

the piecewise linear reconstruction method of Barth and Jespersen [38]. The time 

derivative is discretized using the second order forward difference scheme. Eq. (4) 

can be then rewritten in the form of  

1 1
1   3( ) 4( ) ( )

+ ( )= 
2

n n n
ni i i i i i

i i
t

  + −
+− +


U U U

R U 0              (5) 

Eq. (5) is integrated in time using an implicit dual-time-stepping approach 

implemented in the CFD solver, and the Geometric Conservation Law [39] is satisfied 

during solver implementation. 

A stretched structural mesh is constructed for the initially undeformed panel. The 

mesh is discretized using 351×101 nodes in the streamwise and wall normal 

direction. 201 points are evenly distributed on the surface of the elastic panel, which 

is finer than that used in Ref. [9]. The two-dimensional mesh is further extruded by 

one layer spanwise to generate a 3D mesh that suitable for the CFD solver, and the 



 

 

symmetry boundary condition is applied in the spanwise direction to enable a 

two-dimensional solution. The left and right boundaries of the fluid domain in Fig. 1 

are prescribed as far field, and the upper boundary is imposed according to the 

oblique shock relations. The lower boundaries including the elastic panel surface are 

prescribed as slip wall. The fluid surface mesh of the elastic panel is also used for the 

local piston theory. As will be demonstrated later, the mesh is fine enough to capture 

all the phenomena of interest in this study. 

2.2 Structure Modeling 

In the low-fidelity computational framework, a previously developed structural 

dynamics solver [40,41] based on the von Kármán large-deflection equation for 

semi-infinite plates [42] has been used. The governing equation of the structure 

dynamics is as follows 

2 4 2

2 4 2s x c

w w w
h D N p p

t x x
   

+ − = −
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                (6) 

In Eq.(6), the panel’s displacement w  in z  direction is described as a function 

of coordinate x  and time t . s  and h  represents the density and thickness of the 

elastic panel, respectively. ( )3 212 1D Eh = −  is the equivalent bending stiffness of 

the panel. E  is the Young’s modulus and  is the Poisson’s ratio. cp  represents net 

cavity pressure acting on the panel lower surface. xN  is the in-plane additional 

tension caused by the geometric nonlinearities, and the specific mathematical form of 

xN  is given in Eq. (7), where l  is the length of panel.  

( )
2

2 02 1
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x
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N dx
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 =   −                       (7) 

Eq.(6) is discretized using Galerkin’s method with the expansion of the displacement 

in the form of 
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where iq  denotes the Galerkin’s mode coefficient. The discretized form of Eq.(6) is 

as follows 
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   (9) 

The right term of Eq. (9) represents the generalized aerodynamic force. It is denoted 

as 
,a jf in the following text, which is an element of the generalized aerodynamic 

force vector a
f . By introducing a state vector 

 
T

T 1
1 1 2 1, , , = , , , N

N N N N

qq
= e e e e q q

t t
+

 
   

, , , ,e L L L L , Eq. (9) can be rewritten as a system 

of first order ordinary differential equations 
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   (10) 

Eq. (10) is solved by an modified Runge-Kutta scheme implemented in the structural 

dynamic solver[40]. Dowell [42] states that the system converges with six Galerkin’s 

modes. However, considering the possibility of higher order mode instability, the first 

twelve order streamwise modes are selected for the simulation in this study. 

In the high-fidelity computational framework, the structure is discretized using 

the finite element method, this can be done by any standard finite element method 

software packs such as Calculix [43] and Abaqus [44]. In the present work, Abaqus is 

chosen as the computational structural dynamics (CSD) solver, and the elastic panel is 

modeled with S4R type shell element, which is used to simulate the finite strains and 



 

