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A B S T R A C T   

The interaction of approaching cracks plays a crucial role in the formation of complex crack 
patterns in the mechanics and physics of materials defects. While curvature has been shown to be 
important in the growth, interaction, and ordering of various defects, its influence on the in-
teractions of multiple cracks remains poorly understood. In this study, we investigate how two 
approaching cracks interact in curved sheets using an integrated mechanical framework combing 
experiments, fracture phase-field simulations, and theoretical analysis. Our findings demonstrate 
that the repulsive and attractive interactions between the two initially parallel cracks are 
significantly shielded by curvature. This shielding effect arises because curvature alters the stress 
fields at the crack tips and reduces the initial deflection angle of the crack tips. We observe this 
effect under different initial crack positions, material properties, and curved configurations, 
indicating a general role of curvature in controlling the paths and interactions of cracks. This 
study provides insights into understanding the interaction of approaching cracks, which has 
implications for fracture and fatigue control.   

1. Introduction 

In the fields of mechanics and physics of materials defects, curvature has proven to be a key versatile tool to control the assembly, 
growth and interaction of various defects, which play essential roles in material property and structural safety. For example, curvature 
can be used to control the self-assembly morphology of defects such as pleats (Irvine et al., 2010), scars (Bausch et al., 2003), wrinkles 
(Chen et al., 2010; Xu et al., 2016; Zhao et al., 2020; Tobasco et al., 2022; Wang et al., 2023) and lattice defects (Meng et al., 2014; 
Jiménez et al., 2016; Guerra et al., 2018). The above investigations reveal that curvature can usually promote or inhibit the formation 
of relevant morphologies and lead to the change of properties, which has aroused great interest of scholars to consider whether 
curvature can control crack growth and propagation path. (Kamrin, 2017). Wang et al. (2012) reported a 3D helical crack on het-
erogeneous spindle knots can be controlled by biaxial thermal stresses and unique spindle geometric curvature. Klein and Sharon 
(2021) presented a new description of a mode I crack as a line distribution of Gaussian curvature and suggested that a proper geometric 
curvature can be used to avoid fracture. Song et al. (2016, 2017) showed that the crack nucleation and propagation in unzipping of 
carbon nanotubes is geometry-dependent and the geometrical distortion leads to Griffith strength reduction in graphene membranes. 
Meanwhile, Feng et al. (2023) reported that the fracture of 2D crystals can be controlled by wrinkling. Furthermore, Mitchell et al. 
(2017) demonstrated that when thin sheets are draped to a fixed curvature profile, curvature-induced stresses, independent of material 
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parameters, can be used to stimulate or suppress the growth of a single crack and steer or arrest its propagation. The above research has 
confirmed that the propagation path of a single crack can be controlled by adjusting the curvature. 

However, failures and progressive damages are often related to interactions of multiple cracks. The interaction between multiple 
cracks will lead to physically important effects, for instance, the impact of interactions on individual cracks, particularly on the stress 
intensity factors (SIFs), and the effective elastic properties of solids with many cracks (Kachanov, 1993). Interactions can produce a 
variety of phenomena, stress shielding (decrease of SIFs) and stress amplification (increase of SIFs), coupling of the normal and shear 
modes (Han et al., 2019), and it will also lead to stiffness degradation and anisotropy development of the system with multiple cracks 
(Zeng and Wei, 2016). In addition, observed in the laboratory and nature (e.g. Fig. 1a and 1b), the propagation and the interaction of 
multiple cracks may exhibit complex and ordered crack patterns under different load types (Yuse and Sano, 1993; Marthelot et al., 
2014, 2015; Goehring et al., 2015; Ball, 2016; Martins et al., 2018), which are obviously of crucial importance for the safety design and 
fracture control of thin films (Liu et al., 2022), flexible electronics (Rogers et al., 2010) and engineering materials (Kang et al., 2014). 
Under mode III loading, like pulling away a strip of adhesive tape, the interaction between two tearing cracks in a thin sheet is 
attractive, which always leads to a pointy shape. Hamm et al. (2008) showed that the detached flaps have perfect triangular shapes 
with a well-defined vertex angle. Bayart et al. (2011) and Brau (2014) considered the case of no adhesion between the sheet and the 
substrate, and showed that the crack paths are no longer linear, which forms a tongue-like shape. It is remarkable that Kruglova et al. 
(2011) showed that the interaction between two tearing cracks in adhesive thin films can be attractive or repulsive, depending on their 
curvature and mediated by adhesion. Besides, dominated by curvature-dependent bending energy, the propagation of multiple tearing 
cracks induced by indenting a thin, elastic, brittle sheet with a rigid cone can be changed from a symmetrically radial path to loga-
rithmic spiral paths (Fuentealba et al., 2016). Under mode I & II loading, a straight-sided buckle-delamination in film-substrate 
systems can be seen as two interface cracks mediated by buckling, which may exhibit various propagation paths. Ni and Soh 
(2014) investigated the growth mechanisms of nonlinear buckle-delamination patterns, ranging from straight-sided to telephone cord 
and network-like blisters. The interaction between buckle-delaminations can be complex and can lead to the coalescence behaviors of 
the buckles, resulting in the formation of network-like blisters. Yu et al. (2013) experimentally reported the rich coalescence behaviors 
and morphological evolutions of telephone cord buckles in SiAlNx films. In a study by Coupeau et al. (2019), it was demonstrated that 
two straight-sided buckle-delaminations exhibit an apparent attraction towards each other once their two propagation fronts cross. It 
indicates that such crack interaction becomes more complex under the influence of stress anisotropy and the interaction between the 
film and the substrate. The interaction between two initially parallel cracks under mode I loading has received considerable attention 
in the past decades, primarily due to its idealized configuration for studying the interaction and coalescence of multiple cracks. The 
pair of cracks usually produces a universal fracture path known as En-Passant cracks (Kranz, 1979), where the cracks initially curve 
away from each other before turning sharply inwards and attracting until coalescence, forming a hook-shaped path with repulsive and 
attractive segments (Fig. 1c). This universal behavior originates from the appearance of mixed mode interactions caused by a disturbed 
symmetry and the stress field in the vicinity of crack tips being modified by the presence of the other adjacent cracks (Ghelichi and 
Kamrin, 2015; Koivisto et al., 2016). There have been a lot of studies on this aspect. For example, Melin (1983) showed the 
defect-induced instability of two collinear cracks in a flat plate. Seelig and Gross (1999) performed a numerical investigation on the 
interaction and branching of dynamic cracks. Fender et al. (2010) found that the two approaching cracks can form a universal fragment 
shape with an aspect ratio of 2:1. Furthermore, Dalbe et al. (2015) observed the transition from repulsive to attractive interaction of 
cracks in a plastic sheet. Schwaab et al. (2018) performed theoretical and numerical works to reveal the multiscale behavior of the 

