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Abstract
Efficient and accurate evaluation of capillary pressure and relative permeability of oil–water flow in tight sandstone with 
limited routinely obtainable parameters is a crucial problem in tight oil reservoir modeling and petroleum engineering. Due 
to the multiscale pore structure, there is complex nonlinear multiphase flow in tight sandstone. Additionally, wetting behavior 
caused by mineral components remarkably influences oil–water displacement in multiscale pores. All this makes predicting 
capillary pressure and relative permeability in tight sandstone extremely difficult. This paper proposes a physics-informed 
neural network, integrating five important physical models, the improved parallel genetic algorithm (PGA), and the neural 
network to simulate the two-phase capillary pressure and relative permeability of tight sandstone. To describe the nonlinear 
multiphase flow and the wettability behavior, five physical models, including the non-Darcy liquid flow rate formula, appar-
ent permeability (AP) formula, and contact angle-capillary pressure relationship, are coupled into the neural network to 
improve the prediction accuracy. In addition, the input parameters and the structure of the physics-informed neural network 
are simplified based on analyzing the change rule of the oil–water flow with the main controlling factors, which can also save 
training time and improve the accuracy of the neural network. To obtain the data for training the coupled neural network, the 
dataset of tight sandstone in Ordos Basin is constructed with experimentally measured data and various fluid flow properties 
as constraints. The test results demonstrate that the estimated capillary pressure and relative permeability from the physics-
informed neural network are in good agreement with the test ones. Finally, we have compared the physics-informed neural 
network with the quasi-static pore network model (QSPNM), dynamic pore network model (DPNM), and conventional 
artificial neural network (ANN). The calculation time of QSPNM and DPNM are hundreds of times longer than that of the 
physics-informed neural network. The coupled neural network has also performed much better than the conventional ANN. 
As the heterogeneity of pore spaces in tight sandstone increases, the advantages of the physics-informed neural network over 
ANN are more prominent. The prediction models generated in this study can estimate the capillary pressure and relative 
permeability based on only four routine parameters in a few seconds. Therefore, the physics-informed neural network in this 
paper can provide the potential parameters for large-scale reservoir simulation.
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List of symbols
A	� Cross-sectional area, m2

Df	� Surface fractal dimension, dimensionless
EPc	� Mean squared error of the capillary pressure, 

dimensionless
Eq	� Mean squared error of the relative permeabil-

ity, dimensionless
Fd	� Correction factor for wetting phase, 

dimensionless
G	� Shape factor, dimensionless
Iw	� Humidity index, dimensionless
Kom	� Apparent permeability, mD
kr,o	� The relative permeability of oil, dimensionless
kr,w	� The relative permeability of water, 

dimensionless
L	� Duct length, m
Lsd	� Dimensionless slip length, dimensionless
Ls	� The slip length, m
M	� Molar mass, Kg/Kmol
N	� Throats total number, dimensionless
P	� Perimeter, m
Pc	� Capillary pressure, psia
Qnanopore	� The flow rate in nanopores, m3/s
Qmicropore	� The flow rate in micropores, m3/s
qw
o,w

	� The fluxes of water in multiphase flow, m3

qo
o,w

	� The fluxes of oil in multiphase flow, m3

qw	� The fluxes of water in single-phase flow, m3

qo	� The fluxes of oil in single-phase flow, m3

R	� Gas constant, J/mol/K
r	� Inscribed radius, m
ri	� Radius of throat i , m
Sw	� Water saturation, dimensionless
S
′

w
	� The transformed water saturation, 

dimensionless
Smax,o	� The maximum oil saturation, dimensionless
T	� Experimental temperature, K
Vi	� The volume of pore i, m3

Vw,i	� The water volume in pore i, m3

∅f 	� Flowing porosity, dimensionless
σ	� Interfacial tension, N/m
θ	� Contact angle, degrees
�g	� Viscosity of the gas, Pa s
�l	� The viscosity of oil, Pa s
�	� Tortuosity, dimensionless
Δp	� Pressure drop, psia

Introduction

Tight sandstone oil is China’s most potential strategic 
replacement area for petroleum resources. Capillary pres-
sure and relative permeability, the most critical properties 
of tight sandstones, are extensively used to construct the 

model of oil migration in the tight sandstone reservoir (Blunt 
2017; Wang et al. 2022). Due to the large reservoir scale, 
the efficient and accurate assessment of capillary pressure 
and relative permeability for numerous reservoir rock sam-
ples with limited routine parameters is essential for reservoir 
classification, reservoir modeling, and productivity predic-
tion. However, the current estimation software of capillary 
pressures and relative permeability is only applicable to con-
ventional reservoirs, not unconventional tight reservoirs. The 
tight reservoirs are very inhomogeneous and have significant 
variations in porosity and permeability. Moreover, the tight 
sandstone usually has multiscale pores (including numerous 
nanopores and micropores), multiple fluid flow mechanisms 
(including non-Darcy and Darcy flow), and complex wetta-
bility. All this makes the conventional estimation method of 
capillary pressures and relative permeability unsuitable for 
tight sandstone (Xiao et al. 2017; Zhou et al. 2022). Thus, 
it is essentially necessary to develop a new two-phase flow 
prediction method for tight sandstone reservoirs.

