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a b s t r a c t

Bulk metallic glasses (BMGs) have attracted broad research interest in industrial and

commercial fields due to their outstanding mechanical and physical properties. Achieving

controlled manipulation of their surface wettability is expected to further improve their

applicability. In this study, the functional MG surfaces with various wetting behaviors

(including superhydrophilicity, superhydrophobicity, gradient wettability, coexistence of

superhydrophilicity and superhydrophobicity) were fabricated by controlling the surface

microstructure and chemical composition, which were achieved by laser processing and

low-temperature heat treatment. The laser-patterned MG surface with hierarchical micro/

nanostructures showed hydrophilicity, and it turned to hydrophobicity after heat treat-

ment, which could be attributed to the adsorption of organic matter from the ambient air.

The fabricated gradient wetting surface achieved directional transport of droplets, and the

constructed extreme wetting contrast surface exhibited good ability in controlling the

spreading of droplets.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nature-inspired hierarchical structured surfaces with extreme

wettability play a pivotal role in daily activities, industrial and

biological applications. For instance, superhydrophilic
uang).

by Elsevier B.V. This
surfaces have positive effects on heat transfer [1,2] and bio-

molecular immobilization [3], while superhydrophobic sur-

faces exhibit broad prospects in anti-icing [4,5], anti-biofouling

[6], microfluid manipulation [7] and energy-related applica-

tions [7]. Although superhydrophilic/superhydrophobic
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surfaces appear to be promising, they are generally fabricated

on polymers with low mechanical stability [8e11], which may

be easily damaged in harsh service environments. In contrast,

metallic materials with better mechanical properties may be

more suitable for practical engineering applications. As ideal

metallic materials for micro/nanomanufacturing, metallic

glasses (MGs) are free from microstructural defects such as

grain boundaries and dislocations [12e14], which endow them

with superior mechanical durability and outstanding corro-

sion resistance [15e17]. Benefiting from these advantages,

MGs are considered as one of the most desirable materials for

constructing biological and structural components [18,19].

Meanwhile, achieving controlledmanipulation of their surface

wettability is expected to further improve their applicability,

such as preparing orthopedic implants with excellent

biocompatibility and developing aerospace equipment with

anti-icing performance. Therefore, how to modify the surface

wettability of MGs has become an urgent and necessary

task.

In general, the wetting behavior of solid surfaces is

strongly related to their geometrical structure and chemical

composition. Taking advantage of superior ability in con-

trolling the geometrical patterns of the surface microstruc-

ture [20e23], laser patterning technique has been widely

applied to fabricate functional MG surfaces with various

wetting behaviors. For example, by laser processing in an

atmospheric environment, typical groove patterns were

prepared on a Zr-based MG substrate, which enhanced the

hydrophilicity compared to the original MG surface [24]. In

addition, by low-temperature heat treatment of the laser

processed MG surface, its wettability could be switched from

superhydrophilicity to superhydrophobicity [25,26]. More

recently, by combining laser processing and silanization

modification, we successfully fabricated superhydrophobic

MG surfaces, which could be attributed to the combined ef-

fects of laser-induced surface microstructure and surface

chemical composition [27]. Although the above studies have

effectively changed the surface wetting behavior of MGs,

none of them have achieved precise wetting manipulation.

Moreover, most of the current research focuses on the

preparation of homogeneous wettable surfaces with stable

superhydrophilic or superhydrophobic state, and it still re-

mains a great challenge to utilize the laser-based methods to

construct heterogeneous wetting surfaces, such as wetting

gradient surfaces and extreme wettability contrast surfaces,

especially on MG substrates. The objective of the present

study is to fabricate MG surfaces with various wetting

behaviors (including superhydrophilicity, super-

hydrophobicity, gradient wettability, coexistence of super-

hydrophilicity and superhydrophobicity) by controlling the

surfacemicrostructure and chemical composition, which are

achieved by combining laser processing and heat treatment

without using any chemicals. This study provides an insight

into the relationship between macroscopic wetting behavior

and microscopic surface characteristics (i.e., surface rough-

ness and chemical composition), and guides the design

strategy for functional MG surfaces with tailored wettability.
2. Materials and methods

The tailored MG sheets (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with di-

mensions of 20 � 20 � 2 mm3 were investigated. Prior to laser

patterning, these sheets were mechanically ground and pol-

ished to a mirror finish. After mechanical polishing, the MG

surface exhibits a water contact angle (CA) of 79.3� (see

Fig. 5(a)), indicating the intrinsic hydrophilicity. The hierar-

chical MG surfaces containing patterned arrays with the

scanning pitch (denoted as SP) ranging from 90 to 230 mmwere

prepared by using laser patterning technique (average power:

8.46 W, number of laser pulses: 1000, repetition rate: 200 kHz,

pulse duration: 37 ns, central wavelength: 1064 nm, focused

spot diameter: 43 mm). A fiber nanosecond pulse laser

(SPe050P-A-EP-Z-F-Y, SPI Lasers) with a Gaussian beam shape

was used here. After laser patterning, it was found that the

micro-patterned MG surfaces were hydrophilic or even

superhydrophilic. Previous studies [26,28,29] have demon-

strated that low-temperature heat treatment can result in a

wetting transformation from hydrophilicity to hydrophobicity

on the laser-patterned metallic surfaces. Accordingly, to

achieve the construction of the hydrophobic MG surfaces, the

laser-patterned samples were heat treated in a thermostatic

vacuum chamber (DZF-6020, Hefei Kejing Materials Technol-

ogy Co., LTD) at 100 �C for 5 h.

The surface morphology and roughness of the laser-

patterned samples were characterized by the scanning elec-

tron microscope (SEM, JSM-IT500A, JEOL) and laser scanning

confocal microscope (LSCM, OLS4100, Olympus), respectively.

The X-ray diffractometer (XRD, D8 Discover, Bruker) and X-ray

photoelectron spectroscope (XPS, K-Alpha, Thermo Scientific)

were employed to analyze the surface chemical composition

of the laser-patterned samples. The static water CA of the

laser-patterned surfaces was assessed by a CA measuring

instrument (OSA60, LAUDA Scientific), and 1 mL deionized

water was placed on the laser-patterned surfaces.
3. Results and discussion

Fig. 1(a) presents the SEM micrographs of the laser-patterned

structures obtainedwith various SPs. It is clearly observed that

periodic micro-scale protrusions are generated on the MG

substrate, which are derived from the flow of molten mate-

rials driven by the recoil pressure and surface tension during

the laser-MG interaction [13]. Furthermore, the high-

magnification micrographs (the insets of Fig. 1(a)) reveal that

the micro-protrusions are covered by many micro/nanoscale

particles, which can be attributed to the ejection and re-

solidification of the evaporated materials during the laser

patterning process.

Fig. 1(b) presents the change in CA and roughness of the

laser-patterned surface as a function of the SP value. The CAs

of all the laser-patterned surfaces are significantly smaller

than that of the original polished surface (79.3�), indicating
that laser patterning causes the MG surfaces to become more

https://doi.org/10.1016/j.jmrt.2023.05.004
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Fig. 1 e (a) SEM micrographs of the laser-patterned structures obtained with various SPs. (b) Variations in CA and roughness

of the laser-patterned surface as a function of the SP value. (c) The XRD spectrums of the laser-patterned surfaces obtained

with various SPs.
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hydrophilic. In particular, the laser-patterned surfaceswith SP

values of 90 and 110 mmhave a CA being less than 10�, showing

the superhydrophilicity. In addition, the evident changes as

the SP value decreases are that the CA gradually decreases but

the surface roughness gradually increases, which indicates

that the droplets on the laser-patterned surfaces satisfy the

Wenzel state [30]. Apart from surface roughness, the surface

chemical composition also has a crucial influence on surface

wettability. The XRD spectrums displayed in Fig. 1(c) reveal

that the laser-patterned surfaces with SP values of 90 and

110 mmconsist of somemetal oxides, which further contribute
Fig. 2 e (a) The CAs and (b) XRD spectrums of the heat-trea
to the increase of surface free energy, and accordingly,

resulting in an increase in surface hydrophilicity [31].

Fig. 2(a) plots the change in CA of the heat-treated laser-

patterned surface as a function of the SP value. It is found that

all the laser-patterned surfaces subjected to heat treatment

show a CA being greater than 120�, confirming the effective-

ness of heat treatment in converting the wettability of laser-

patterned metal surfaces from hydrophilicity to hydropho-

bicity. In addition, the CA of the heat-treated laser-patterned

surface gradually decreases from 154.3 to 124.9� when

increasing the SP value from 90 to 230 mm, indicating that the
ted laser-patterned surfaces obtained with various SPs.
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heat-treated laser-patterned surface becomes more hydro-

phobic as the SP value decreases. To verify whether the phase

composition of the laser-patterned surfaces is changed after

heat treatment, the heat-treated laser-patterned surfaces are

characterized by XRD again. The corresponding spectrums are

displayed in Fig. 2(b), which exhibit consistent phase compo-

sition with those of the laser-patterned surfaces before heat

treatment. This suggests that the difference in wettability of

the laser-patterned surfaces before and after heat treatment is

not related to the phase composition.

