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ABSTRACT

Physics-informed neural networks (PINNs) are widely used to solve forward and inverse problems in fluid mechanics. However, the current
PINNs framework faces notable challenges when presented with problems that involve large spatiotemporal domains or high Reynolds
numbers, leading to hyper-parameter tuning difficulties and excessively long training times. To overcome these issues and enhance PINNs’
efficacy in solving inverse problems, this paper proposes a spatiotemporal parallel physics-informed neural networks (STPINNs) framework
that can be deployed simultaneously to multi-central processing units. The STPINNs framework is specially designed for the inverse prob-
lems of fluid mechanics by utilizing an overlapping domain decomposition strategy and incorporating Reynolds-averaged Navier–Stokes
equations, with eddy viscosity in the output layer of neural networks. The performance of the proposed STPINNs is evaluated on three tur-
bulent cases: the wake flow of a two-dimensional cylinder, homogeneous isotropic decaying turbulence, and the average wake flow of a
three-dimensional cylinder. All three turbulent flow cases are successfully reconstructed with sparse observations. The quantitative results
along with strong and weak scaling analyses demonstrate that STPINNs can accurately and efficiently solve turbulent flows with compara-
tively high Reynolds numbers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155087

I. INTRODUCTION

Physics-informed neural networks (PINNs) have gained signifi-
cant attention in scientific literature and research as a promising
method for solving partial differential equations (PDEs).1,2 Introduced
by Raissi in 2019,3 this method provides a framework to solve forward
and inverse problems involving nonlinear PDEs via the popular
machine learning framework named TensorFlow. PINNs offer a dis-
tinct approach to scientific machine learning by incorporating both
physical principles and data-driven information through automatic
differentiation.4 PINNs have been used in various fields such as heat
transfer,5,6 climate science,7,8 quantum physics,9,10 solid mechan-
ics,11,12 and fluid mechanics.13,14

In the field of fluid mechanics, extensive research has been con-
ducted in both forward and inverse problems.15–21 Forward problems
seek to solve fluid flows by providing correct initial and boundary con-
ditions, while inverse problems aim to derive unknown flow features
or undetermined parameters through abundant data or sparse data
with ill-posed condition. Despite various efforts to enhance the train-
ability of PINNs, such as adaptive weighting,22,23 adaptive sam-
pling,24,25 and adaptive activation functions,26,27 the prohibitively high
computational cost and the rather unpredictable solution precision
compared to traditional computational fluid dynamics (CFD)methods
make PINNs nomatch for finite difference and finite element methods
in terms of forward problems. Therefore, the primary strength of
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applying PINNs in fluid mechanics lies in the simplicity and flexi-
bility in solving inverse problems, such as identifying unknown
parameters,28 inferring flow field from scalar transportation,20

super-resolution,17,29 and flow field reconstruction.16,30,31

Focusing on the inverse problem of fluid mechanics, normal
PINNs might still suffer from the extremely long time spent on calcu-
lation and the inability to solve long-duration and large domain prob-
lems. To address this problem, the classic “divide and conquer” idea
originated from traditional numerical simulation was adopted by the
literature32,33 and developed PINNs with domain decomposition, aim-
ing to assign separate neural networks in different sub-domains and
provide parallelization capacity. Two popular decomposition frame-
works that resulted from this idea include conservative physics-
informed neural networks (cPINNs),34 which imposed flux and data
continuity conditions along sub-domain interfaces to decompose the
problem in space, and extended physics-informed neural networks
(XPINNs),35 which enable space–time domain decomposition for any
irregular, non-convex geometry through residual and data continuity
along interfaces. Parallel physics-informed neural networks36 were
also proposed, where a long-duration problem can be decomposed
into independent short-duration problems monitored by an inexpen-
sive coarse-grained (CG) solver. In addition to the normal form of
PINNs, domain decomposition was also seen in other variations of
solving PDEs. For instance, hp-variational physics-informed neural
networks (hp-VPINNs)37 combined deep neural networks and the
sub-domain Petrov–Galerkin method for solving partial differential
equations with a focus on domain decomposition. Local extreme
learning machines (locELM)38 also incorporated domain decomposi-
tion and demonstrated comparable or superior computational perfor-
mance when compared to the finite element method. However, the
fitting capacity of extreme learning machines is limited, and they are
not as effective as PINNs in solving Navier–Stokes (NS) equations.39

The above-mentioned frameworks all employed a non-overlapping
decomposition strategy, which could be improved by adopting an
overlapping strategy since the upper and lower boundaries usually pre-
sent a noticeably higher residual error.20

Apart from domain decomposition, other endeavors have been
undertaken to modify the loss function to enable physics-informed
neural networks (PINNs) to solve problems with higher Reynolds
numbers. For instance, Eivazi et al.40 inserted Reynolds-averaged
Navier–Stokes (RANS) equations into the loss function and success-
fully solved incompressible turbulent flows with PINNs. Xu et al.41

introduced an artificial viscosity term in the loss function, which
allows the neural network to learn the spatially distributed parameter
on its own. Pioch et al.42 compared the performance of different
RANS models on a backward-facing step flow problem. These studies
all suggest that better alternatives exist in selecting equations for solv-
ing fluid mechanics problems with PINNs, particularly for relatively
high Reynolds numbers.