Fig. 1. The interactions between cracks. (a) The interacting crack pairs (highlighted by the red circle) during the volatilization of a silicon oxide film 
on a flat surface. (b) Frost crack pairs in a tree (highlighted by red dotted lines). Photo credit: Bob Bricault, MSU Extension. (c) Schematic of the 
geometry of the crack pair composed of the initial repulsion segments and subsequent attraction segments, where the maximum inclination angle 
θmax and the aspect ratio H/W characterize the degree of crack repulsion and attraction, respectively. 
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repulsive-attractive transition. Yet, current studies mainly focus on the interaction of two mode I cracks in flat sheets. Whether the 
promotion or inhibition caused by the interaction between curvature and cracks will be coordinated or countered? It remains elusive to 
understand how curvature affects the interaction and entire propagation path of cracks, which is critical for the future design of 
crack-resistant structures. 

For a single crack, there have been some theoretical studies on the solution for the stress distribution around the tip of a slightly 
curved crack (Cotterell and Rice, 1980) and a crack on the curved surface (Folias, 1969). In recent years, remarkable theoretical 
investigations have advanced the research on crack interaction. Liu and Wei (2021) provided the close-form solution works for 
arbitrarily sized kinked cracks. Vattré (2022) got the general full-field solutions about the fracture problem of multiple branched crack 
arrays in anisotropic bimaterials. Yao and Zhang (2022a,b) provided a generalized and more accurate solution to the annular contact 
problem or the combo crack problem. However, such efforts are not enough to obtain the spatiotemporal evolution process and 
interaction of crack-tip stress field in multiple approaching cracks. Fortunately, phase field modeling of fracture has been shown as an 
efficient computational technique that can simulate topologically complex fracture processes (Francfort and Marigo, 1998; Bourdin 
et al., 2000, 2008; Pons et al., 2010; Wu et al., 2020). It opens a way for us to comprehensively investigate the effects of curvature on 
the interaction of multiple approaching cracks. 

In this work, combining experimental, numerical and theoretical studies, we investigated the propagation path and interaction of 
two approaching cracks on curved structures, and found that curvature can significantly shield the repulsive and attractive interactions 
between cracks. This seems to be confirmed by the frost cracks formed by expansion or contraction on the curved surface of the tree 
(Fig. 1b), where the interaction between cracks is relatively weak compared with the plane situation (Fig. 1a). The remainder of this 
paper is structured as follows. In Section 2, we carried out systematic experiments to study the effect of curvature on the interaction 
between cracks. In Section 3, we employed the phase-field fracture method to simulate the crack propagation path on the curved 
structure and analyzed the von Mises stress distribution at the crack tip during the propagation process. In Section 4, a semi-theoretical 
analysis method including fracture mechanics theory and finite element method is used to analyze the effect of curvature on the initial 
deflection angle of crack tip. The main conclusion is summarized in Section 5. 

2. Experimental observation 

2.1. Experimental setup 

To study the effect of curvature on the interaction between two cracks, we apply a mode I loading to an open cylindrical elastic shell 
with a pair of offset notches (Fig. 2a). The material of the shell is a thin polyimide film with axial length l = 80 mm, arc length s = 40 
mm, thickness t = 50 μm, elastic modulus E = 1.5 GPa and fracture toughness Gc = 35 N/mm (see Appendix A). To start, we cut a pair of 
offset notches separated by different horizontal distances L and vertical distances d, symmetric to the center of the polyimide film. The 
cut film was firmly adhered to 3D printed cylindrical fixtures with a certain radius of curvature R by a plastic glue, which has strong 
enough adhesive strength between the film and the fixture to avoid delamination and ensure the crack propagation. For the ultrathin 
curved film (t/s ∼ 10− 3) with small curvature (R/s ∼ 1), its bending stiffness is in the order of ∼ t3, and thus the curved films have 
extremely small bending energy and remain in a stress-free state (Wang et al., 2020). To apply a mode I loading on the curved film and 
keep the initial curved configuration, two 3D printed fixtures were fixed to the Material Test System (MTS criterion 43, MTS System 
Company), where the centers of the upper and lower fixtures are in a vertical line, and the top fixture is axially stretched with a loading 
rate of 0.1 mm/min. It’s worth a mention that due to the errors of uniaxial loading conditions and the local nonlinear large deformation 
of film in experiments, there are some differences between local curved geometries and initial curved configuration, which have 

Fig. 2. Experimental investigations for the effects of curvature on the interaction of two parallel and offset cracks. (a) A schematic diagram for a 
curved shell (R is the radius of curvature) with two initial notches separated by vertical d and horizontal L distances under mode I loading, where the 
thin polyimide film is firmly stuck to the 3D printed curved heads by the plastic glue with high adhesive strength. (b) A typical 3D experimental 
morphology (left) for cracks on a curved film with initial L = 20 mm and d = 4 mm, and the comparison of crack morphologies on flat and curved 
samples (right). (c) Experimental curves of crack trajectories under diverse curvature κ (Here, to better compare the crack paths under diverse 
curvature, we converted the coordinates of the cracks on the curved surface to those on the plane, see Appendix B). 
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negligible influences on the shielding effect of curvatures on crack interactions. As shown in Fig. 2b, to characterize the final inter-
acting crack trajectories, we recorded the 3D crack morphology by a camera, and we removed the final postmortem films with cracks 
from the 3D printed fixtures and flatten them to measure the geometries of cracks, including maximum the inclination angle θmax and 
the aspect ratio H/W. 