 

large deformations. 100 shell elements are evenly distributed on the streamwise 

direction, and symmetry boundary conditions are applied to the spanwise direction to 

enforce a two-dimensional solution. The boundary conditions for the leading and 

trailing edges are specified as pinned. The final discretized structural dynamic 

equations can be written in the following form of 

      M u + C u + K u = F                           (11) 

where  M denotes the mass matrix,  C denotes the damping matrix,  K denotes 

the stiffness matrix, and F  denotes the loads vector. u is the structural deformation 

vector. Note that  M  and  C  are assumed to be constant, and  C  can be 

neglected if no structural damping is involved. The stiffness matrix  K  is dependent 

on displacements due to the geometric nonlinearities. Eq. (11) are solved using an 

implicit time integration method proposed by Hilber et al. [45] 

2.3 Fluid-Structure Coupling  

The fluid dynamics solver and structural dynamics solver are coupled using a 

partitioned approach, and the coupling stability as well as time accuracy are preserved 

with a combination of a polynomial aerodynamic load estimator. Similar approaches 

were adopted in Ref. [46,47]. The flow chart of complete fluid-structure coupling 

procedure is shown in Fig. 2. The left branch of the flow chart represents the 

high-fidelity framework coupled with finite volume method (FVM) and finite element 

method (FEM), and the right branch represents the low-fidelity framework coupled 

with local piston theory (LPT) and Galerkin’s method. The high-fidelity and 

low-fidelity computational frameworks will be referred to as LF and HF respectively 

in the following text. The details of the fluid-structure coupling procedure is 

introduced as follows and the validation of the fluid structure coupling scheme and 

solver implementations are given in the Appendix. 



 

 

 

For time step n+1, the aerodynamic loads a
p  at time step n obtained from the 

fluid dynamic solver is passed to the aerodynamic loads predictor. The loads predictor 

predicts a
p  at time step n+1 based on the aerodynamic loads at previous time steps 

according to the Lagrange’s interpolation formula 
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In this study, the second order interpolation formula ( N =2.) is employed. For the 

constant time step, Eq. (12) can be simplified as 

 

Fig. 2 Fluid-structure coupling procedure 
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a
p  is then passed to the structural dynamic solvers.  

In the high-fidelity computational framework, the surface meshes of the 

fluid-structure boundary do not match. The RBF interpolation method [48] is used for 

the information exchange between the structure domain and fluid domain. The 

predicted aerodynamic loads a
p  are interpolated from the fluid surface mesh to the 

structure surface mesh, and the solved structural displacements s
u  are interpolated 

from the structure surface mesh to the fluid surface mesh. The interpolated loads and 

displacements are denoted as s
p  and a

u  respectively. When a
u  is obtained and 

the maximum number time steps is not reached, the RBF mesh deformation method is 

used to update the CFD mesh [49].  

In the low-fidelity computational framework, the generalized aerodynamic force 

vector a
f  is obtained by integrating a

p  over the elastic panel surface through Eq. 

(15) 

 ( )
4

, 0

2 1
sin 1,2 ,

l

a j c

l x
f p p j dx j N

Dh l l
 = − − = 

  L            (15) 

where ,a jf  is the element of a
f . The surface displacement vector w  is 

reconstructed by Eq. (8) once the Galerkin’s mode coefficient vector q  is solved by 

the structural dynamics solver. The surface mesh will be updated if the maximum 

number time steps is not reached.  

The dimensional analysis shows that the aeroelastic system are governed by 

several non-dimensional parameters [27]. The aerodynamic parameters include the 

Mach number M  , the pressure ratio 3 1p p  and the non-dimensional dynamic 

pressure 2 3
U l D  = . The structural parameters include the mass ratio 

s
l h  =  and the thickness-length ratio h l . In this study, the fluid-structure 



 

 

coupling analysis is carried out at M  =2.0, and the elastic panel has the structural 

parameters of  =0.1, h l =0.002, which corresponds to the previous study of Ref. 

[9]. The non-dimensional dynamic pressure in the range of 100< <1000 is mainly 

considered, and the time step is selected to ensure the convergence of the time domain 

response.  