In this paper, a spatiotemporal parallel PINNs framework, referred
to as STPINNs, is proposed to efficiently solve the problem of flow field
reconstruction from sparse observation. Unlike existing frameworks
that impose extra constraint on the sub-domain interfaces, the proposed
STPINNs only require data continuity condition, making it less compu-
tationally demanding. By introducing overlapping domain decomposi-
tion strategy and incorporating RANS equations, STPINNs have
demonstrated robustness and efficiency in solving two-dimensional

(2D) turbulent flow and average three-dimensional (3D) flow. The per-
formance of the proposed framework is evaluated quantitatively. In
addition, strong and weak scaling analyses are conducted to investigate
the parallel capability, which is similar to traditional parallel numerical
algorithms43,44 and pioneering work in PINNs.22

This article is organized as follows: Sec. II provides a detailed
description of the proposed STPINNs framework. In Sec. III, three tur-
bulent datasets used in this study are introduced. Section IV demon-
strates the application of STPINNs on three distinct problems, and
Sec. V concludes the paper with a brief summary and discussion.

II. METHODOLOGY
A. Physics-informed neural network

Physics-informed neural networks (PINNs) were first proposed
in the literature28,45 as a new alternative to traditional mesh-based
methods in solving PDEs. As shown in Fig. 1, by rewriting the NS
equations into residual form,

Rcontinuity ¼ ux þ vy; (1)

Rx ¼ ut þ uux þ vuy þ px � 1=Reðuxx þ uyyÞ; (2)

Ry ¼ vt þ uvx þ vvy þ py � 1=Reðvxx þ vyyÞ; (3)

the conservation laws can be imposed in a soft manner. Meanwhile,
PINNs reserve the traditional function to fit labeled data in the train-
ing set, making it able to switch swiftly and flexibly between forward
and inverse problems.

Given a neural network function ~uðx; t;wÞ, where w means the
undetermined weights and biases in the neural network, the optimiza-
tion goal of PINNs is to find w that minimizes the loss function

MSE ¼ MSEd þ kr �MSEr ; (4)

where the MSE stands for mean squared error and is given for each
term by

MSEd ¼ 1
Nd

XNd

i¼1

jj~uðxid; tid;wÞ � uidjj2; (5)

MSEr ¼ 1
Nr

XNr
i¼1

jjRð~uðxir ; tir ;wÞÞjj2; (6)

where kr is a tunable hyper-parameter that controls the weights of pre-
diction deviation and residual error. In recent research,23 kr can also
be a dynamic value that evolves with iterations to accelerate conver-
gence. In this paper, kr is set to 1 for simplicity. fxid; tid; uidgNd

i¼1 is the

training dataset with Nd data points, and fxir ; tirgNr
i¼1 is the residual set

with Nr collocation points. The subscripts d and r represent the data
points set and residual (collocation) points set, respectively. Rð~uðx; tÞÞ
is a vector consisting of Rcontinuity; Rx , and Ry . By minimizing both
the value of data derivation and residual error, PINNs can be made
possible not only fitting the real data in the training set but also pre-
dicting unknown information of the flow field under the guidance of
physical principles.

B. NS equations with eddy viscosity

PINNs have already demonstrated relatively stable performance
in solving laminar flow in recent literature.28,46,47 Nevertheless, a
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common question among researchers is whether PINNs can solve
fluid flow with higher Reynolds numbers. In the pioneering
works,40–42 various methods similar to engineering applications have
been explored in PINNs to train RANS equations instead of NS equa-
tions. The main issue in RANS is to model the Reynolds stress
sij ¼ �qu0iu0j , where ð�Þ denotes the Reynolds average or the spatial fil-
tering and u0i denotes the velocity fluctuation. While it is possible to
train PINNs with the original RANS equations without any specific
model or assumption for turbulence40 due to the special nature of
automatic differentiation, it is more promising to model Reynolds
stress using eddy viscosity �t [as shown in Eq. (7)] given a PINNs
framework, since it introduces only one spatial–temporal parameter
while preserving the ability to lower the level of difficulty for solving
the original NS equations. This approach is originally proposed by Xu
et al.41 in exploring missing flow dynamics and successfully validated
in both steady and unsteady cases

�u0iu0j ¼ �t
@ui
@xj

þ @uj
@xi

 !
: (7)

The neural network architecture for NS equations with eddy vis-
cosity is depicted in Fig. 2. By introducing the non-dimensional
parameter ��t in the output layer of the neural network, the optimal
distribution of eddy viscosity is automatically fitted during backward
propagation of the training process. While there are discernible differ-
ences in performance when using different RANS equations as the loss
functions in PINNs, depending on whether and how the Reynolds
stress is modeled, NS equations with eddy viscosity are simply referred
to as RANS equations in the following content for the sake of clarity
and reference, since only the original NS equations and NS equations
with eddy viscosity are compared in this paper.