The theoretical models for multiphase flow in rock have 
been researched for several years (Valvatne and Blunt 
2004). The three primary theoretical methods to simu-
late multiphase fluid flow in porous media are the direct 
numerical method, dynamic and quasi-static pore network 
models (PNM). The direct numerical method usually solves 
Navier–Stokes on a meshed 3D digital core of the porous 
media by traditional computational fluid dynamic algorithms 
(Ferrari and Lunati 2014). However, when simulating the 
multiphase flow in samples with multiscale pore space (such 
as tight sandstone and shale core), most direct methods are 
very time-consuming and have serious numerical instabil-
ity problems (Porter et al. 2009; Raeini et al. 2012). The 
dynamic and quasi-static pore network models simulate the 
multiphase fluid flow in a simplified pore network extracted 
from the actual 3D digital core of the porous media (Al-
Gharbi and Blunt 2005; Mehmani et al. 2013; Qin 2015). 
The dynamic pore network model can simulate the transient 
flow characteristics of the multiphase fluid in the network 
(Joekar-Niasar et al. 2010; Zhang et al. 2014; Gong et al. 
2021a, b). Its calculation cost is very high because it usu-
ally calculates the coupled fluid pressure field by solving 
mass conservation equations for all phases simultaneously 
throughout the pore network. Recently, an entirely new, cost-
effective, heavily parallelized, dynamic pore network mod-
eling framework has been developed to study the two-phase 
flow in rough-walled fractures (Gong et al. 2021a, 2021b). 
It dramatically improves the computational efficiency by 
using the 2D equivalent pore network of fracture and paral-
lel computing. However, the dynamic pore network model 
for tight sandstone with multiscale pore structures still needs 
much research. The computational efficiency of the quasi-
static pore network method is much higher than that of the 
dynamic one because it does not need to solve the pressure 
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field (Idowu and Blunt 2010; Zhao et al. 2010). However, the 
above theoretical models require the 3D structure and pore 
network of the rock sample to simulate capillary pressure 
and relative permeability accurately. It is well known that 
obtaining the 3D structures and pore networks of many tight 
sandstones in a tight oil reservoir is usually very difficult. 
Therefore, the theoretical models cannot be directly used 
to calculate numerous capillary pressure and relative per-
meability for reservoir modeling. It is worth making some 
efforts to develop new approaches to estimate the capillary 
pressure and relative permeability of two-phase flow using 
only some routine parameters (such as porosity, permeabil-
ity, wettability, etc.).

Over the past few decades, many scholars have researched 
the prediction methods for capillary pressure and relative 
permeability. Leverett proposed the J-Function method to 
calculate the capillary pressure curves that reflect the com-
plexity of the whole reservoir (Leverett 1941). J-Function 
averages the capillary pressure curve using some parameters 
(porosity, permeability, wettability, and interfacial tension). 
It is the most commonly used method in reservoir mode-
ling and applies to conventional homogeneous reservoirs. 
However, for the tight reservoir with significant variations 
in porosity and permeability, the J-Function values are dis-
persed and may lead to large errors. Burdine derived some 
equations to calculate the relative permeability from pore 
size distribution based on the fluid flow laws in porous media 
(Burdine 1953). The other prediction models have been pro-
posed to represent the relationship among capillary pressure, 
relative permeability, and petrophysical properties (porosity, 
permeability, wettability, etc.) (Jason et al. 2007; Standnes 
2009; Hou et al. 2012). However, the parameters in these 
prediction models need to be fitted for specific rock samples 
and fluids, which limits the application range and compu-
tational accuracy of these models. The significant advance-
ments in machine learning methods offer a different and 
more efficient way of predicting capillary pressure and rela-
tive permeability in porous media (Golsanami et al. 2015; 
Xiao et al. 2016; You et al. 2018; Arigbe et al. 2019). You 
et al. (2018) utilized the artificial neural network and particle 
swarm optimization method to calculate the capillary pres-
sure curves for rocks in both homogenous and heterogeneous 
reservoirs. The results demonstrate that the PSO-BP net-
work exhibits higher accuracy than the J-Function method. 
However, only capillary pressure curves of mercury injec-
tion have been considered, and the oil–water flow is much 
more complex than mercury injection. A prediction model 
of capillary pressure and relative permeability for two-phase 
flow in sandstone has been constructed based on the capil-
lary tube model and neural network (Liu et al. 2019). Note 
that the capillary tubes are too simple to describe the two-
phase flow in tight sandstone, so the prediction model still 
needs to be improved. The pore network model (PNM) and 

computational fluid dynamics (CFD) have been used to con-
struct the training data, and then the machine learning meth-
ods are trained based on the dataset to predict the two-phase 
flow in porous media (Rabbani et al. 2020; Zhao et al. 2020; 
Zeinedini et al. 2022). This approach provides an idea for us 
to improve the accuracy of the prediction models. Recently, 
Yoga et al. (2022) developed a physics-informed data-driven 
approach to predict the relative permeability based on ANN, 
using physical limits within specific space as constraint 
conditions. The results showed that physical limits could 
improve predictability outside the region of measured data. 
However, the relative permeability was predicted as a func-
tion of phase saturation and phase connectivity, and other 
important parameters such as wettability, pore structure, and 
capillary number were maintained constant. This assump-
tion is too idealistic and affects the applicability range of the 
prediction model. All the above studies focus on homogene-
ous porous media with relatively simple properties, and the 
two-phase fluid flow in tight sandstone is more complicated 
than in conventional sandstone. Also, most current perdition 
models based on machine learning methods only rely on 
correlations and lack a rigorous physical basis. In conclu-
sion, the rapid prediction of capillary pressure and relative 
permeability for two-phase fluid flow in tight sandstone is 
still an immature research field and needs more research.