Among the relevant studies[9,10], the fluid-structure coupling simulations are 

generally started from a converged steady solution of a rigid panel, or started by 

changing   from a previous case. However, these approaches cannot directly control 

the amplitude of the initial perturbation, which is inconvenient to study the influence 

of the initial perturbation on the aeroelastic system. In order to fully control the initial 

perturbation for starting the fluid-structure coupling simulation, different approaches 

are used in this study. A steady fluid-structure coupling analysis is first carried out to 

obtain a converged static aeroelastic equilibrium state. Then, an initial velocity field 

perturbation in the form of ( )00
sin

t
dw dt a h i x l= =  is applied to the elastic panel 

to start the unsteady fluid-structure coupling simulation. 0a  denotes the amplitude of 

perturbation, and the integer i  controls the distribution of the initial velocity field, 

which corresponds to the i th order of the structural mode. As the steady 

fluid-structure coupling analysis shows that the panel deflects in an approximate 

second-mode characteristic, the unsteady fluid-structure coupling simulation is 

initiated by a second mode velocity perturbation (i =2). The perturbation amplitude 

0a  is increased from a small value until the limit cycle oscillation occurs.  

 

3. Results and discussion 

3.1 Baseline，Ma=2.0, P3/P1=1.8 

The first set of cases are carried out at Mach 2.0 with the shock strength of P3/P1 



 

 

= 1.8, which is used as an additional validation of present computational frameworks. 

Sufficiently long time of fluid-structure interaction simulations are carried out to 

obtain the stable limit cycle oscillations (LCOs) of different non-dimensional dynamic 

pressure  . The amplitude and frequency curves at 
ix l =75% are drawn in Fig. 3, 

together with the results from other literatures. The nondimensional frequency 
fK  is 

defined as 
fK f l U=  , where f  is the frequency and U  is the incoming flow 

velocity. 

As can be seen in Fig. 3(a), all the amplitudes of limit cycle oscillations agree 

well each other when  >600, except for the results predicted by Brouwer and 

McNamara [24] with enriched piston theory method (EPT), which are obviously 

lower than other results. In Fig. 3(b), Brouwer and McNamara [24] also predicted 

higher LCO frequencies than others. Such difference is likely caused in part by the 

reduced applicability of piston theory to the low Mach number flow behind the 

reflecting shock wave. Noted that the amplitudes predicted by the current low-fidelity 

framework are only slightly higher than that predicted by the high-fidelity framework, 

while the frequencies are slightly lower. The time-space diagram of the elastic panel 

for =600, 800, 1000, are shown in Fig. 4 to provide a more intuitive view of system 

responses. It is shown that the panel vibrates in the form of an approximate 

second-mode shape with slightly higher fluctuations near the trailing edge, which is 

consistent with that described in Ref [9,10]. The coupled modes seem unchanged as 

  increases. For  <600, discrepancies appear among all results. In Fig. 3(a). The 

results predicted by Visbal [9] and Brouwer and McNamara [24] show that the flutter 

onset displays the features of a supercritical bifurcation, while the results of XiaoMin 

An [50] and that predicted by the current high-fidelity framework show the features of 

a subcritical bifurcation. The low-fidelity framework also predicts the characteristics 

of a subcritical bifurcation. Besides, the predicted bifurcation point is much higher 

than that predicted by the high-fidelity framework. It should be mentioned that a large 



 

 

initial velocity perturbation is required to excite the system into limit cycle 

oscillations in the subcritical bifurcation state. The discrepancies of bifurcation type 

can be caused by the differences in numerical methods and code implementations. 

However, the cases to be discussed later show that the discrepancies may also be due 

to the sensitivity of the aeroelastic system to the shock impingement condition. 