C. Overlapping domain decomposition

To mitigate the use of extremely large neural networks for prob-
lems with a vast spatiotemporal domain, a practical approach is to par-
tition the overall domain X into several smaller sub-domains
XqðX ¼ [Nsub

q¼1XqÞ. Each sub-domain corresponds to a separate sub
neural network that represents the local solution ~uqðx; t;wqÞjðx; tÞ
2 Xq of the NS equations. To ensure connectivity between adjacent

FIG. 1. Physics-informed neural networks for solving incompressible NS equations. The loss function consists of both the prediction deviation and the residual error of the con-
servation equations. r denotes the activation function.

FIG. 2. Physics-informed neural networks for solving incompressible NS equations with artificial viscosity term. ��t denotes the non-dimensional spatiotemporal viscosity
parameter. r denotes the activation function.
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sub neural networks, additional constraints are required along the
interfaces. Determining the number of constraints is a trade-off; while
imposing more constraints can result in smoother, more continuous
solutions across neighboring domains, it can also increase the compu-
tational burden and potentially lead to the neural networks’ failure to
solve the local field. Therefore, in this study, only data continuity is
enforced on the interfaces. The loss function for the qth separate sub
neural network is given by

MSEq ¼ MSEdq þ krq �MSErq þ kIq �MSEIq ; (8)

where

MSEdq ¼
1
Ndq

XNdq

i¼1

jj~uqðxidq ; tidq ;wqÞ � udq
ijj2; (9)

MSErq ¼
1
Nrq

XNrq

i¼1

jjRð~uðxirq ; tirq ;wqÞÞjj2; (10)

MSEIq ¼
1
NIq

XNIq

i¼1

jj~uqðxiIq ; tiIq ;wqÞ � ~uqþðxiIq ; tiIq ;wqþÞjj2; (11)

where Ndq ; Nrq , and NIq denote the number of data points, collocation
points, and interface points on the qth sub-domain, respectively. qþ

means the neighboring sub neural networks of the qth neural network.
The subscripts dq, rq, and Iq represent data points set, residual (colloca-
tion) points set, and interface points set in the qth sub-domain,

respectively. Equation (11) indicates that only data continuity is
required on the interfaces.

For non-overlapping domain decomposition strategy, the data
exchange boundary (where interface conditions are imposed) is the
sub-domain boundary, as depicted in the left figure of Fig. 3. However,
PINNs have been shown to perform poorly on the domain boundary,
making it more sensible for sub-domains to exchange information
within their boundaries.48 Overlapping domain decomposition can be
implemented based on non-overlapping strategy by enlarging the orig-
inal sub-domain boundary while keeping the data exchange boundary
unchanged. Therefore, more reliable data can be exchanged between
sub neural networks without introducing additional communication
cost, as illustrated in the middle and right figures of Fig. 3.

To train PINNs with overlapping domain decomposition, Nsub

sub neural networks are deployed separately and simultaneously to
minimize the loss function in Eq. (8). After every epoch (all the
batches iterated for once), each sub neural network predicts the output
~uqðxiIq ; tiIq ;wqÞ on the NIq interface points and exchange the informa-
tion with neighboring sub neural networks to generate Eq. (11). The
specific parallel algorithm for training an overlapping decomposed
problem is presented in Algorithm 1. After proper training, the overall
solution of the flow field can be written as

~uðx; tÞ ¼
XNsub

q¼1

~uqðx; t;wqÞ �Pðx; tÞ; (12)

where

FIG. 3. Schematic diagram of overlapping domain decomposition. Left: typical non-overlapping domain decomposition, where data exchange boundary is exactly the sub-
domain boundary. Middle: extension of non-overlapping domain decomposition, where sub-domain boundary is larger than data exchange boundary. Right: overlapping domain
decomposition, where data exchange interface is within the boundary of each sub-domain. Data exchange boundary is where interface conditions are imposed and information
on different sub neural networks is communicated. Sub-domain boundary is the boundary of data points and collocation points for a certain sub neural network.
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Pðx; tÞ ¼
0 if ðx; tÞ 62 Xq ;

1=n if ðx; tÞ 2 \n
k¼1

Xk:

8<
: (13)

In this paper, unsteady 2D flows are considered, and the overall
dimension is three (x, y, t). Therefore, the possible values of n are
1; 2; 4; 8, meaning there are at most eight sub-domains overlapping
each other.