2.2. The shielding effect of curvature on the interaction of cracks 

As shown in Fig. 2b, the crack pair trajectories on curved samples are composed of the initial repulsive segments and subsequent 
attractive segments, which are similar to those on flat samples. Interestingly, we observed that compared with the crack pairs on flat 
samples, the crack pairs on curved samples show weaker repulsive and attractive interaction, with smaller θmax and H/W characterizing 
the amplitude of the attraction and repulsion. To quantitatively analyze the effects of curvature on the interaction between a pair of 
cracks, we plotted the crack trajectories of samples with different curvature κ in the x-y coordinate system shown in Fig. 2c (see 
Appendix B), in which the crack trajectories depend strongly on the curvature, and the repulsive and attractive interaction are 
significantly shielded when the curvature increases. 

Furthermore, systematic experimental results show that the angle θmax corresponding to the maximum slope of the initial repulsion 
segments decreases with the curvature, indicating the shielding effect of curvature on the repulsive interaction of the crack pair 
(Fig. 3a). Meanwhile, the aspect ratio H/W of subsequent attractive segments also decreases with the curvature, which indicates that 
the curvature can also significantly shield the attractive interaction between a pair of cracks (Fig. 3b). The shielding effects of cur-
vature on the interaction of the crack pairs remain valid under different initial horizontal distances L and vertical distances d. In 
addition, we found that for the crack pairs on a flat sheet, θmax and H/W are independent of L and decrease with d, with weaker 
repulsion and attraction when the initial vertical crack separation d increases, which is consistent with the results reported by Dalbe 
et al. (2015). With the increase of curvature, both θmax and H/W become independent of d due to the significant shielding effect of 
curvature on the repulsion and attraction between a pair of cracks. 

Fig. 3. Experimentally measured θmax(a) and H/W (b) as functions of the curvature κ under different values of d and L.  

Fig. 4. (a) The schematic illustration of a body with a pair of sharp cracks. (b) Representation of a pair of discrete cracks by phase field d.  
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3. Numerical analysis 

3.1. Phase-field fracture method 

To further unveil the shielding effect of curvature on the repulsion and attraction between the crack pairs, we simulated complete 
crack trajectories using a fracture phase-field method. The approach introduces a regularized sharp crack taken into account by an 
auxiliary scalar damage variable between zero and one, which connects broken and unbroken regions, thus turning the discontinuous 
system into a continuous system (Fig. 4a and 4b). Once its value reaches one the material is fully broken, and both its stiffness and 
stress are reduced to zero. The variable varies continuously between the damaged and undamaged regions, which can be described as 
an exponential function from Miehe et al. (2010) to represent a regularized or diffusive crack topology, d(x) = e− |x|/l0 . l0, an internal 
characteristic length scale parameter, controls the width of the diffusive crack topology. The ideal sharp crack can be recovered within 
the limit of l0→0. Therefore, the total energy can be composed of three parts: the elastic energy, the fracture energy, and the external 
potential energy by external loads: 

Π(u,b, f, d,∇d) =
∫

Ω
ψe(εe(u), d)dΩ +

∫

Ω
ψf (∇d, d)dΩ +

∫

Ω/∂Ω
ψext(u,b, f)dΩ / ∂Ω, (3.1)  

where u is the displacement vector, εe(u) is the elastic strain tensor, d is the so-called phase field scalar parameter, f is the surface force 
on the boundary ∂Ω, b is a body force acting on the body Ω. The isotropic elastic energy function ψe(εe) associated with the undamaged 
elastic solid can be written as: 

ψe(εe) =
1
2
(εe)

T
: C0 : εe =

1
2

λ[tr(εe)]
2
+ μtr

[
(εe)

2]
, (3.2)  

where C0 is the unbroken material stiffness tensor, λ = Eν/[(1+ν)(1 − 2ν)] and μ = E/[2(1+ν)] are Lame constants in the case of 
isotropic elasticity, E is Young’s modulus, ν is Poisson’s ratio. The total strain tensor is expressed as the displacement gradient ∇u 
under the assumption of small strains: εe = (∇u + (∇u)T

) /2. To ensure that the crack is only driven by tension and avoid the influence 
of the unphysical load-bearing capacity of the cracked regions, the elastic strain tensor is divided into the tensile part and compressive 
part: 

εe = εe+ + εe− . (3.3) 

After considering the degradation of energy due to fracture, the total elastic energy density depending on the phase field ψe(εe, d)
can be expressed as follows: 

ψe(εe, d) = g(d)ψe+(εe) + ψe− (εe), (3.4)  

ψe+(εe) =
λ
2
〈tr(εe)〉

2
+ + μtr

[
(εe+)

2]
, (3.5)  

ψe− (εe) =
λ
2
〈tr(εe)〉

2
− + μtr

[
(εe− )

2]
, (3.6)  

where g(d) = (1 − d)2
+ δ is the degradation function, representing the reduction of stiffness due to the crack in the material, δ is a 

model parameter for avoiding numerical singularities. The operators 〈⋅〉+ and 〈⋅〉− are defined as: 〈⋅〉+ = (⋅ + | ⋅ |)/2 and 〈⋅〉− = (⋅ − | ⋅ |)
/2. The fracture energy ψ f depends on the critical energy release ratio Gc and the crack surface density per unit volume of the solid γ(d,
∇d): 

ψf (∇d, d) = Gcγ(d,∇d) = Gc

(
1

2l0
d2 +

l0

2
|∇d|2

)

. (3.7) 

Then the total Lagrange energy functional can be expressed as follows: 

Π =

∫

Ω
[g(d)ψe+(εe)+ψe− (εe)]dΩ +

∫

Ω
Gc

(
1

2l0
d2 +

l0

2
|∇d|2

)

dΩ +

∫

Ω
u⋅bdΩ +

∫

∂Ω
u⋅fd∂Ω. (3.8) 

To ensure the irreversibility condition (ḋ ≥ 0) to prevent crack healing, the local history field H defined as the maximum strain 
energy contributed by tensile strain components has been introduced: 

H(r, t) = max
τ∈[0,t]

ψe+(r, τ). (3.9) 

Thus, the total Lagrange energy functional can be written by: 

Π =

∫

Ω
[g(d)H +ψe− (εe)]dΩ +

∫

Ω
Gc

(
1

2l0
d2 +

l0

2
|∇d|2

)

dΩ +

∫

Ω
u⋅bdΩ +

∫

∂Ω
u⋅fd∂Ω. (3.10) 