This paper introduces a physics-informed neural network 
to simulate the capillary pressure and relative permeability 
curves in tight sandstone. The paper is organized as follows. 
The physics-informed neural network, which combines neu-
ral networks, the improved parallel genetic algorithm (PGA) 
and physical models, is described in detail. Then through 
analyzing actual rock samples in the Ordos Basin of China, 
a tight sandstone dataset including a variety of petrophysical 
and fluid flow characteristics is constructed, which can pro-
vide adequate data for training the physics-informed neural 
network. Then, the prediction model of capillary pressure 
and relative permeability curves in tight sandstone has been 
established based on the dataset and the physics-informed 
neural network. Finally, the prediction model is validated 
and some important results are summarized.

Methodology

In this section, we will describe the physics-informed 
neural network that we use to predict the capillary pres-
sure and relative permeability curves of oil–water flow in 
tight sandstone. The structure of the physics-informed neu-
ral network is shown in Fig. 1. Due to the existence of the 
multiscale pore structure and complex mineral component, 
nonlinear multiphase flow and wetting behavior exist in tight 
sandstone, and the estimation of the capillary pressure and 
relative permeability is very complicated. Fortunately, the 
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physics that govern the nonlinear flow in tight sandstone 
have been studied and understood. Thus, physical models 
can be combined with the neural network to help us to build 
the physics-informed prediction model. Note that the genetic 
algorithm (GA) is one of the most successful optimization 
algorithms that can deal with highly nonlinear problems. 
But the learning rate of the traditional GA is slow. Consider-
ing that the parallel algorithm can improve computational 
efficiency and the oil–water flow in tight sandstone is com-
plex, the PGA is combined with the rock typing method to 
enhance the precision of the prediction model.

Figure 1 shows that the physics-informed neural network 
includes five machine learning structures: the input layers, 
the physical layers, the fully connected neural networks, the 
transformation layers, and the output layers. The task of the 

physics-informed neural network is to map the input param-
eters and the capillary pressure (relative permeability) of 
the oil–water flow. In the following, we will describe the 
physics-informed neural network in detail.

In the input layer of the physics-informed neural net-
work, input parameters are required. From the analysis in 
Appendix, we know that the main controlling factors of the 
oil–water flow in tight sandstone are the pore size distribu-
tion, tortuosity, contact angle, wettability index, oil–water 
interfacial tension, and slip length. The input parameters 
should be derived from them. The tortuosity, contact angle, 
and wettability index of the rock samples are not routine 
parameters and difficult to obtain. However, they can be 
derived indirectly from routine parameters (porosity, per-
meability, mineral composition) based on physical models. 

Fig. 1   The structure of the physics-informed neural network (The 
green circles are the input parameters of the physics-informed neural 
network. The red circles are the neurons of the physical layers. The 
yellow circles are the neurons of the hidden layers. The brown circles 
are the output of Pc, and they are also part of the input for the training 

of the relative permeability. The purple circles are the output of water 
and oil fluxes, and the light blue circles are the output of Smax,o. The 
sky-blue circles are the neurons of the transformation layers. The pink 
circles are the output of the relative permeability.)
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Thus, the required input parameters can be simplified to the 
pore size distribution, porosity, permeability, and mineral 
composition.

The physical models for the neutral network

As shown in Fig. 1, we combine the neural network with 
physical models by adding the physical and transformed lay-
ers in the neural network.

The first physical model is the gas apparent permeability 
formula for tight sandstone. As mentioned above, tortuosity 
is the main controlling factor, but it is not easily available. 
Fortunately, it can be derived indirectly from porosity and 
gas apparent permeability based on the gas apparent per-
meability formula. Due to the strong nonlinear gas flow at 
low pressure, we use the gas apparent permeability formula 
accounting for slip flow and Knudsen diffusion developed 
by Jiang to derive the tortuosity (Jiang et al. 2017). And 
the tortuosity derived from the gas apparent permeability 
formula is as follows

where ri,Kom,Df  are the i th pore radius, the gas apparent 
permeability, and the surface fractal dimension of the pore. 
N, ∅f  refer to the total pore number and the flowing porosity. 
M is the molar mass. �g is gas viscosity. T is the temperature 
of the experiment. R is the gas constant. The pore network 
analysis of the actual tight sandstone samples shows that 
the values of Df  are between 2.1–2.6 (as shown in the figure 
below), and most of them are 2.4 (Jiang et al. 2017), so DF is 
assumed to be 2.4 in our study. This physical model is added 
in Physical Layer 1 in the physics-informed neural network.

The second physical model is related to capillary pressure 
and wettability. Many studies have shown that capillary pres-
sure is mainly determined by interfacial tension, wettability, 
and pore size. Usually, they satisfy the following relationship

where Pc is capillary pressure. r and σ refer to the inscribed 
radius and the oil–water interfacial tension, respectively. � 
represents the oil–water contact angle. Many studies have 
shown that the contact angle and wettability index strongly 
correlate with mineral composition (Wang et al. 2022; Wu 
et al. 2022). Generally, one mineral corresponds to one 
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contact angle (wettability property). As a result, the min-
eral that has the most proportion on a pore wall will provide 
its mineral property on this pore. In this way, each pore will 
receive one mineral characteristic. After analyzing the rock 
samples of tight sandstone in Ordos Basin, we find that the 
tight sandstone usually consists of several mineral grains, 
such as quartz, clay, dolomite, calcite, and feldspar. The 
wettability property (contact angle) for each mineral can be 
measured by experiment. The oil–water interfacial tension 
is mainly determined by the properties of the fluid in pores 
and can also be measured by the experiment. Thus, when 
we get the pore size distribution and the mineral composi-
tion from the input layer, we can use Eq. 2 to determine the 
capillary pressure preliminarily. This physical model is used 
in Physical Layer 1 in the physics-informed neural network.