III. NUMERICAL DATASET USED FOR TRAINING
AND VALIDATION

In this paper, three turbulent flow cases were examined to evalu-
ate the performance of STPINNs in reconstructing flow fields, i.e., the
wake flow past a 2D circular cylinder, 2D decaying turbulence, and the

wake flow past a 3D circular cylinder. The data used in flow field
reconstruction are typically sparse in spatial domain due to the limita-
tions of existing measurement methods and instrument accuracy.
However, for high sampling frequency, the observed data can be dense
in temporal domain. Therefore, in this study, the flow data for all three
cases are sparsely distributed in space but densely distributed in time.

The wake flow past a 2D circular cylinder at Reynolds number
Re ¼ 3900 is simulated using the k� � model.49 The flow data u; v; p
from 25 sparsely distributed points covering a period of 42.9 s are used
as labeled training data, as shown in Fig. 4. The total number of data
points Nd is 2500, with 25 data points in each of the 100 snapshots.
The overall number of collocation points Nr is 480 000, which are sam-
pled using the Latin hypercube sampling (LHS) method in the entire
spatiotemporal domain.

ALGORITHM 1: Parallel algorithm for STPINNs.

Step 0: Prepare overall data points and collocation points

1 Data points: fuid; xid; tidgNd
i¼1

2 Collocation points: fxir ; tirgNr
i¼1

Step 1: Initialize MPI
3 comm ¼ MPI:COMM WORLD
4 size ¼ comm:Get sizeðÞ
5 rank ¼ comm:Get rankðÞ

Step 2: Specify local data points, collocation points, and interface points in each process
6 Divide the domain into Nsub ¼ size number of non-overlapping sub-domains Xq exchange

7 Enlarge the sub-domains Xq exchange by overlapping rate% and derive Nsub number of overlapping sub-domains Xq extend

8 Assign the process to specific sub-domain q¼ rank

9 Local data points: fuidq ; xidq ; tidqg
Ndq

i¼1, where fxidq ; tidqg
Ndq

i¼1 ¼ ffxid; tidgNd
i¼1 \ Xq extendg

10 Local collocation points: fxirq ; tirqg
Nrq

i¼1, where fxirq ; tirqg
Nrq

i¼1 ¼ ffxir ; tirg
Nrq

i¼1 \ Xq extendg
11 Local interface points: fxiIq ; tiIqg

NIq

i¼1, where fxiIq ; tiIqg
NIq

i¼1 2 @Xq exchange

12 for epoch inNepochs do

13 predict ~uqðxiIq ; tiIq ;wqÞNIq

i¼1

14 communicate: upward, downward, rightward, leftward, forward, and backward, derive ~uqþðxiIq ; tiIq ;wqþÞNIq

i¼1 from neighboring

processes

15 predict ~uqðxidq ; tidq ;wqÞNdq

i¼1

16 predict residual Rð~uðxirq ; tirq ;wqÞÞNrq

i¼1

17 compute MSEIq ¼ 1
NIq

XNIq

i¼1

jj~uqðxiIq ; tiIq ;wqÞ � ~uqþðxiIq ; tiIq ;wqþÞjj2

18 compute MSEdq ¼ 1
Ndq

XNdq

i¼1

jj~uðxidq ; tidq ;wqÞ � udq
ijj2

19 compute MSErq ¼ 1
Nrq

XNrq

i¼1

jjRð~uðxirq ; tirq ;wqÞÞjj2

20 compute MSEq ¼ MSEdq þ krq �MSErq þ kIq �MSEIq
21 optimize independently on each process
22 w�

q ¼ argminwq
ðMSEdq þ krq �MSErq þ kIq �MSEIqÞ

23 end
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The 2D decaying turbulence at Re ¼ 2000 is calculated using the
pseudo-spectral method50 with 512� 512 grids on a periodic domain
of x 2 ½0; 2p�; y 2 ½0; 2p�. As shown in Fig. 5, the central part of the
decaying turbulence is selected as the training and validation domain
in this paper. Within the range of x 2 ½0:50p; 1:50p�; y 2 ½0:50p;
1:50p�, a total of 25 points are chosen to provide sparse observation of
u; v; p. Similar to Fig. 4, 2500 pieces of data information (Nd¼ 2500)
are gathered from 100 snapshots, covering a period of 1.3 s. The over-
all number of collocation points Nr for this case is 320 000, which is
also sampled using the LHSmethod.

The original 3D flow past a circular cylinder at Re¼ 3900 is cal-
culated using large eddy simulation (LES),49,51 as shown in Fig. 6(a).
By averaging the wake flow along the span-wise direction, a 2D
unsteady flow can be obtained, as shown in Fig. 6(b). For this 3D

average turbulent flow, 49 points [shown in Fig. 6(b)] from 100 snap-
shots covering a period of 14.3 s are selected to provide sparse observa-
tion of uave; vave; pave. The overall number of data points Nd and
collocation pointsNr are 4900 and 1 000 000, respectively.

To verify the accuracy of the numerical simulations, Table I sum-
marizes the results for the flow around a cylinder observed in experi-
ment and given by numerical simulations at Re¼ 3900. Figure 7
presents the energy spectrum of the 2D decaying turbulence used in
this paper.