The following governing equations are derived by taking the variation of the total energy functional, which means that the first 
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variation of the total Lagrange energy function Π with respect to u and d equals to zero: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ σ + b = 0 in Ω
(

2l0H
Gc

+ 1
)

d − l2
0∇

2d =
2l0H
Gc

in Ω

σ ⋅ n − f = 0 on ΓN

u − u = 0 on ΓD

∇d ⋅ n = 0 in Γ

, (3.11)  

where σ = (1 − d)2∂ψe+(ε) /∂ε + ∂ψe− (ε) /∂ε is the Cauchy stress tensor. 
In Eq. (3.11), the stiffness only degrades in the direction of tensile load, where only the tensile energy ψe+ is degraded and drives the 

evolution of the crack field d. This leads to that the fully broken region (d = 1) can still support the mechanical loads in other directions, 
which is inconsistent with fracture mechanics (Jeong et al., 2018). In this work, due to the asymmetry of two approaching cracks on 
curved structures, the mixed mode fracture with both tensile and shear loading occurs at the crack tips. Therefore, we developed the 
hybrid phase field model proposed by Ambati et al. (2015) to track the trajectory and interaction of two approaching cracks bearing 
combined tensile and shear loads at crack tips. Considering the degradation of stiffness in all directions, the Cauchy stress tensor σ in 
Eq. (3.11) is modified as: 

σ = (1 − d)2∂ψe(ε) / ∂ε, (3.12) 

Meanwhile, to prevent crack surface interpenetration, a constraint was added: 

∀x : ψe+ < ψe− ⇒ d ≡ 0. (3.13) 

Therefore, the governing equation for the hybrid phase field model is written as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ σ + b = 0 in Ω
(

2l0H
Gc

+ 1
)

d − l2
0∇

2d =
2l0H
Gc

in Ω

σ ⋅ n − f = 0 on ΓN

u − u = 0 on ΓD

∇d ⋅ n = 0 in Γ

∀x : ψe+ < ψe− ⇒ d ≡ 0

, (3.14)  

where σ = (1 − d)2∂ψe(ε) /∂ε is the Cauchy stress tensor. 
In the simulation, we utilized the explicit staggered scheme, in which the displacement and the crack field are computed alternately 

during the calculation iteration. We implemented the crack field solver for the quasi-static fracture of elastic solid in the commercial 
software ABAQUS by fixed mesh (see Appendix C), which is an adaptation of a procedure proposed by Molnár and Gravouil (2017). 

Fig. 5. Verification of the phase field model. (a) Comparison of simulated and experimental crack morphologies on flat and curved shells, 
respectively. (b) Comparison of simulated crack morphologies with the experimental data of Dalbe et al. (2015) on flat shells. 
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3.2. The validation of the method 

To verify the correctness of our phase-field model, we compared the simulation results with the experimental results. First of all, 
under different curvature (κ = 0 mm− 1 and κ = 0.01mm− 1), we compared the simulated results with the crack paths obtained in our 
previous experiments (Fig. 5a). It can be seen that the simulated trajectories of a pair of cracks on flat sheets and curved sheets are in 
good agreement with experiments, where the trajectories on curved sheets were flattened in order to compare with that on flat sheets 
(see Appendix B). Meanwhile, it’s worth mentioning that there may be some differences between the crack trajectories obtained from 
simulations and experiments, due to the influences of out-of-plane deformations and boundary conditions in experiments. In addition, 
we also compared the simulation results under different L when the curvature κ = 0 mm− 1 with the experimental data of Dalbe et al. 
(2015) (Fig. 5b). ΔX and ΔY correspond to the horizontal and vertical distances between the two crack tips. Δy = ΔY − ΔYm with ΔYm 
= d + Δu measures the distance between the axes of the two cracks in the deformed state. Δu is the elastic tensile elongation of the 
samples on the distances measured in the deformed state. ΔXt and Δyt are the relative distance between the corresponding two crack 
tip points when Δy reaches the maximum value in the crack pair propagation. The simulation results show that various crack tra-
jectories collapse on a single master curve and they do not depend on L, which is coincided with the experimental results of Dalbe et al. 
(2015). To sum up, it can be proved that our model can accurately capture the propagation process of two interacting initially parallel 
cracks under different curvature. 

3.3. The effect of curvature on crack propagation paths 

We simulated complete crack trajectories using the hybrid fracture phase-field method, where the geometric conditions and ma-
terial properties in simulations are consistent with those in experiments. In order to better represent the relationship between various 
parameters, we introduced dimensionless parameters κ = t2 /Rd, H/W = (H /W) /(Hp /Wp) and θmax = θmax /(θmax)p, where (⋅)p rep-
resents the parameter values of cracks on plane. The simulated crack trajectories under different curvature show that the amplitude of 
the deviation between the cracks is reduced as the curvature increases, reflecting the shielding effects of curvature on the repulsive and 

Fig. 6. (a) Simulated crack trajectories under different curvature. (b) The crack trajectories under different curvature cannot collapse into a curve.  

Fig. 7. Phase-field simulations for the interaction of the crack pair on the curved shell. (a-b) Evolutions of the dimensionless geometric parameters 
θmax (a) and H/W (b) for the single crack and the crack pair, respectively, as functions of κ, and insets show the comparison of experiments and 
simulations. 
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attractive interaction of a pair of cracks (Fig. 6a). In addition, we found that the crack trajectories under different curvature cannot 
collapse into a single main curve (Fig. 6b), which indicates that the curvature breaks the law found in the case of plane (Fig. 5b). 

Furthermore, more detailed simulated results show that both repulsion angle θmax and the aspect ratio H/W decrease with the 
curvature (Fig. 7a and 7b), which further indicates that the curvature can shield the repulsion and attraction between a pair of cracks. 
The insets in Fig. 7a and 7b show that the simulated shielding trends of θmax at repulsive stages and H/W at attractive stages are 
consistent with the results in the experiments. There are some numerical errors between experiments and calculations due to the errors 
of uniaxial loading conditions, the local nonlinear curved deformations, and material properties in experiments. In addition, for the 
propagation of a single crack under different κ, the crack path is a straight line without repulsion and attraction and both θmax and H/W 
are equal to one (Fig. 7a and 7b), which demonstrates that the shielding effect of curvature on the interaction between a pair of cracks 
cannot be derived by a superposition of the interaction between the single crack and the curvature. 