The third physical model is the transformed formula of 
the maximum oil saturation. Because of the corner, mixed 
wet, and water-blocking influence, the water cannot be com-
pletely replaced by oil in the pore network. We define the 
maximum oil saturation at the end of the oil–water flow as 
Smax,o . And Smax,o is used to transform the oil (water) satura-
tion to 1.0 (0.0) for the convenience of the prediction of the 
capillary pressure. The transformed formula is as follows:

where Sw and Sw′ is the actual and transformed water satura-
tion. This physical model is also used in Physical Layer 1 in 
the physics-informed neural network.

The fourth physical model is the flow rate formula for 
different pores in tight sandstone. Generally, there are many 
nanopores in the tight sandstone with a multiscale pore 
space. Afsharpoor and Javadpour have proved that the liq-
uid slip effect in nanopores cannot be neglected (Afsharpoor 
and Javadpour 2016). At the same time, there is only linear 
fluid flow in micropores. Therefore, when predicting rela-
tive permeability in tight sandstone, the flow rate calculation 
in nanopores and micropores should be different. The flow 
rate formulas in nanopores and micropores can be written 
as follows

where Qnanopore and Qmicropore are the flow rate in nanopores 
and micropores. The coefficients a–f are six fitting constants 
in the reference (Afsharpoor and Javadpour 2016). A is the 
cross-sectional area. P refers to the perimeter, Δp is the pres-
sure drop, and L is the duct length. �l is the viscosity of oil. 
G is the dimensionless shape factor. Lsd is dimensionless slip 
length and can be calculated as follows

(3)S�
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where Ls represents the slip length. It should be noted that 
vast experiments and molecular dynamics simulations have 
shown that the slip length is generally from nanometers to 
tens of nanometers. We assume the slip length is 10 nm in 
the physics-informed neutral network. This physical model 
is used in Physical Layer 2 in the physics-informed neural 
network.

The fifth physical model is added in the transformation 
layer, which processes the output from the training pro-
cess to obtain the relative permeability for different water 
saturation. This process consists of two steps: one step 
is the inverse transform of the water saturation. We have 
transformed the water saturation to 1.0 in the above physi-
cal layer. Thus in this step, the water saturation is inversely 
transformed by the maximum oil saturation obtained from 
the output result, as shown in Eq. 6. The other step is to 
inversely transform the relative permeability, as shown in 
Eq. 7.

where the range of Sw′ is from 0 to 1.
In sum, five physical models are coupled into the neu-

ral network by adding physical and transformed layers. 
These physical models can help us describe the complex 

(5)Lsd =
Ls√
A

(6)Sw = 1 −
(
1 − S�

w

)
∗ Smax,o

(7)kr,o =
qo
o,w

qo

multiphase flow in tight sandstone and improve the accu-
racy of the neural network.

The algorithm for the physics‑informed neural 
network

After demonstrating the structure of the physics-informed 
neural network, we will illustrate the algorithm for solving 
the weights and the threshold of the physics-informed neu-
ral network. The weights and the threshold in the physics-
informed neural network can be obtained by the improved 
parallel genetic algorithm (PGA) and the back propagation 
algorithm (Fig. 2).

In the first step, the input parameters are input, and then, 
the topology of the physics-informed neural network is 
determined. In the second step, the input parameters are 
processed by the physical models 1–3, and the outputs of 
the physical layer are obtained.

In the third step, the weights and the threshold in the 
physics-informed neural network can be initialed randomly 
and optimized by the improved parallel genetic algorithm 
(PGA). First, the training data can be classified into several 
subpopulations based on the tight sandstone typing method 
(Ji et al. 2022). Each subpopulation has one type of tight 
sandstone, and different type of tight sandstone has differ-
ent pore structure and multiphase fluid flow characteristics. 
Thus, this can help us increase the diversity of the multiple 
processing. Then, diversity is essential for the PGA to search 
for the optimal global solution. Controlling the diversity of 
the population is a critical way to improve the performance 
of the improved PGA. In each subpopulation, we increase 

Fig. 2   The algorithm flowchart for the physics-informed neural network
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the randomness of the initial value to avoid falling into the 
local optimal solution. The stronger the randomness, the less 
likely it is to fall into the local optimal solution. We judge 
each initial value and evaluate its similarity with other initial 
values. If the similarity is strong, discard and regenerate 
a new initial value. The similarity of each initial value is 
calculated as follows

where r
(
xi
)
 is the similarity index, and xi ( xj ) is the ith (jth) 

initial value in the subpopulation. d
(
xi, xj

)
 is the distance 

between xi and xj . � is the threshold of the distance, and 
S
(
xi, xj

)
 is the similarity of xi and xj . Then, the selection, 

crossover, and mutation process work in each subpopulation 
independently. After a period of generation, we choose the 
chromosomes in each subpopulation whose fitness is high 
and exchange the chromosomes with each other. The sub-
population receives excellent individuals from other sub-
populations, compares their fitness, replaces the individuals 
with low fitness, and then forms a new subpopulation. The 
new subpopulation continues to evolve and migrate until 
the criteria are reached, as shown in Fig. 2. Finally, we can 
obtain the optimized weights and the threshold in the phys-
ics-informed neural network.