IV. RESULTS

In this section, the proposed STPINNs are used to solve the three
turbulent flow cases discussed earlier. Domain decomposition is car-
ried out along x, y, and t directions, as shown in Fig. 8. Research has
previously demonstrated that spatial domain decomposition has a
considerable impact on the precision of the final prediction,55 where
too many sub neural networks might result in insufficient labeled data
allocation to each neural network, making them prone to overfitting
and unable to identify the appropriate local solution. In the context of
reconstructing flow fields from sparse observations, the observed data
are usually too spatially few to be assigned to too many sub neural net-
works. Therefore, in this paper, only four sub-domains (2� 2, as
shown in Fig. 8) were spatially divided for all three cases. Nevertheless,
the observed data can be dense in time due to the high sampling fre-
quency of current measurement methods, thus domain decomposition
along time axis can also be relatively dense. The commonly used tanh
(x) function was chosen as the activation function for this study. To
efficiently train the sub neural networks and minimize hyper-
parameter tuning, the Adam optimizer56 was used in conjunction with
cosine annealing learning rate schedule.57 The specific learning rate
schedule adopted in this paper is shown in Fig. 9, which demonstrates
excellent performance in accelerating convergence47,49 by regularly
decaying and warm restarting learning rate. The STPINNs were
trained using multi-central processing units (CPUs): X86 7285.

FIG. 4. Training set for wake flow of 2D
cylinder. Left: stream-wise velocity u.
Middle: transverse velocity v. Right: pres-
sure p. 25 sparsely distributed data points
from 100 snapshots (only three snapshots
are plotted) covering a period of 43 s, and
480 000 collocation points sampled
through Latin Hypercube Sampling are
taken as a training set.

FIG. 5. 2D decaying turbulence. Left: vorticity. Right: stream-wise velocity u, trans-
verse velocity v, and pressure p. The rectangular area is the selected training and
validation domain in this paper. The gray points are where data of u; v; p are
sampled.
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A. Wake flow of 2D cylinder

For the wake flow past a 2D circular cylinder, 40 CPUs were
deployed to train 40 sub neural networks within the overall
non-dimensional spatiotemporal domain x 2 ½1:000; 5:000�; y
2 ½�2:000; 2:000�; and t 2 ½0:000; 42:937�. Each sub neural network
consisted of ten hidden layers, each with 50 neurons. The domain was
divided into four spatial (2� 2) and ten temporal divisions. The over-
lapping rate for sub-domains was 10%, meaning that the sub-domain
boundary was 10% larger than data exchange boundary along x, y, t
directions. The flow was reconstructed using the training set described
in Sec. III. The interface points were fNx ¼ 25;Ny ¼ 25;Nt ¼ 10g,
meaning that for each sub neural network, 625 pieces of information
were exchanged on the x – y interfaces, and 250 pieces of information

were exchanged on the x – t and y – t interfaces. For each sub neural
network, the localized numbers of data points Ndq , interface points
NIq , and collocation points Nrq were 99, 1125, and 12 000, respectively.

A comparison was conducted between using NS equations and
RANS equations, namely, STPINNs-NS and STPINNs-RANS. As can

FIG. 6. 3D flow past a circular cylinder at Re¼ 3900. (a) Stream-wise velocity uLES; (b) span-averaged value uave obtained from LES of the target wake region, and the scat-
tered black points are where data of span-averaged uave; vave; pave are sampled. (a) Original 3D wake and (b) span-averaged wake.

TABLE I. Drag coefficient and Strouhal number of flow around a cylinder.

Re case Cd St

3900 Exp. (Norberg, 1994)52 � � � 0.210
CFD 3D LES (Lysenko et al., 2012)53 0.970 0.209
CFD 2D k–e (Rahman et al., 2007)54 0.997 0.200

Present CFD case 2D k–e 0.922 0.208
Present CFD case 3D LES 0.954 0.208

FIG. 7. Energy spectrum of 2D decaying turbulence.

FIG. 8. Domain decomposition along x, y, and t directions. Only the data exchange
boundaries are shown for visualization. The graph demonstrates a spatiotemporal
domain divided into four spatial (2� 2) and three temporal divisions.

FIG. 9. Cosine annealing learning rate schedule, with warm restart.
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be seen in Fig. 10, the proposed STPINNs framework reconstructed
the original flow field and captured the vortex shedding pattern from
sparse observation of only 25 points. Figure 11 compares the time-
averaged velocity profiles sampled at x/D¼ 1.06, 1.54, and 2.02. In
addition, using RANS equations in the loss function resulted in better
outcomes than using the commonly used NS equations. Relative L2
norm was also introduced here to quantitatively compare the deviation

of the predicted flow field and the original flow field in the entire tem-
poral domain, as defined in the following equation:

RL2 ¼
jjÛ � U jj

jjU jj ; (14)

where jjÛ � U jj is the L2 norm of the prediction deviation of inter-
ested quantity {u, v, p} at a certain time and jjU jj denotes the L2 norm

FIG. 10. CFD benchmark flow field (first column, flow past 2D circular cylinder), predicted flow field using NS equations (second column) and RANS equations (third column),
and the pointwise error between the benchmark field and the predicted field using NS equations (fourth column) and RANS equations (fifth column) at a temporal snapshot
t¼ 17.78. (a) Stream-wise velocity u; (b) transverse velocity v; (c) pressure p.