3.4. The effect of curvature on the von Mises stress fields at crack tips 

In Fig. 8a and 8b, we plotted the von Mises stress fields in the vicinity of crack tips at repulsive and attractive stages as the crack 
grows on flat and curved sheets under the same displacement, respectively. Initially, the line of maximum tension stress is aligned with 
the mode I loading because the two cracks are relatively far apart and do not interact with each other, allowing the crack paths to 
remain straight and parallel. As the two cracks interact with each other, each crack modifies the stress field at the tip of its opposing 
crack, and the line of maximum tension stress within the central region connects the crack tips and rotates under locally mixed mode I 
and II loading. At the repulsive stage, the cracks on the plane interact with each other earlier, which leads to the stress field acting on a 
longer range (Fig. 8a). For the cracks on curved sheets, two cracks start to repulse each other until they are very close to each other, the 
stress field acts on a narrow range and the amplitude of stress is larger (Fig. 8b). In this case, the amplitude of the deviation in repulsive 
segments is reduced, reflecting the shielding effect of curvature on the repulsive interaction of cracks. At the attractive stage of cracks 
on the flat sheet (Fig. 8a), the amplitude of stress is larger and the stress field acts on a longer range. In contrast, for cracks on curved 
sheets (Fig. 8b), the intensity of the singular stress field ahead of the crack tip is smaller and the stress field acts on a narrow range, 
which leads to a smaller aspect ratio of subsequent attractive segments, reflecting the shielding effect of curvature on the attractive 
interaction of cracks. Further, we quantitatively analyzed the evolution of the maximum principal stress direction θs at crack tips as the 
crack propagates on flat and curved sheets (Fig. 8c), where the sign of θs indicates repulsive (θs > 0) and attractive (θs < 0) stages. 
Results show that as the cracks propagate, the value of tan(θs) first increases from zero to a maximum value and then decreases to zero, 
which corresponds to the crack repulsive stage, and then tan(θs) becomes negative and decreases, which corresponds to the crack 

Fig. 8. The von Mises stress field at the tips of cracks on (a) flat and (b) curved shells in the repulsive stage and the attractive stages, respectively. (c) 
The evolution of the maximum principal stress direction θs at crack tips as the crack propagates on flat and curved sheets. 
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attractive stage. Meanwhile, the values of tan(θs) for cracks on curved shells are significantly lower than that for cracks on flat sheets, 
which further reflects the shielding effect of curvature on the repulsive and attractive interactions between a pair of cracks. Therefore, 
curvature can strongly modify the distribution and intensity of the singular stress field ahead of the crack tip, and as a consequence, 
lead to a shielding of the repulsion and attraction between a pair of cracks. 

Fig. 9. The universality of the shielding effect of curvature. Effects of (a) the axial distance of the crack pair d, (b) the lateral distance of the crack 
pair L, (c) the elastic modulus E, and (d) the fracture toughness Gc on the geometries θmax and H/W of two interacting cracks. 

Fig. 10. The normalized crack trajectories under different geometric sizes at a same curvature.  
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3.5. The universality of the shielding effect 

In order to prove the universality of the shielding effect of curvature on the interaction between cracks, we analyzed the influence 
of geometry parameters, such as the spacing of crack pairs d and L, and the material parameters, such as elastic modulus E and fracture 
toughness Gc. More detailed fracture phase-field simulations show that both repulsive angle θmax and the aspect ratio H/W decrease 
with the curvature under different initial horizontal d and vertical L distances between crack tips (Fig. 9a and 9b), which are consistent 
with the results of our experiments (Fig. 3a and 3b). Meanwhile, it is worth noting that in this work, we mainly focus on the effect of 
curvature on two interacting cracks. As discussed by previous works (Dalbe et al., 2015; Schwaab et al., 2018), the interaction between 
cracks becomes weaken as the d increases, and there are no interactions between two cracks when the d exceeds a critical value, and 
thus the influence of curvature on crack interactions will disappear. In addition, the material properties do not influence the shape of 
the final trajectory in the elastic brittle case with different curvature (Fig. 9c and 9d). This point of view is consistent with Schwaab 
(2018), where E and Gc affect the strain energy and the crack propagation speed, but not its shape. Therefore, the shielding effect of 
curvature on the repulsion and attraction between a pair of cracks remains valid, in a wide range of the initial crack positions and 
material properties. Besides, under different geometric dimensions (l and s), the normalized crack paths collapse approximately near a 
same curve (the yellow dotted line in Fig. 10) under κ = 0.01mm− 1, which reveals that geometric size does not affect the shielding 
effect of curvature on the crack pair. 

In addition, with the aim of demonstrating the universality of the shielding effect, we further explored the propagation of cracks on 
different curved configurations through phase-field simulation. Typically, as shown in Fig. 11a, we simulated the entire crack pair 
trajectories on a close cylindrical shell with l = 80 mm, L = 12 mm, d = 1 mm, E = 1.5 GPa and Gc = 35 N/mm, where the uniformly 
distributed displacements were imposed outward along the normal direction of the inner surface. The insets in Fig. 11b show that the 
trajectories of cracks on close cylindrical shells are also composed of the initial repulsive segments and subsequent attractive segments, 
and the amplitude of the deviation between the cracks is reduced with the increase of curvature. Systematic simulations show that both 
repulsive angle θmax and the aspect ratio H/W decrease with the curvature (Fig. 11b), reflecting the shielding effects of curvature on the 
repulsive and attractive interaction of cracks on close cylindrical shells. Different from the configuration of the cylinder shell with zero 
Gaussian curvature K, we further explored the propagation of cracks on the curved configuration with nonzero Gaussian curvature. As 
shown in Fig. 11c, we simulated the complete trajectory of the crack pair on a flat sheet with a bump in the center, where the Gaussian 
curvature is positive on the top of the bump and negative on the outskirts of the bump. The simulated crack trajectories in Fig. 11d 
show that for cracks inclined with respect to the bump, the cracks repel each other at the onset of growth and then curve around the 
bump due to the interaction between cracks and the effects of curvature, forming a path composed of repulsive and attractive segments 
similar to that of cracks on flat sheets. Interestingly, the maximum repulsive angle θmax of two approaching cracks around the bump is 
significantly smaller than that of cracks on flat sheets, which also reflects the shielding effects of curvature on the repulsion between a 
pair of cracks. In summary, the shielding effect of curvature on the interaction of crack pairs is robust and universal, in a wide range of 
initial crack positions, material properties and curved configurations. 