In the fourth step, the back propagation algorithm is uti-
lized to minimize the generated error and determine the 
final values of the weights and the threshold for the physics-
informed neural network. In the training process, the weights 
are updated in each training iteration using the error gener-
ated by the output results of the capillary pressure curve and 
relative permeability. The training iteration continues until 
the generated error is smaller than the threshold, as shown in 
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(
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)
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S
(
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)
, S
(
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)
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{
1d

(
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(
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i
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j

)2

Fig. 2. It should be pointed out that the fourth physical model 
is inserted into the neural network after the capillary pressure 
is obtained. The mean squared error (MSE) is a loss function 
to evaluate the estimate. The MSE for the capillary pressure 
( EPc ) and relative permeability ( Eq ) are calculated as follows:

where Pcin is the actual output, and Pcout is the predicted 
value. qinand Smax,o,in are the actual output values. qout and 
Smax,o,out are the predicted values.

Finally, we can estimate the capillary pressure and rela-
tive permeability curve of oil–water flow in tight sandstone 
by the predicting model generated by the physics-informed 
neural network. The process can be summarized as follows 
(Fig. 3). First, four routinely acquired parameters, including 
the pore size distribution, porosity, permeability, and mineral 
composition, are input into the prediction model. It should 
be noted that these routine parameters can be measured by 
library experiments (mercury injection, nuclear magnetic 
resonance, helium porosity, pulse-decay permeability, and 
X-ray powder diffraction experiment) or by logging data 
and logging interpretation methods (Shi et al. 2019; Zhang 
et al. 2020, 2021). Then, the capillary pressure and rela-
tive permeability of oil–water flow in tight sandstone can 
be obtained through the prediction model.

Results and discussion

As mentioned earlier, the primary purpose of the physics-
informed neural network is to establish a mapping between 
routine parameters and their capillary pressures (relative 
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Fig. 3   Schematic representation of predicting the capillary pressure and relative permeability curve
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permeability). We should first generate a dataset to train the 
physics-informed neural network to do so.

Dataset constructing

It is well known that high-quality datasets will positively 
impact the accuracy and efficiency of neural networks. Thus 
before constructing the physics-informed neural network, 
we should first prepare the dataset. The dataset should 
have the following characteristics: first, it should involve 
diverse information on the tight sandstones. The information 
includes the size and shape of pores and throats, the connec-
tivity of the pore space, the mineral composition, etc. Sec-
ond, the fluid flow properties should also be included in the 
dataset. Correspondingly, there are two steps to constructing 
the dataset. In the first step, we generate various random 
pore networks of tight sandstones based on the classical sto-
chastic network algorithm to prepare the dataset (Idowu and 
blunt 2010). Although the digital cores and 3D pore struc-
tures of samples can be observed through high-resolution 
images, the 3D images for tight sandstones with multiscale 
pore structures cannot be easily obtained. Furthermore, 
reconstructing 3D digital cores based on high-resolution 
imaging techniques is time-consuming and expensive. Thus 
in this study, we use random pore networks to characterize 
the pore space in tight sandstone. The petrophysical proper-
ties of tight sandstone have been investigated by analyzing 
the actual rock samples in the reservoir of Ordos Basin, NW 
China. The pore size distribution, porosity, and mineral com-
position of the rock samples are measured by high-pressure 
mercury injection, helium porosimeter, and X-ray powder 
diffraction measurement. The distribution features of the 
porosity and pore size are illustrated in Fig. 4. The result 
indicates that most of the samples have porosity below 10%. 
The pore size distribution of different rock samples varies 
greatly. Especially most samples are dominated by nanopo-
res, and several samples are dominated by micropores. In 
addition, the diversity of element (pores and throats) shapes 
and the tortuosity of pore space are also investigated (see 
Fig. 4). In the next step, the fluid flow properties of the rock 
samples are analyzed. The permeability of actual rock sam-
ples in the reservoir is measured by a pulse-decay permeabil-
ity instrument, and the result is shown in Fig. 4. Then, we 
consider the wide variation of the contact angle distribution, 
interfacial tension, and wettability. All the above petrophysi-
cal parameters and fluid flow parameters are taken as con-
straints to construct many random pore networks based on 
the stochastic network algorithm, as shown in Fig. 4 (Idowu 
and Blunt 2010). Then, the capillary pressure and relative 
permeability are simulated based on the above random pore 
networks and the QSPNM, as shown in Fig. 4. It should 

be emphasized that the closed-form generalized fluid flow 
equation accounting for the slip effect has been used to study 
the oil–water flow in nanopores (Afsharpoor and Javadpour 
2016). The above steps can ensure that the constructed data-
set characterizes the actual oil–water flow in the tight reser-
voir of the Ordos Basin. Finally, we can obtain a dataset with 
both various petrophysical and two-phase fluid flow charac-
teristics of tight sandstone. In this study, 10,000 groups of 
data are established, and they will be used for training and 
testing the physics-informed neural network.

Validation

This study uses 90% of the data in the constructed dataset 
and is used to train the physics-informed neural network. 
To make the training dataset as useful as possible for the 
physics-informed neural network, we should ensure that the 
selected data is diverse while sampling the training data from 
the dataset. The unselected data is used for testing the accu-
racy of the physics-informed neural network. In addition, 
the k-fold cross-validation scheme has been implemented 
to examine the performance of the physics-informed neural 
network and find the optimal hidden layer structure parame-
ters. In our study, ten folds are used, as shown in Fig. 5. Dur-
ing this process, the data in the training set is further divided 
evenly into ten subsamples. It should be emphasized that the 
data in each fold is selected randomly from the training data. 
We can see from Fig. 5b that the data in each fold is evenly 
distributed. The nine folds are used to train the model and 
the rest serve as verification data. This step repeats ten times, 
and then the averaged correlation coefficient of the ten steps 
is calculated to investigate the precision of the model. After 
comparing the accuracy of models with different structural 
parameters, we finally determine the optimal hidden layer 
structure parameters of the physics-informed neural network. 
The averaged correlation coefficients of 10 runs for the final 
model are listed in Table 1. The final model produces the 
best correlation coefficient of the predicted and test capillary 
pressure (oil–water relative permeability) is 0.98.