FIG. 11. Time-averaged velocity profiles sampled at x/D¼ 1.06, 1.54, and 2.02 (flow past 2D circular cylinder). (a) Stream-wise velocity; (b) transverse velocity. For ease of
presentation, the velocity profiles at x/D¼ 1.54 and 2.02 have been shifted by certain values.
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of the original quantity at that time. As shown in Fig. 12, the predicted
flow field using RANS equations was more accurate than that of NS
equations. Through adding artificial viscosity term in the NS equa-
tions, the obtained average RL2 of u, v, and p was 0.018, 0.033, and
0.040, respectively, which were lower than 0.043, 0.096, and 0.119
obtained using NS equations.

A study on the strong and weak scaling capacity was also con-
ducted for STPINNs-RANS. For the strong scaling study, the problem
size was fixed, which was to reconstruct the flow field based on the
available 2500 pieces of labeled data over the period of 42.9 s. Due to
the extensive consumption of computational resources when calculat-
ing the residual of conservation equations, to fix the problem size, the
total number of collocation points Nr ¼

PNsub
q¼1 Nrq should be fixed as

well when exploring strong scaling capacity. Therefore, for strong scal-
ing study, the 2500 data points and 480 000 collocation points were
split across multi-CPUs. Furthermore, due to the random nature of
neural networks, it was also necessary to evaluate prediction accuracy
while conducting strong and weak scaling study, as the accuracy may
vary as the number of deployed sub neural networks changes, which is
notably different from traditional numerical methods. The results of
strong scaling capacity for this case are presented in Figs. 13(a)–13(c).
As shown in Fig. 13(a), the speedup line of strong scaling is close to the
ideal line whose slope is 1, and in some area, it even exceeds the ideal
line. This is due to the training procedure used in this paper, where the
labeled data for flow field reconstruction are so precious that after each
iteration\batch training, all the data points assigned to a sub neural net-
work would be trained once, making the training procedure more
demanding for serial training (or when the number of CPUs is small).
However, the speedup deteriorates as the number of CPUs is increased
beyond 32, when the percentage of communication time keeps rising, as
illustrated in Fig. 13(b). The prediction accuracy remains stable when
the number of CPUs is increased beyond 8, as shown in Fig. 13(c).

In terms of weak scaling, the problem size was enlarged as the
number of CPUs increased. Specifically, when four CPUs were
deployed, only 250 pieces of data information from ten snapshots
were used as labeled data to reconstruct the original flow field covering
a period of 4.3 s. Whereas when 40 CPUs were deployed, 2500 pieces
of data information from 100 snapshots were used to reconstruct the
43-s long unsteady flow field. For weak scaling, the problem size on
each separate sub neural network was the same, with Ndq ¼ 99,

NIq ¼ 1125, and Nrq ¼ 12 000. As shown in Fig. 13(d), the parallel
efficiency decreases as the number of devices increases, since the
communication time increases with the problem size, as shown in Fig.
13(e). The prediction accuracy remains almost the same as the number
of devices increases, as illustrated in Fig. 13(f).

B. 2D decaying turbulence

2D homogeneous isotropic decaying turbulence was also tested
here to further validate the performance of the proposed STPINNs.
Similar to the wake flow past a 2D circular cylinder, 40 CPUs were
deployed to train 40 sub neural networks within the range of
x 2 ½0:50p; 1:50p�; y 2 ½0:50p; 1:50p�; and t 2 ½19:637; 20:937�. The
spatial division was 4 and temporal division was 10, with an overlap-
ping rate of 10%. Each sub neural network had a size of ten hidden
layers and 50 neurons per hidden layer. The interface points were
fNx ¼ 25;Ny ¼ 25;Nt ¼ 10g, with 625 interface points on the x–y
interfaces and 250 interface points on the x–t and y–t interfaces. The
localized numbers of data points Ndq , interface points NIq , and colloca-
tion pointsNrq was 99, 1125, and 8000, respectively.

Figures 14 and 15 compare the performance between using NS
equations (STPINNs-NS) and RANS equations (STPINNs-RANS)
and demonstrate that by adding eddy viscosity in the output of the
neural network, STPINNs can get a better result using essentially the
same amount of computational resources. Figure 16 further gives a
detailed comparison of RL2 at each time snapshot. The results demon-
strate that the average RL2 values obtained using RANS equations were
lower than those obtained using NS equations. Specifically, the average
RL2 values for u, v, and p obtained using RANS equations were 0.120,
0.090, and 0.052, respectively, while those obtained using NS equations
were 0.150, 0.101, and 0.053.