Fig. 11. Shielding effects of curvature on the interaction of the crack pair on different curved configurations. (a) The simulated model of cracks on 
the close cylindrical shell with two initial notches separated by vertical d and horizontal L distances submitted to internal radial expansion. (b) 
Evolutions of the aspect ratio H/W and the maximum repulsive angle θmax under different curvature κ. (c) The simulated model of the crack pair 
around a bump with Gaussian curvature distributions. (d) Simulated trajectories for the crack pair on plane and around a bump. 
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4. Theoretical analysis 

4.1. Theoretical method 

We developed a theoretical model to study the effects of curvature on the interaction of cracks. For an open cylindrical shell with 
two parallel and offset cracks, in the coordinates of the crack tip (r,θ), the stress in the vicinity of the crack tip can be defined by the 
stress intensity factors K (Irwin et al., 1957) 

σij = K(2πr)− 1/2fij(θ), (4.1)  

where K depends on external boundary conditions and the remaining parameters are only related to the spatial coordinates of the crack 
tips. We focused on a thin shell structure with negligible thickness. Therefore, the stress in the vicinity of the crack tip takes the form 
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. (4.2)  

where the stress intensity factors KI and KII measure the intensity of tensile and shear stress concentration at the crack tip, respectively. 
Further. By considering the direction of the maximum hoop stress at the crack tip as the direction of crack propagation (Erdogan and 
Sih, 1963), 

Fig. 12. Theoretical predictions for the evolution of the initial kink angles θ0 of crack tips on (a) flat and (b) curved shells with different initial 
vertical distances d and horizontal distances L. The green dotted line represents the location of the local extremum of θ0 (θmax

0 ). (c) The variation of 
initial deflection angle of crack with L under different curvature κ. (d) The variation of initial deflection angle of crack with d under different κ and L. 
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∂σθθ(KI,KII, θ)
∂θ

= 0, (4.3) 

Fig. 13. (a) The relationship between θmax
0 and Δl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 + L2

√
with different curvature κ. (b) The relationship between the coefficients (A0,A1 and 

A2) of the fitting formula and the curvature κ. 

Table 1 
Coefficients used in Eq. (4.6) for fitting the local maximum repulsion θmax

0 .  

i 0 1 2 

ai 1.11763 29.3174 0.98866 
bi − 24.4184 19.5703 25.2528 
ci 0.00159 0.00082 0.00179  

Fig. A1. Measurement of properties of experimental materials. (a) Stress-strain curves of uniaxial tension of samples with different widths, char-
acterizing the elastic modulus E. (b) The fracture toughness Gc of the material was measured by the Rivlin-Thomas method (Rivlin and 
Thomas, 1953). 

Fig. B1. (a) Coordinate of the crack on curved surface. (b) Transformation from 3D curved surface coordinates (x′, y′, z′) to 2D plane coordinates (x,
y). The origin of the x’-y’ coordinate system O is located at the center of the arc. The blue line stands for the original surface, and the gray line stands 
for the converted plane. 
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Fig. C1. (a) Division of fixed mesh in phase field fracture simulation. (b) Mesh subdivision of crack propagation region. (c) The simulation result of 
crack propagation. (d) The displacement in the y-direction after crack propagation. 

Fig. C2. Effects of phase-field parameters on the predicted crack trajectories. (a) Diffusive crack model described by phase field d(x) = e− |x|/l0 for 
different diffusive length l0. (b) The predicted crack trajectories under different l0. (c) The relationships between the degradation function g(d) and 
the crack parameter d under different parameters. (d) The predicted crack trajectories under different g(d). 
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the kink angle θ0 at the onset of crack propagation can be described by the expression (Mitchell et al., 2017): 

θ0 = 2arctan

⎡
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− 2KII/KI

1 +
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1 + 8(KII/KI)
2

√

⎤

⎥
⎦, (4.4)  

where KI and KII depend on the curvature κ (see Appendix D), the initial horizontal distance L and the vertical distance d as shown in 
experiments. However, for the complex structure with multiple cracks with curvature, the traditional fracture mechanics theory cannot 
give the theoretical solution of KI and KII, but this can be easily determined in the finite element calculation through the well-known 
interaction integration program (see Appendix D). In addition, it’s worth mentioning that we ignored the effects of KIII, due to the out- 
of-plane deformations are nearly zero (Fig. C1) and the crack tilt is mainly controlled by the mixed-mode I + II fracture rather than by 

Fig. D1. Finite element mesh generation for the calculation of the stress intensity factors. (a) Division of fixed mesh in the calculation of stress 
intensity factor. (b) Mesh subdivision near the crack tips. 

Fig. D2. Two benchmark problems for verifying the accuracy of the stress intensity factor at the crack tip. (a) Comparison of theoretical and 
numerical solutions for the stress intensity factors of a circumferential through-wall crack in a cylindrical shell. (b) The mesh of a circumferential 
through-wall crack in a cylindrical shell. (c) Comparison of numerical and analytical results for a 2D lens crack. (d) The mesh of a 2D lens crack. 
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the mode III fracture in previous theoretical analysis (Mitchell et al., 2017; Schwaab et al., 2018). Meanwhile, results in Fig. D3b show 
that although there may be some numerical differences, the conclusion of the shielding effect of curvature on the interactions of a crack 
pair remains valid with considering KIII. 