In addition, for the current case, the results predicted by the two frameworks are 

only quantitatively different. Considering the high efficiency of the low-fidelity 

framework, in the following cases, it is first used for conducting more detailed 

parametric studies and drawn basic conclusions. Then, the high-fidelity framework is 

used to verify the results under typical conditions to ensure the applicability of the 

conclusions. 
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(b) Dominant LCO frequency at 75% chord length 

Fig. 3 LCO curves at Ma=2.0, P3/P1=1.8, Ma=2.0 



 

 

 

3.2 Effect of the impingement location 

In order to investigate the effects of the shock impingement location on the 

variation of the bifurcation characteristics, a set of fluid-structure interaction 

simulations are carried out with impingement locations ranging from ix l =50% to 

42% with cavity pressure being constant. This is slightly different from that of Ref. [9] 

where the cavity pressure varies as the impingement point moves. 

The predicted LCO amplitude curves and frequency curves are shown in Fig. 5(a) 

 
(a)  =600, LF                     (b)  =600, HF 

 
(c)  =800, LF                     (d)  =800, HF 

 
(e)  =1000, LF                    (f)  =1000, HF 

Fig. 4 x-t diagram of panel deflection, P3/P1=1.8, PC=1.4, Ma=2.0 



 

 

and (b), respectively. In Fig. 5(a), as the impingement point moves to the left, the 

system bifurcation point also moves to the left. Meanwhile, the system bifurcation 

type gradually transitions from a subcritical bifurcation to a supercritical bifurcation. 

When 
ix l  is less than 47%, the low-fidelity framework predicts that the bifurcation 

point starts to move to the right gradually. In addition, for a given value of  , the 

LCO amplitude reduces as the impingement point moves forward. In Fig. 5(b), the 

frequency increases continuously as the shock impingement location moves to the 

leading edge of the elastic panel. These variation trends of bifurcation characteristics 

have been well validated by the high-fidelity computational framework. 

Noted that when the impingement point is near the center of the elastic panel, the 

bifurcation characteristics of the aeroelastic system seems to be very sensitive to the 

shock impingement location. Even a 1% shift in panel length can lead to significant 

changes in bifurcation point or even changes in bifurcation type. In numerical 

simulations, the actual shock wave impingement location can be affected by many 

factors, such as grid resolution, shock wave generation method, and the choice of 

limiter functions. All these could introduce uncertainties to the shock impingement 

location, thus leading to possible discrepancies in bifurcation characteristics predicted 

by different researchers. 
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(a) LCO amplitude at 75% chord length 
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(b) Dominant LCO frequency at 75% chord length  

Fig. 5 Effects of the impingement location on the LCOs, P3/P1=1.8, Ma=2.0 



 

 

In addition to monitoring the responses at a specific point on the elastic panel, the 

displacement vectors are projected onto the structure's natural modal coordinate 

system to show the modal participation of the limit-cycle oscillations. Noted that for 

the current case, the Galerkin’s mode is identical to the structural natural mode. Here 

the mode amplitude is still denoted by q . Fig. 6(a-c) shows the modal participation 

variation with   for the shock impingement locations of 
ix l =50%, 49% and 42%, 

respectively. The mode amplitudes are normalized by the second mode. It can be seen 

from these figures that the proportion of the second and third modes is much higher 

than that of other modes, and the modal participation predicted by the two 

computational frameworks are basically consistent. In Fig. 6(a) and Fig. 6(b), the 

second mode has the largest proportion, and the proportion of the third mode 

increases gradually with the increase of  . It seems that the proportion of the third 

mode reaches a plateau around  =800. Comparing the results in Fig. 6(a) and Fig. 

6(b), it can be found that for a given  , the proportion of the third mode also 

increases as the impingement location moves forward. When the impingement 

location moves to ix l =42%, as shown in Fig. 6(c), the proportion of the third mode 

has exceeded that of the second mode. In addition, for a fixed shock impingement 

location, the proportion of the third mode gradually decreases with the increase of  . 