Strong scaling and weak scaling capacity for this 2D fully turbu-
lent flow using RANS equations is demonstrated in Fig. 17. For strong
scaling, the problem size was fixed, and the overall 2500 pieces of
labeled data and 320 000 collocation points were spilt across multi-
CPUs. As can be seen in Fig. 17(a), the speedup achieved in this case is
even higher than that presented in Fig. 13(a). This is caused by the
more demanding feature of the training procedure for serial training
(or when the number of devices is small) when solving flow field
reconstruction problems, where labeled data are so precious that needs

FIG. 12. Relative L2 norm between the benchmark flow field (flow past 2D circular cylinder) and the predicted flow field using NS equations and RANS equations. (a) Stream-
wise velocity u; (b) transverse velocity v; (c) pressure p.
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to be trained after every iteration. Since the number of collocation
points in this case is lower than that in Sec. IVA, thus, the speedup
line is even higher, and the communication time represents a higher
percentage in this case, as shown in Fig. 17(b). However, the speedup
deteriorates as the number of CPUs reaches 40. Meanwhile, as shown
in Fig. 17(c), the prediction accuracy for different number of devices is
relatively stable, indicating that this 2D turbulent case is insensitive to
the number of collocation points assigned in each sub neural network
given the training setup used in this paper.

For weak scaling, the problem size on each separate sub neural
network was fixed, with Ndq ¼ 99; NIq ¼ 1125, and Nrq ¼ 8000.
Similar to Figs. 13(d) and 17(e), the parallel efficiency decreases, and
the communication scale increases as the number of devices increases,
as shown in Figs. 17(d) and 17(e). As for the prediction accuracy, a
noticeable downward trend is evident in Fig. 17(f) as the number of
devices increases, which is significantly different from the pattern
demonstrated in Fig. 13(f). This difference can be attributed to the dis-
tinctive flow characteristics of the wake flow past a circular cylinder
and decaying turbulence. The periodic vortex shedding pattern of
wake flow past a circular cylinder at Re¼ 3900 results in near-
constant prediction accuracy for different lengths of time (different
numbers of devices) given the reconstruction task, whereas for decay-
ing turbulence, the flow originates from an initial vorticity distribution

and developed due to viscous dissipation, resulting in flow characteris-
tics that are not entirely consistent across different time frames.
Therefore, as the number of devices increases, the problem size is
increased, and more information along the time axis is added, making
the training set more abundant and the prediction error lower.

C. Wake flow of 3D cylinder

To explore STPINNs’ potential for solving 3D turbulent flow, the
wake flow of 3D cylinder calculated using the LES method was studied
here. However, the current framework of STPINNs proposed in this
paper was designed to resolve 2D unsteady flow by deploying three-
dimensional (x, y, t) domain decomposition strategy. To efficiently
solve the inverse problem of 3D unsteady flow, a four-dimensional
(x; y; z; t) domain decomposition strategy will be needed, which is
part of our research goal for future work and beyond the scope of this
paper. However, by span-averaging the 3D unsteady flow, an average
2D flow can be derived and used to test the performance of STPINNs,
as introduced in Sec. III. Similar to previous cases, 40 CPUs were
deployed to train 40 sub neural networks within the range of
x 2 ½1:000; 5:000�; y 2 ½�2:000; 2:000�; t 2 ½0:000; 13:313�, with a
spatiotemporal subdivision of 4 and 10. The overlapping rate was
10%, and the size of each sub neural network was ten hidden layers

FIG. 13. Strong and weak scaling capacity of wake flow of the 2D cylinder. (a) Speedup of strong scaling; (b) runtime and communication time of strong scaling; (c) prediction
accuracy of strong scaling, represented by average RL2 ; (d) parallel efficiency of weak scaling; (e) runtime and communication time of weak scaling (f) prediction accuracy of
weak scaling, represented by average RL2 . The gray lines in (a) and (d) are the ideal speedup and parallel efficiency lines. Strong scaling: keep the problem size fixed, and
data points and collocation points are split across multi devices. Weak scaling: keep the problem size on each separate sub neural network fixed, and the overall problem size
is enlarged as the number of devices increases.
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with 50 neurons per hidden layer. The interface points were
fNx ¼ 25;Ny ¼ 25;Nt ¼ 10g, with 625 interface points on the x–y
interfaces and 250 interface points on the x–t and y–t interfaces. The
localize numbers of data points Ndq , interface points NIq , and colloca-
tion points Nrq were 176, 1125, and 25 000, respectively.