4.2. The effect of curvature on initial kink angle of cracks 

By substituting the calculated KI and KII under different κ, L and d into Eq. (4.4), we plotted the initial kink angle θ0 for a pair of 
cracks on plane and curved shell in the (d, L) space with strong crack interaction (Fig. 12a and 12b), where the sign of θ0 indicates 
repulsion (θ0 > 0) and attraction (θ0 < 0). We found that the color in the phase diagram with curvature (Fig. 12b) is significantly 
lighter than that in the phase diagram without curvature (Fig. 12a), indicating the absolute values of θ0 for cracks on curved shells are 
significantly lower than that for cracks on flat sheets, reflecting the shielding effect of curvature on the repulsive and attractive in-
teractions between a pair of cracks. Meanwhile, we observed that when L decreases, i.e., two cracks get closer, two cracks repel each 
other, and θ0 first increases and reaches a maximum initial repulsion angle θmax

0 (Fig. 12c) at a critical L, where the critical value of L 
decreases with increasing curvature. Then, θ0 decreases acutely to less than zero as L further decreases (L ≤ 0), and the two cracks 
begin to attract each other. Furthermore, when L < 0, for both on curved shells and plane cracks, as d decreases, the absolute values of 
θ0 gradually increase until d = 0; however, when L > 0, the absolute values of θ0 gradually increase until a certain value d and then 
decrease to zero until d = 0 (Fig. 12d). It is worth noting that the initial kink angle of crack tips under some (d, L) configurations will be 
transformed form negative to positive due to the effect of curvature, which provides some enlightenment for curvature-controlled 
crack patterns. 

4.3. Effects of curvature on the local maxima of repulsion angle of cracks 

Further, we found that the position of the local maxima of repulsion θmax
0 will change with different curvature, which means that the 

shielding effect of curvature on crack interactions is not only related to the spacing of crack pairs (d, L), but also related to the curvature 

Fig. D3. (a) Comparison of theoretical and phase field numerical results for the initial deflection angle of cracks. (b) Comparison of the relationship 
between initial deflection angle and curvature with and without considering KIII. 

Fig. D4. The relationships between KII/KI and the curvature κ. (a) The calculated KII/KIunder different d. (b) The calculated KII /KIunder 
different L. 
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κ. Here, we paid close attention to the relationship between the local maxima of repulsion θmax
0 and the tip-to-tip distance Δl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 + L2

√

with different curvature κ, as shown in Fig. 13a. It can be clearly seen that the local maxima of repulsion θmax
0 decreases with the 

increase of the distanceΔl, which can be fitted as an exponential function for different curvature: 

θmax
0 = A0 + A1e− Δl/A2 . (4.5) 

The relationship of its coefficients (A0, A1 and A2) with curvature is shown in Fig. 13b, which can be fitted as the exponential 
function of the curvature κ: 

Ai = ai + bie− κ/ci (i = 0, 1, 2 κ > 0), (4.6)  

where ai, bi and ci are constants determined by numerical solutions (see Table 1). 
Based on the fitted exponential scaling relationships of Eqs. (4.5) and (4.6), we can quantify the effects of the initial crack con-

figurations Δl =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 + L2

√
and curvatures κ on the interaction of cracks. The exponentially decreasing function indicates that the crack 

interaction becomes weaker as the curvature and the crack tip-to-tip distance increase, i.e., the curvature can significantly shield the 
repulsive interaction between a pair of cracks. This exponential decreasing scaling relationship between the crack interaction and the 
curvature can be explained by the evolution of the direction of maximum principal stress (Fig. 8c), where the orientation angles of 
maximum principal stress decrease with increasing curvatures. Therefore, our developed semi-theoretical framework combining the 
finite element calculations and classic fracture mechanics is sufficient to quantitatively capture the complete crack trajectories and the 
shielding effects of curvature on the repulsion and attraction interaction of cracks. 

5. Conclusion 

In conclusion, in this paper we represented the universal shielding effect of curvature on the repulsive and attractive interactions of 
two approaching cracks, by developing a mechanical framework combining systematic experiments, simulations and fracture me-
chanics analysis. This shielding effect originates from the fact that the curvature can strongly modify the distribution and intensity of 
the singular stress field ahead of the crack tip and suppress the initial deflection angle of cracks. Considering different initial crack 
positions (initial vertical and horizontal distances between crack tips), material properties (elastic modulus and fracture toughness) 
and curved configurations (cylinder shell and bump), we found that the shielding effect of curvature on the interaction of cracks still 
exists. Systematic theoretical analyses built the laws to quantify how sensible interacting cracks are to the curvature and initial crack- 
tip distances. These results show the opportunity of using curvature as a novel means to guide the paths and the interaction of multiple 
cracks, with potential implications for controlling the cooperative fracture behaviors in thin films (Liu et al., 2022), flexible electronics 
(Rogers et al., 2010), mechanical sensors (Kang et al., 2014) and so on. 
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Appendix A. Measurement of properties of experimental materials 

We used the Polyimide (PI) films in our experiments and measured three independent material parameters, the elastic modulus (E), 
the Poisson’s ratio (ν), and the fracture toughness (Gc). We determined the elastic modulus (E) and Poisson’s ratio (ν) by stretching a 
dog bone like samples through an instrument while recording images of the sample as it was strained (Fig. A1a). The stress-strain 
relationship of samples with different widths under uniaxial stress is obtained. By analyzing the image, the deformation of the edge 
is detected, and the nominal strain is used for measurement ν, which value is close to 0.5. We get an approximate value of the elastic 
modulusE ≈ 1.5 ± 0.2GPa. The third material parameter (Gc) is the energy required to create new surface, called fracture energy. We 
used a similar procedure proposed by Rivlin and Thomas (1953) and Mitchell et al. (2017). Pre-cut samples and uncut samples of the 
same geometry were strained very slowly (0.3 mm/min), and we recorded stress-strain curves in pure shear conditions in the in-
strument (Fig. A1b). This onset of crack growth for the pre-cut samples corresponds precisely to a maximum in the stress-strain curve 
(ε∗). The integral difference of the stress-strain curve for the pre-cut samples and uncut samples from ε = 0 to ε∗ provides the elastic 
energy density W0 far ahead of the crack at the moment the crack began to propagate. Hence, the fracture toughness Gc = W0 ⋅ l0 ≈

0.035 ± 0.01kN/mm, where l0 is the seed crack length. 