Then, we use the test data to examine the performance of 
the final prediction model. Figure 6 demonstrates that there 
is an accurate correlation between the simulated and test 
(actual) capillary pressure under different water saturations. 
To further examine the performance of the physics-informed 
neural network, we use two different samples, which repre-
sent different morphologies and wide ranges of the pore-
throat size distribution, to test the physics-informed neural 
network. Figure 7 compares the predicted results with the 
corresponding test ones. It can be found that the predicted 
capillary pressure curves agree very well with the test ones.
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Fig. 4   The dataset for the physics-informed neural network (a), the workflow for generating the training data in the dataset for the physics-
informed neural network (b)
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Like the capillary pressure, Fig. 8 depicts the estimated 
relative permeability of the final model and the test data 
under different water saturations. An accurate correlation 
exists between the simulated and test (actual) relative per-
meability. To further examine the accuracy of the physics-
informed neural network, the relative permeability curves 
of the two different tight sandstone samples are plotted in 
Fig. 9. The result indicates that the physics-informed neural 
network provides acceptable results for the oil–water relative 
permeability prediction.

Fig. 5   The k-fold cross-validation method for the physics-informed neural network (a), the capillary pressure curves of the training data in 
D1-D10 (b)

Table 1   The list of the correlation coefficients for the final network 
structure. The correlation coefficients include the average R2 of 10 
runs, the best train, and validation R2

Network 
models

tenfold Avg.R2 Best train R2 Best validation R2

Pc 0.9721 0.9903 0.9840
K 0.9510 0.9815 0.9763
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Discussion

To further examine the performance of the physics-informed 
neural network, we compared it with the traditional pore 
network model (PNM) and the conventional ANN method, 
respectively.

First, two tight sandstone samples with different pore size 
distributions are chosen. Note that the experimental relative 
permeability of these samples has been published before 
(Zeng et al. 2020). Figure 10 compares the relative perme-
ability curves calculated by the physics-informed neural net-
work, the quasi-static pore network model (QSPNM), and 
the dynamic pore network model (DPNM) with the experi-
ment results. We can find from the figure that the accuracy 
of the physics-informed neural network is slightly lower than 
that of the two pore network models. Furthermore, Table 2 
lists the average absolute errors and calculation time of the 

three methods. It can be seen that DPNM has the highest 
accuracy, but it takes a vast amount of time. Moreover, 
DPNM requires a high-precision 3D image and pore network 
as input data. The accuracy of QSPNM is similar to DPNM, 
and its calculation time is shorter than DPNM and longer 
than the physics-informed neural network. Although the cal-
culation time of QSPNM seems short for one rock sample, 
it should be emphasized that our purpose is to predict many 
rock samples throughout the reservoir. So we further inves-
tigate the calculation time for a large number of samples. 
Table 3 and Fig. 11 give the calculation time and the rela-
tive speedup comparison between QSPNM and the physics-
informed neural network introduced in this study. The results 
illustrate that the speedup factor increases approximately 
linearly with the incensement in the number of samples. In 
particular, when the number of samples is 1000, the QSPNM 
calculation will take 12,651 times longer than that of the 

Fig. 6   Comparison of estimated capillary pressure and test ones

Fig. 7   Comparison of estimated 
capillary pressure curves and 
actual values for two tight sand-
stone samples

Fig. 8   Comparison of the estimated relative permeability and test val-
ues
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physics-informed neural network prediction. Moreover, 
similar to DPNM, QSPNM requires a high-precision 3D 
image and pore network as input data. In contrast, the abso-
lute error of the physics-informed neural network is slightly 

Fig. 9   Comparison of estimated 
relative permeability curves 
and actual values for two tight 
sandstone samples

Fig. 10   The relative perme-
ability curves for the physics-
informed neural network predic-
tions compared to the pore 
network model for two tight 
sandstone samples: samples 
1 (a) and samples 2 (b). The 
published experimental meas-
urement data is plotted here to 
evaluate the prediction results 
(Zeng et al 2020)

Table 2   The absolute error and computing time for the physics-
informed neural network, QSPNM, and DPNM

Sample 1 Sample 2

Absolute error Calculation 
time (s)

Absolute error Calculation 
time (s)

Physics-informed 
neural network

6.97E-2 1 9.13E-2 1

QSPNM 4.60E-2 106 5.81E-2 132
DPNM 3.10E-2 3863 5.60E-2 4551

Table 3   The comparison for the QSPNM speed and the physics-
informed neural network prediction speed

Number of 
samples

Calculation time of 
PNM (s)

Prediction time of the 
physics-informed neural 
network (s)

50 5921 1
100 12,653 2
200 21,831 3
500 51,782 6
700 73,512 7
1000 113,857 9

Fig. 11   Speedup results for the physics-informed neural network 
compared to QSPNM
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bigger than that of DPNM and QSPNM, but it is still within 
the acceptable range. In particular, the physics-informed 
neural network takes only seconds and four input parameters 
to predict the relative permeability curves. Therefore, the 
physics-informed neural network is more suitable for pre-
dicting relative permeability curves for reservoir modeling.

In the following, we will further investigate the differ-
ence in performance between the conventional ANN. The 
computation time of the physics-informed neural network 
proposed in our manuscript and ANN are almost the same, 
and thus, we focus on the precision difference between the 
two methods. It should be noted that the traditional ANN 
and the physics-informed neural network have the same 
number of hidden layers and neurons.