 

 

 



q
/q

2

300 400 500 600 700 800 900 1000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

(a) xi/l=50% 
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(b) xi/l=49% 

 



 

 

 

In order to examine the universality of the variation trend of system bifurcation 

characteristics, another set of simulations are carried out at P3/P1 = 1.4, where the 

system bifurcation type has been reported as a subcritical bifurcation in many 

literatures [9,24,50]. The results are shown in Fig. 7. It can be seen from the figures 

that the variation trend of bifurcation characteristics is very similar to that of P3/P1 = 

1.4, and the results predicted by the two computational frameworks are still closely 

correlated. As the shock impingement point moves forward, the bifurcation type 

transitions from a subcritical bifurcation to a supercritical bifurcation, with 

continuously increasing LCO frequencies and continuously decreasing LCO 

amplitudes. Meanwhile, the bifurcation point gradually moves forward and then 

moves backward when it reaches its minimum value. 
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(c) xi/l=42% 

Fig. 6 The modal participation for mode 1 through mode 6 with the variation of 

dynamic pressure, P3/P1=1.8, Ma=2.0 
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(a) LCO amplitude at 75% chord length 
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(b) Dominant LCO frequency at 75% chord length  

Fig. 7 Effects of the impingement location on the LCOs, P3/P1=1.4, Ma=2.0 



 

 

The modal participation for the shock impingement locations of 
ix l =50%, 49% 

and 42% are shown in Fig. 8(a-c). As can be seen from these figures, in addition to the 

second and third modes with relatively high proportion, the proportion of the fifth 

mode gradually increases with the increase of the non-dimensional dynamic pressure. 

Noted that the two computational frameworks can predict similar modal participation 

variation trends for the shock impingement locations of 
ix l =50% and 

ix l =49%. 

However, for the shock impingement locations of ix l =42%., the low-fidelity 

framework fails to predict the continuous growth trend of the fifth mode. This 

explains the differences in LCO characteristics predicted by the two computational 

frameworks in Fig. 7.in the range of  =880~1000. 
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3.3 Effect of the cavity pressure 

In this section, the effects of the cavity pressure on the bifurcation characteristics 

are investigated. Defining the cavity pressure ratio as P
c c

p p= . A set of 

simulations are carried out at different cavity pressure ratios, and a summary of all 

computations for cases of P3/P1=1.8 is given in Fig. 9. As shown in Fig. 9, the 

variation trend of system bifurcation characteristics with the cavity pressure is very 

similar to that with the shock impingement location. In Fig. 9 (a), at first, the 

bifurcation point moves to the left as the cavity pressure increases, and then starts to 

move to the right when it reaches its minimum value. Meanwhile, the aeroelastic 

system gradually transitions from a subcritical bifurcation to a supercritical 

bifurcation. For a given  , as the cavity pressure increases, the LCO amplitude 

decreases continuously while the LCO frequency increases gradually. Noted that the 
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(c) xi/l=42% 

Fig. 8 The modal participation for mode 1 through mode 6 with the variation of 

dynamic pressure, P3/P1=1.4, Ma=2.0 



 

 

accuracy of the low-fidelity framework for predicting the LCO amplitude decreases 

significantly when the cavity pressure ratio P
c
 is increased to 1.48. This should be 

caused by the curvature effect of the statically deformed panel under high cavity 

pressure, which leads to a reduction of the accuracy of local piston theory. 

Fig. 10(a) and (b) show the modal participation variation with   for cavity 

pressure ratios of 1.44 and 1.48, respectively. As can be seen from the figures, the 

proportion of the second and third modes is much higher than that of the other modes, 

and the variation trend of the modal participation is also similar to that of Fig. 6(a) 

and (b). For a given  , the proportion of the third mode increases as the cavity 

pressure increases. It can be expected that if the cavity pressure continues to increase, 

the proportion of the third mode will exceed that of the second mode as shown in Fig. 