Appendix B. Transformation from curved surface to plane 

In this paper, in order to compare the crack paths under different radii of curvature, we have carried out a simple coordinate 
transformation to project the crack coordinates on the surface onto the plane (Fig. B1): 

x = θR = Rarctan(x′ / y′), (B.1)  

y = z′. (B.2)  

Appendix C. Phase-field numerical model 

The phase field method in Section 3.1 is implemented into the commercial software ABAQUS through the user subroutine UEL 
(User-defined elements) (Molnár and Gravouil, 2017). As shown in Fig. C1a, in order to capture the evolution of two interacting 
initially parallel cracks more accurately, we finely divided the mesh of the crack propagation area. The finite element meshes of about 
200, 000 3D solid elements with 8-nodes (C3D8) are used, and the region around the crack path is refined with the mesh size of 0.015 
mm. In addition, it’s worth mentioning that due to that the simulated out-of-plane deformations are nearly zero (Fig. C1d), we ignored 
the influences of wrinkles (Li et al., 2018; Feng et al., 2023), and we will further develop our numerical model in future to consider the 
coupling relationships between wrinkles and multiple cracks on curved structures. Meanwhile, due to the local out-of-plane defor-
mation (|uy|max /R ≈ 10− 2) is negligible at the repulsive and attractive stages, the local curved geometries are approximately consistent 
with the initial curved configuration during crack propagation. 

In addition, we performed investigations on the effects of the diffusive length l0 and the degradation function g(d) on the predicted 
crack trajectories. As shown in Fig. C2a, l0 is used to control the width of the regularized or diffusive crack (Miehe et al., 2010). As the l0 
decreases to l0 = 0.03 mm, the calculated crack configuration tends to be stable and is in good agreement with experiments (Fig. C2b). 
Further, we analyzed the effects of the degradation function g(d) on crack trajectories based a degradation function proposed by Cao 
et al. (2020): 

g(d) =
(

1 −
(A − 1)d2 + Bd

Ad2 + (B − 2)d + 1

)2

(C.1)  

where, parameter A and B control the degradation kinetics, as shown in Fig. C2c. As the parameter B (with a constant A) decreases, 
the evolution of degradation function with the damage parameter d becomes slow, and the calculated crack configuration tends to be 
stable (Fig. C2d). For simplicity, we used the degradation function g(d) = (1 − d)2 in our model, and the calculated crack configuration 
is stable and is in good agreement with experiments (Fig. C2d). 

Appendix D. Calculations of stress intensity factors 

In this paper, the calculation of stress intensity factor associated with initial deflection angle are realized by finite element (FE) 
software ABAQUS. To determine the initial kink angle (θ0) of the crack via the maximum hoop stress criterion (Eq. (4.4)), we need to 
know the stress intensity factors (SIF). The SIF in the different curved configuration can be easily determined in a FE computation 
through the well-known interaction integral method, which separate and obtain KI and KII in the real field by establishing an auxiliary 
field at the crack tip (Stern et al., 1976). Since the stress, strain and displacement in linear elastic materials meet the superposition 
principle, the real field and auxiliary field can be superimposed into the J-integral formula: 

Js =

∫

Γ

1
2

(
σij + σaux

ij

)(
εij + εaux

ij

)
δ1inids −

∫

Γ

(
σij + σaux

ij

)(
ui,1 + uaux

i,1

)
njds = Jreal + Jaux + I, (D.1) 
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where Jreal and Jaux are the J-integral of real field and auxiliary field, I is the coupling term: 

I =
∫

Γ

1
2

(
σaux

ij εaux
ij + σaux

ij εij

)
δ1inids −

∫

Γ

(
σaux

ij uaux
i,1 + σaux

ij ui,1

)
njds. (D.2) 

In isotropic materials, the J-integral is related to strain energy release rate and stress intensity factor J = G = (K2
I + K2

II) /E. 
Similarly, the J integral of the real field and the auxiliary field is: 

JS =
1
E

[(
KI + Kaux

I

)2
+
(
KII + Kaux

II

)2
]
= Jreal + Jaux + I, (D.3)  

I =
2
E
(
KIKaux

I +KIIKaux
II

)
. (D.4) 

Substitute Kaux
I = 1, Kaux

II = 0 and Kaux
I = 0, Kaux

II = 1 into Eq. (D.2) and Eq. (D.4), through the calculation of two interaction in-
tegrals and we can get the stress intensity factor (KI and KII): 

KI =
E
2

I
(
Kaux

I = 1,Kaux
II = 0

)
, (D.5)  

KII =
E
2

I
(
Kaux

I = 0,Kaux
II = 1

)
. (D.6) 

These formulas can be integrated into the finite element software ABAQUS to determine KI and KII under different curvature and 
crack-tip distances. The finite element meshes of about 100, 000 shell elements with 4-nodes (S4R) are used, we refined the mesh near 
the crack tips to ensure the convergence and accuracy of the calculation (Fig. D1c and D1d). Finally, KI and KII were determined for 
over 6000 (d, L, κ) combinations. This allowed us to explore the relationship between the initial deflection angle of the crack pair and 
the initial crack-tip distances with different curvatures. 

In addition, to validate the accuracy of the stress intensity factor calculated by above methods, we constructed two calculated 
models to compare with theoretical results. As shown in Fig. D2a and D2b, we calculated the stress intensity factor of a circumferential 
through-wall curved crack with the angle 2αand arc length 2a in a cylindrical shell with the mean radius R, wall thickness t and length 
2L under tensile force P. Results in Fig. D2a show that the stress intensity factor calculated by our model are in good agreement with 
previous theoretical results (Forman et al., 1985). Meanwhile, we constructed a model to calculate the stress intensity factor for a lens 
crack in an infinitely extended plate subjected to equiaxial tension, and the detailed geometries can be seen in Fig. D2c and D2d. As 
shown in Fig. D2c, the stress intensity factors calculated by our numerical model are in good agreement with the analytical solutions 
(Cotterell and Rice, 1980; Gosz and Moran, 2002; Muskhelishvili, 1953). 

Besides, As shown in Fig. D3a, we have added a direct comparison between the theoretical results and the fully numerical ones 
(phase-field simulations). Under different curvatures, the values of initial deflection angles θ0 simulated by phase-field modeling 
(Section 3) are in good agreement with that calculated by theoretical results (Section 4.1). Therefore, above results prove the accuracy 
of stress intensity factors calculated by our model in this work. 

Furthermore, we calculated the ratio of stress intensity factors with different curvature κ under different vertical distances d and 
horizontal distances L. The results show the nonlinear relationships between the ratio of stress intensity factors KII /KI and the cur-
vature κ (Fig. D4). Further, by substituting these relationships into Eq. (4.4), we can calculate the initial deflection angles under 
different curvatures (Fig. 12), which reflects the shielding effects of the curvature on crack interactions. 
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