Berea sandstone and a tight sandstone rock sample are 
chosen (Oak 1990; Zeng et al. 2020). Figure 12 shows the 
prediction results of the relative permeability curves calcu-
lated by the conventional ANN and the physics-informed 
neural network. We can find from the figure that the rela-
tive error for conventional ANN is bigger than that of the 
physics-informed neural network.

Then, we quantitatively examine the change rule of the 
difference between the conventional ANN and the physics-
informed neural network. We have selected thirty differ-
ent samples in the dataset. The variance-mean ratio of the 
pore size distribution is denoted as Vr, and it can reflect 
the heterogeneity of the tight sandstone. Furthermore, the 
ratio of the relative error between the conventional ANN 
and the physics-informed neural network is denoted as � . 
The absolute errors of the physics-informed neural network 
and the ANN are shown in Fig. 13a. It can be deduced that 
the absolute error of the conventional ANN increases with 
Vr. Furthermore, � is plotted versus Vr for several tight sand-
stone samples, as shown in Fig. 13b. It can be seen from the 
figure that the difference in the performance in predicting the 

Fig. 12   The relative perme-
ability curves for the physics-
informed neural network predic-
tions compared to conventional 
neural network for two samples: 
Berea (a), tight sandstone (b). 
The published experimental 
measurement data is plotted 
here to evaluate the prediction 
results (Oak 1990; Zeng et al. 
2020)

Fig. 13   Absolute errors of the physics-informed neural network and 
the ANN (a), relationship between � and Vr (b)
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relative permeability curves between the conventional ANN 
and the physics-informed neural network increases as Vr 
increases. The red line in Fig. 13 can be obtained by fitting 
the points (black squares). The results confirm that � is small 
and increase slowly as Vr is small (< 0.5). Then, when Vr is 
bigger than 0.5, � increases rapidly with the heterogeneity 
of the sample. This is because the nonlinear flow in tight 
sandstone becomes more complex as the heterogeneity of the 
samples increases. However, the conventional ANN is insuf-
ficient to deal with nonlinear problems. Therefore, we can 
deduce that the physics-informed neural network performs 
better than the conventional neural network, especially for 
heterogeneous tight sandstones.

It should be emphasized that the prediction model in this 
study is constructed for tight sandstone in Ordos Basin. It 
may not be suitable for other types of rock samples, such as 
carbonate rocks and shale rocks. Similar to the tight sand-
stone discussed in our work, the physics-informed neural 
network can be further extended to other rocks by introduc-
ing more physical models and training data according to the 
structural and two-phase flow characteristics of other rocks.

Conclusions

In this study, we developed a novel physics-informed neural 
network to improve the prediction of the capillary pressure 
and relative permeability of tight sandstone. Some important 
conclusions can be summarized as follows:

1.	 Five important physical models, including the gas appar-
ent permeability formula, capillary pressure formula, 
normalized water saturation, and flow rate formula for 
multiscale pores, are extracted and added into the neu-
ral network to improve the accuracy of the prediction 
model. The results demonstrate that these physical mod-
els can help neural networks better predict the complex 
nonlinear two-phase flow and wettability in tight sand-
stones.

2.	 Unlike the traditional parallel genetic algorithm, the 
tight sandstone rock typing method and the similarity 
judgment are used to increase the diversity of the popu-
lation and optimize the weights and the threshold in the 
novel physics-informed neural network.

3.	 Compared with the quasi-static and dynamic pore net-
work models, the novel physics-informed neural network 
requires fewer parameters (only four routine parameters) 

and significantly reduces computational time, making it 
more appropriate for supplying potential parameters in 
large-scale reservoir simulations.

4.	 The comparison between the physics-informed neural 
network and the traditional ANN reveals that when the 
heterogeneity of the tight sandstone increases, the inno-
vative physics-informed neural network exhibits more 
distinct advantages over the conventional ANN. This is 
attributed to the increasing complexity of nonlinear flow 
in tight sandstone as the heterogeneity of the samples 
intensifies. Nevertheless, the traditional ANN proves to 
be inadequate for handling such nonlinear challenges.

Appendix A: the main controlling factors 
of multiphase flow in tight sandstone

This appendix analyzes the main controlling factors of mul-
tiphase flow in tight sandstone, which can provide the input 
parameters and physical mechanics for the physics-informed 
neural network. A deeper understanding of the physical prin-
ciples will be helpful for us to construct more efficient and 
accurate models which can estimate and classify flow prop-
erties in various rock samples.

First, we will describe the quasi-static pore network 
method that is used to investigate the main controlling fac-
tors of multiphase flow. Let the wetting phase, which is water 
in this study, initially fills all pores and throats. Then, the 
non-wetting phase, which is oil here, hierarchically invades 
the pores and throats from larger to smaller in the process 
of primary drainage, while water occupies all the wedges of 
pores. The discriminant condition for the non-wetting phase 
to invade a wetting phased-filled element is the entry capil-
lary pressure. During the simulation, the inflow and outflow 
water (or oil) volume of each element (pore or throat) com-
ply with the flow balance, as shown in Eq. 1. Note that there 
are usually multiscale pores (nanopores and micropores) in 
the tight sandstone. The closed-form generalized fluid flow 
equation accounting for the slip effect developed by Afshar-
poor and Javadpour is used to study the oil–water flow in 
nanopores, as shown in Eq. 4 (Afsharpoor and Javadpour 
2016). At the same time, the linear fluid flow equation is 
used to calculate the flow rate in micropores.