6(c). In addition, the proportion of third modes predicted by the low-fidelity 

framework is obviously lower than that predicted by the high-fidelity framework, 

which corresponds to the differences in the LCO amplitudes predicted by the two 

computational frameworks. 
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(a) LCO amplitude at 75% chord length 
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(b) Dominant LCO frequency at 75% chord length  

Fig. 9 Effects of the cavity pressure on the LCOs at Mach 2,0, P3/P1=1.8, 

i
x l =50%, Ma=2.0 
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(a) PC = 1.44 
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(b) PC = 1.48 

Fig. 10 The modal participation for mode 1 through mode 6 with the variation of 

dynamic pressure, P3/P1=1.8, i
x l =50%, Ma=2.0 



 

 

Fig. 11 shows the collection of cases for P3/P1=1.4. The shock impingement 

point is placed at 
i

x l =49%. This is because that for the impingement location of 

i
x l =50%, only the fixed points are obtained for P

c
>1.2 within the studied 

non-dimensional dynamic pressure range. In Fig. 11(a), the system has a clear 

tendency to gradually transition from a subcritical bifurcation to a supercritical 

bifurcation as the cavity pressure increases, which is constant with that shown in Fig. 

9. The difference is that within the current parameter range, the bifurcation point only 

moves to the right as cavity pressure increases. In Fig. 11(b), the LCO frequency 

increases as the cavity pressure ratio increases. The variation of modal participation is 

shown in Fig. 12, which has the same characteristics as that of Fig. 8(a) and (b). The 

second and third mode still have a higher proportion than other modes, and the fifth 

mode has a clear growth trend as the non-dimensional dynamic pressure increases. 

The above calculation results show that the bifurcation characteristics of the 

system have similar variation trends when changing the back pressure and the shock 

impingement location, which indicates that these phenomena may have the same 

underlying mechanism. 
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(a) LCO amplitude at 75% chord length 
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(b) Dominant LCO frequency at 75% chord length  

Fig. 11 Effects of the cavity pressure on the LCOs at Mach 2,0, P3/P1=1.4, 

i
x l =49%, Ma=2.0 
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(b) PC = 1.23 

Fig. 12 The modal participation for mode 1 through mode 6 with the variation of 

dynamic pressure, P3/P1=1.4, i
x l =49%, Ma=2.0 



 

 

3.4 Effect of the initial condition  

The effect of the initial condition is the last item discussed in this study. It is 

known that for many nonlinear systems, the system dynamic behaviors can be 

affected by the initial conditions. In previous studies [9,10,24,50] have pointed out 

that for some shock impingement conditions where the aeroelasticity system shows 

the features of a subcritical bifurcation, the system dynamic responses can be led into 

two different states, a fixed point and a stable LCO. Almost all LCOs were reported in 

the form of a combination of the second and third mode. However, in this section, it 

will be shown that multiple stable LCOs exist for the current aeroelastic system, and 

that these LCOs can be triggered by proper initial conditions. 

In order to investigate the effects of initial condition, the velocity perturbations in 

the form of first to sixth mode with different magnitudes are used to excite the system 

from a static aeroelastic equilibrium state. The low-fidelity framework is adopted here 

to conduct an exploratory study. The simulations are carried out at P3/P1=1.8 with 

 =1000, i
x l =49%. Long time of fluid-structure interaction simulations are used to 

obtain the stable LCOs amplitudes and peak frequencies at x l =75%. The results are 

summarized in Fig. 13. 

In Fig. 13, each type of symbol in specific color represents a time domain 

simulation initiated by a corresponding modal velocity perturbation. In the current 

case, the 3rd mode velocity perturbation can excite a LCO starting from the minimum 

magnitude of 100. As the perturbation magnitude increases to 600, another stable 

LCO with higher amplitude and higher frequency is excited. For the velocity 

perturbation of other modes, larger magnitudes are required to excite the LCOs. 

According to the amplitude diagram and peak frequency diagram shown in Fig. 13, 

about six stable LCOs have been excited by different types initial conditions. The 

LCO with lowest non-zero frequency corresponds to that discussed in Section 3.2 and 

3.3. The results here show that this type of LCO can also be excited by the 2nd, 3rd and 



 

 

4th mode velocity perturbation. The LCOs with other frequencies have rarely been 

reported in literatures. For these LCOs, coupling occurs between higher order modes, 

and the LCOs excited by velocity perturbations of higher modes tend to have higher 

frequencies. 