A comparative study was also conducted to evaluate the effective-
ness of STPINNs-NS and STPINNs-RANS. As can be seen in Figs. 18

and 19, utilizing three-dimensional domain decomposition strategy,
the vortex shedding pattern was accurately captured, and the average
flow field can be reconstructed with relatively high level of accuracy,
with RANS equations exhibiting marginally better performance than
NS equations. Specifically, the average RL2 values for u, v, and p
obtained using RANS equations were 0.049, 0.131, and 0.197, respec-
tively, which were slightly higher than those obtained using NS

FIG. 14. CFD benchmark flow field (first column, 2D decaying turbulence flow), predicted flow field using NS equations (second column) and RANS equations (third column),
and the pointwise error between the benchmark field and the predicted field using NS equations (fourth column) and RANS equations (fifth column) at a temporal snapshot
t¼ 20.157. (a) Stream-wise velocity u; (b) transverse velocity v; (c) pressure p.

FIG. 15. Time-averaged velocity profiles. (a) Stream-wise velocity sampled at x/2p¼ 0.5; (b) transverse velocity sampled at y/2p¼ 0.5.
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equations, which were 0.055, 0.145, and 0.236, as shown in Fig. 20.
While RANS equations do not exhibit overwhelming advantage com-
pared to commonly used NS equations in this case, the results still
illustrate the robust ability of the proposed STPINNs for solving
pseudo-3D turbulent flow.

V. CONCLUSION AND DISCUSSION

To summarize, we proposed a spatiotemporal parallel framework
of physics-informed neural networks (PINNs) that aimed to accurately
and efficiently solve inverse problems of fluid mechanics. The specific
inverse problem studied in this paper is the flow field reconstruction

FIG. 16. Relative L2 norm between benchmark flow field (2D decaying turbulence flow) and predicted flow field using NS equations and RANS equations. (a) Stream-wise
velocity u; (b) transverse velocity v; (c) pressure p.

FIG. 17. Strong and weak scaling capacity of 2D decaying turbulence. (a) Speedup of strong scaling; (b) runtime and communication time of strong scaling; (c) prediction
accuracy of strong scaling, represented by average RL2 ; (d) parallel efficiency of weak scaling; (e) runtime and communication time of weak scaling (f) prediction accuracy of
weak scaling, represented by average RL2 . The gray lines in (a) and (d) are the ideal speedup and parallel efficiency lines. Strong scaling: keep the problem size fixed, and
data points and collocation points are split across multi devices. Weak scaling: keep the problem size on each separate sub neural network fixed, and the overall problem size
is enlarged as the number of devices increases.
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from sparse observation. We successfully reconstructed the unsteady
flow of wake past a 2D cylinder and 2D decaying turbulence using
only 25 sparsely distributed points and captured the flow characteris-
tics of average wake flow past a 3D cylinder with relatively high accu-
racy using 49 points through the implementation of a 3D overlapping
domain decomposition strategy that only adopted the data continuity

interface condition. To suit the need for solving turbulent flow with
relatively high Reynolds number, eddy viscosity was incorporated in
the output of neural networks to model Reynolds stress of RANS
equations. Utilizing STPINNs framework, the average RL2 derived
from RANS equations was lower than those derived from NS equa-
tions in all three turbulent cases, which indicated that incorporating

FIG. 18. CFD benchmark flow field (first column, span-average wake flow past a 3D circular cylinder), predicted flow field using NS equations (second column) and RANS
equations (third column), and the pointwise error between the benchmark field and the predicted field using NS equations (fourth column) and RANS equations (fifth column)
at a temporal snapshot t¼ 20.157. (a) Stream-wise velocity u; (b) transverse velocity v; (c) pressure p.

FIG. 19. Time-averaged velocity profiles sampled at x/D¼ 1.06, 1.54, and 2.02 (span-average wake flow past a 3D circular cylinder). (a) Stream-wise velocity; (b) transverse
velocity. For ease of presentation, the velocity profiles at x/D¼ 1.54 and 2.02 have been shifted by certain values.
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RANS equations in the loss function can provide better performance
while using essentially the same amount of computational resources.
Moreover, strong scaling and weak scaling study of wake flow past 2D
cylinder and 2D decaying turbulence illustrated the parallel capacity of
the STPINNs framework. For strong scaling, STPINNs yielded satis-
factory speedup, which was close to the ideal line, and exhibited stable
prediction accuracy. For weak scaling, STPINNs presented parallel
efficiency of over 90% when the number of devices was less than 40
and exhibited relatively stable and reasonable prediction accuracy. The
results of the proposed STPINNs presented in this paper show encour-
aging insights that PINNs can be further adjusted and utilized to solve
turbulent flow by adopting traditional domain decomposition strategy
and Reynolds averaging strategy.

However, the current STPINNs framework is limited to pro-
viding three-dimensional overlapping domain decomposition
solely for 2D unsteady flows. To efficiently solve the inverse prob-
lem of 3D unsteady flows, a four-dimensional parallel architecture
will be needed, which is the next stage of our research goal and is
distinctively different from traditional domain decomposition
architecture. Meanwhile, inconsistent and uncontrollable predic-
tion accuracy among the sub neural networks is another major
challenge that needs to be tackled for the STPINNs framework to
be applied to more turbulent flows.
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