The boundary condition is that the pressure at the inlet 
and outlet keeps constant. Then, the water saturation, capil-
lary pressure, and relative permeability of oil and water are 
computed as follows:
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where Vw,i represents the water volume in pore i, Vi is the vol-
ume of pore i. Sw is water saturation for the network, and Pc 
is capillary pressure. r and σ refer to the inscribed radius and 
the oil–water interfacial tension, respectively. � represents 

(12)Sw =

∑np

i=1
Vw,i∑np

i=1
Vi

(13)Pc =

�
1 + 2

√
�G

�
� cos (�)

r
Fd

(14)Fd =

1 +

�
1 +

4GD

cos2 �

1 + 2
√
�G

(15)kr,o =
qo
o,w

qo
, kr,w =

qw
o,w

qw

the oil–water contact angle. Fd is a dimensionless correction 
factor for water, G is the shape factor and it is dimensionless. 
kr,o, kr,w represent the relative permeability of oil and water, 
respectively. qw

o,w
 and qo

o,w
 refer to the fluxes of water and oil 

in multiphase flow. qw, qo refer to the fluxes of water and oil 
in single-phase flow.

Based on the models, the factors influencing the two-
phase flow are investigated, and the main controlling fac-
tors are extracted. Figure 14a plots the capillary pressure 
curves for different mode pore sizes (denoted as Rmod) when 
other parameters are fixed. The mode pore size is the pore 
size that has the largest number in the tight sandstone. Fig-
ure 14a indicates that the capillary pressure also increases 
as the mode pore radius increases. To see more clearly, we 
select the capillary pressure when the water saturation is 
50% (denoted as Pc50) and examine the variance regular 
of Pc50 with the pore radius, as shown in Fig. 15a. There 
is a complicated relationship between Pc50 and the pore 
radius. Similarly, other impact factors, such as the tortuosity, 

Fig. 14   The impact of main factors on the capillary pressure curves: the mode pore size (a), the tortuosity (b), the contact angle (c), the oil–
water interfacial tension (d), and the wettability index (e)
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the contact angle, the oil–water interfacial tension, and the 
mixed wet (wettability index, denoted as Iw), are also inves-
tigated in Figs. 14 and 15. We can approximately obtain 
that the capillary pressure increases with the tortuosity and 
interfacial tension, and decreases with the mode pore size, 
contact angle, and wettability index (Iw).

Figure 16a depicts the relative permeability curves for 
different mode pore sizes when other parameters are fixed, 
like the capillary pressure curves. The result shows that as 
the mode pore radius increases, the relative permeability 
of water increases. Similar to the capillary pressure analy-
sis, the irreducible water saturation (denoted as Swi) in the 
relative permeability curve is also selected to investigate 
the variance regular of Swi with the pore radius (Fig. 17a). 
The figure illustrates that there is also a complicated rela-
tionship between Swi and the mode pore radius. At the 
same time, other factors, such as the tortuosity, the contact 
angle, the slip length, and the wettability index, are also 
investigated in Figs. 16 and 17. We can approximately 
conclude that Swi increases with the tortuosity, the contact 

angle, and slip length. Swi decreases with the mode pore 
size and wettability index (Iw).

Inspecting Fig. 15, we find that Pc50 varies linearly 
with the oil–water interfacial tension. However, the rela-
tionship between the capillary pressure curves and other 
factors, such as the tortuosity, contact angle, and wettabil-
ity index, is extremely complicated, and the linear fitting 
is not suitable for them. Similar results can be found in 
Fig. 4. Furthermore, the maximal information coefficients 
(MIC) for the data in Fig. 15 and 17 are analyzed, and the 
values are listed in Table 4. It can be seen from Table 1 
that the MIC values for mode pore radius, the tortuosity, 
contact angle, oil–water interfacial tension, and wettability 
index are all bigger than 0.5. The factors in Table 4 have 
a strong correlation with capillary pressure and relative 
permeability. Thus from Figs. 15, 16, and Table 4, we 
can finally deduce that there are complicated relationships 
between the capillary pressure (relative permeability) and 
the mode pore radius, tortuosity, contact angle, wettability 

Fig. 15   Pc50 of the capillary pressure curves vs the main factors: the mode pore size (a), the tortuosity (b), the contact angle (c), the oil–water 
interfacial tension (d), and wettability index (Iw) (e)
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index, and slip length. Therefore, it is necessary to use the 
neural network to model them.

Based on all the above results, we can obtain that the 
main controlling factors are the pore size, the tortuos-
ity, the contact angle, the oil–water interfacial tension, 
the wettability index, and the slip length. Furthermore, 
it should be pointed out that the correlation analysis in 
Figs. 15 and 17 is only for the characteristic points (Pc50 
and Swi) in the capillary pressure and relative permeabil-
ity curves. We aim to predict the overall curves of the 
capillary pressure and relative permeability. Therefore, we 
use the pore size and contact angle distribution instead of 

the mode pore size and the average contact angle when 
predicting the capillary pressure and relative perme-
ability curves. Finally, we can summarize that the input 
parameters of the physics-informed network are the pore 
size distribution, tortuosity, contact angle distribution, 
oil–water interfacial tension, wettability index, and slip 
length. It should be noted that the input parameters should 
be routinely obtained by conversional experiments for the 
convenience of predicting the curves. However, it is diffi-
cult to get the tortuosity directly through experiments. We 
replace the tortuosity with other experiment parameters in 
the physics-informed neural network.

Fig. 16   The impact of main factors on the relative permeability curves: the mode pore size (a), the tortuosity (b), the contact angle (c), the slip 
length (d), and wettability index (e)
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