 

Fig. 14 and Fig. 15 shows the modal participation of LCOs on several states of 

Fig. 13. The verifications by the high-fidelity framework are also provided. Fig. 14 

shows LCO time domain responses initiated by the third mode velocity perturbation. 

It can be seen from the figures that the third mode and fourth mode have a much 

higher proportion than other modes, which indicates the coupling between the two 

modes. In Fig. 15, the LCO time domain responses are initiated by the fourth mode 

velocity perturbation, which leads to a coupling between fourth and fifth mode. Fig. 

14(c) and Fig. 15(c) show that the modal participation predicted by the high-fidelity 

framework agrees well with that predicted by the low-fidelity framework, which 

verifies the drawn conclusions. Additional comparison between the frequency 
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Fig. 13 Effects of the initial condition on the LCO amplitude at 75% chord length, 

Ma=2.0, P3/P1=1.8,  =1000, i
x l =49% 



 

 

contents of the LCOs predicted by the two computational frameworks are shown in 

Fig. 16. Despite the slight offset in the higher frequency contents, the peaks 

frequencies agree well each other, which further adds credibility to the current 

conclusions. 
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(a) LF             (b) HF              (c) modal amplitude 

Fig. 14 Time domain responses, initiated by 3rd mode velocity perturbation of 

( ) 1000sd w h d = , P3/P1=1.8,  =1000, i
x l =49%, Ma=2.0 
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(a) LF             (b) HF              (c) modal amplitude 

Fig. 15 Time domain responses, initiated by 4th mode velocity perturbation of 

( ) 1000sd w h d = , P3/P1=1.8,  =1000, i
x l =49%, Ma=2.0 



 

 

 

Investigating further, the instantaneous flow field is extracted to provide a more 

intuitive view on these LCOs. Fig. 17(a) and Fig. 17(b) show the instantaneous flow 

fields extracted from the time domain responses initiated by the third and fourth mode 

velocity perturbations, respectively. The wall boundary shown in Fig. 17(a) exhibits a 

deformation in the form of an approximate of third mode shape, while that of Fig. 

17(b) exhibits a deformation in the form of an approximate of fourth mode shape. The 

deformation of wall introduces additional compression and expansion waves to the 

flow field. Moreover, the deformation in the higher mode shape tends to introduce 

more of these waves, presenting a higher frequency of recompression/expansion near 

the panel trailing edge. These phenomena can cause more severe pressure fluctuations 

on the surrounding structure, thus increasing the risk of structural fatigue failure. 
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(a) 3rd mode velocity disturbance (b) 4th mode velocity disturbance 

Fig. 16 Fourier analysis of LCO at x l =75%, initiated by different mode velocity 

perturbation of ( ) 1000sd w h d = , P3/P1=1.8,  =1000, i
x l =49%, Ma=2.0 



 

 

 

It is worth of mentioning that, similar multiple LCOs phenomena have ever been 

observed in our previous studies on the classic panel flutter at low supersonic speed 

[40] (see Fig. 16 of this reference). Recently, Shishaeva et al. [51] has also studied the 

effect of external perturbations on nonlinear panel flutter at low supersonic speed. It is 

found that depending on the initial perturbation, different LCOs can be developed, 

which should be the same phenomenon that predicted by the reduced order model in 

our previous work [40]. The current phenomena of multiple LCOs in the shock 

induced panel flutter share many common features with those of Ref. [40] and Ref. 

 

(a) Initiated by 3rd mode velocity disturbance 

 

(b) Initiated by 4th mode velocity disturbance 

Fig. 17 Instantaneous flow field at Ma=2.0, P3/P1=1.8,  =1000, i
x l =49% 



 

 

[51]， and it will be of particular interest to reveal the underlying mechanisms of 

these nonlinear phenomena in future studies. 

 

4. Conclusions 

For a two-dimensional elastic panel subjected to an inviscid impinging oblique 

shock wave, the effects of the shock impingement location, cavity pressure and initial 

condition on the bifurcation characteristics and dynamic behaviors of the aeroelastic 

system are investigated numerically. Several interesting phenomena are observed in 

the fluid-structure interaction simulations using the low-fidelity numerical method 

and then confirmed by the high-fidelity CFD/CSD coupling method. The main 

conclusions are surmised as follows. 

First, it is observed that as the impingement point moves from the midpoint of 

the elastic panel to the leading edge, the system gradually transitions from a 

subcritical bifurcation to a supercritical bifurcation with a continuously decreasing 

LCO amplitude and increasing LCO frequency. Meanwhile, the bifurcation point 

moves to the direction corresponds to smaller value of dynamic pressure and then 

moves backward when the impingement point surpass a critical position. For the cases 

where the impingement point is near the center of the elastic panel, the aeroelastic 

system exhibits strong sensitive to the shock impingement location, e.g., even a 1% 

shift in panel length could induce significant changes in bifurcation point or even 

changes in bifurcation type. 

Second, the effects of cavity pressure on the bifurcation characteristics of the 

aeroelastic system are quite similar to that of shock impingement location. As the 

cavity pressure increases, the system experiences a gradual transition from a 

subcritical bifurcation to a supercritical bifurcation, while the LCO amplitude 

decreases and LCO frequency increases. The variation of the bifurcation point with 

the cavity pressure is also similar to that of the shock impingement point, and there 



 

 

exist a minimum value of non-dimensional dynamic pressure corresponds to the 

bifurcation point when changing the cavity pressure. 

Finally, in addition to the single LCO in the form of a combination of the second 

and third structural modes, multiple stable LCOs due to the coupling of higher order 

modes exist for the a given flow condition. These LCOs have high frequencies and 

can be developed when the structural modal velocity perturbations with high 

magnitudes or in the form of higher order modes are applied. Moreover, some of these 

LCOs even have higher amplitudes compared to the LCOs due to the coupling 

between the second and third mode. Besides, those LCOs excited by velocity 

perturbations of higher-order modes are observed to be characterized by the coupling 

between the excited mode and its adjacent higher-order mode. 

The results of present study show that either the shock impingement location or 

the cavity can induce the aeroelastic system to transition between a subcritical 

bifurcation and a supercritical bifurcation, which suggest two additional potential 

approaches for the bifurcation type control of shock induced panel flutter. However, 

limited by the content and intentions of this paper, the combined effects of the two 

approaches are left for future studies. Besides, the observed higher-order mode 

coupled LCOs are more dangerous for the structure integrity due to its high frequency 

and amplitudes, and should be further studied in future research work. 

 

Appendix. Validation of FSI coupling method 

A two-dimensional case of classic panel flutter from Ref. [52] is used for 

validating the fluid-structure coupling method. The computational domain and the 

results are shown in Fig. 18. It can be seen from the figure that the flutter boundary 

predicted by the high-fidelity framework matches closely with the linear stability 

analysis results in Ref. [52], and also have a good correlation with those from other 

literatures [53-55]. For Ma>1.7, where piston theory is applicable, the flutter 



 

 

boundary predicted by the low-fidelity framework correlated well with that predicted 

by the high-fidelity framework. To validate the solver's ability for predicting nonlinear 

responses, the LCOs at Ma=2.0 are calculated and the results are shown in Fig. 19. 

The predicted LCO amplitudes and peak frequencies agree well with that of Ref. [9]. 

All these should have validated the developed FSI procedure and solver 

implementation, providing confidence for this study. 
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(a) Computational domain (b) flutter boundary 

Fig. 18 Computational domain and flutter for a two-dimensional simply supported 
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(a) LCO amplitude (b) LCO peak frequency 

Fig. 19 LCOs at Ma=2.0, / 0.002h l = , 0.1 =  
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