To explore the reasons for the significant change in

wettability, the chemical composition of the laser-patterned

surface before and after heat treatment is further analyzed

by XPS. Figs. 3(a) and (b) show the XPS full spectrum and the

corresponding elemental composition of the laser-patterned

surface with SP of 90 mm before and after heat treatment,

respectively. In Fig. 3(a), it is seen that the C (27.34%) and O

(50.72%) elements are introduced into the laser-patterned

surface before heat treatment, which originate from the

ambient air during the laser-MG interaction. After heat

treatment, an obvious change is that the content of C element

increases from 27.34% to 77.99%. To confirm whether the

change in wettability is related to the C group on the laser-

patterned surface, the high-resolution C 1s spectrum of the

laser-patterned surface before and after heat treatment is

further analyzed, and the corresponding results are illustrated

in Figs. 3(c) and (d), respectively. The C 1s spectrum of laser-

patterned surface before and after heat treatment is divided

into three peaks located at 284.8 eV, 286.3 eV and 288.5 eV,
Fig. 3 e The XPS full spectrum and the corresponding elemental

of 90 mm: (a) before and (b) after heat treatment. (c) and (d) show

surface before and after heat treatment, respectively.
which correspond to the CeC(H), CeO and C]O groups,

respectively. Among these functional groups, the non-polar

CeC(H) bonds are accompanied by the hydrophobic

behavior, while the polar CeO and C]O bonds increase the

hydrophilicity. As shown in Figs. 3(c) and (d), the intensity of

the CeC(H) group is significantly increased after heat treat-

ment, and this may be the reason why the laser-patterned

surfaces subjected to heat treatment exhibit the hydropho-

bicity or even superhydrophobicity. The above results

demonstrate that the significant increase in hydrophobicity of

the laser-patterned surfaces after heat treatment can be

attributed to the adsorption of organic matter mainly

including CeC(H) groups from the ambient air.

The above analysis results indicate that by adjusting the

surface roughness and chemical composition, the functional

MG surfaces with various homogeneous wettability could be

fabricated, which provides potential support for practical en-

gineering applications of MGs, such as biomolecular immo-

bilization and anti-icing. Being similar to the surfaces with

homogeneous wettability, gradient wetting surfaces are also

highly desirable for many functional applications due to their

ability to manipulate the mobility of droplets. On a gradient

wetting surface, the droplet can spontaneously flow from low-

wetting region to high-wetting region due to the unbalanced

Laplace pressure on both sides of the droplet, as illustrated in

Fig. 4(a). To achieve directional transport of droplets on the

MG surface without energy input, a rectangular micro-

patterned array region with gradient SP is designed. As

shown in Fig. 4(b), the rectangular region with a length of
composition of the laser-patterned surface obtained with SP

the high-resolution C 1s spectrum of the laser-patterned

https://doi.org/10.1016/j.jmrt.2023.05.004
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6mm is divided equally into three parts, and the SPs of regions

I, II, and III are 230, 170, and 90 mm, corresponding to the CAs of

30.7�, 14.5�, and 5.9�, respectively. Fig. 4(c) shows the final

resting positions of droplets dropped on these three regions. It

is found that the droplets falling on the region I or region II

move towards the region III, while the droplets falling on the

region III mostly stay in place, which indicates that the droplet

has a tendency to spread to high-wetting region. The above

results confirm that the fabricated gradient wetting surface

has the ability to direct the transport of droplets.

Another typical example of heterogeneous wetting sur-

faces is the extreme wettability contrast surface, which has

also received extensive attention due to its efficient water
Fig. 4 e (a) Schematic illustration showing the movement of dro

the gradient wetting surface. (c) The final resting positions of d
collection performance. The combination of superhydrophilic

pattern and superhydrophobic background on the same sur-

face is inspired by Namib desert beetles, and they can

collect water from dew and fog using complementary

superhydrophilic-superhydrophobic skeleton on their back

[32]. Inspired by desert beetles, Wang et al. [33] successfully

prepared extreme wettability contrast surfaces on titanium

substrate by nanosecond laser irradiation and selective UV

irradiation. However, this approach is strongly dependent on

the photoresponsiveness of titanium and therefore may be

not suitable for MGs. Previous study [34] has shown that the

wettability of silicone oil modified aluminium surfaces can

transform from superhydrophobicity to superhydrophobicity
plet on the gradient wetting surface. (b) Design diagram of

roplets dropped on different regions.

https://doi.org/10.1016/j.jmrt.2023.05.004
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Fig. 5 e (a) Wettability transition of MG surface after different treatments. (b) Schematic illustration of the constructed

extreme wettability contrast surface. (c) Images of superhydrophilic “JLU” patterns filled with deionized water on the heat-

treated laser-patterned MG surfaces.
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by laser processing, but the applicability of this method to

heat-treated laser-patterned surface remains unknown. To

explore the possibility of constructing superhydrophilic pat-

terns on superhydrophobic surface, secondary laser

patterning is performed on the heat-treated laser-patterned

surface, and the newly laser-patterned surface becomes

superhydrophilic again (see Fig. 5(a)). This wettability transi-

tion between superhydrophilcity and superhydrophobicity

confirms the feasibility of creating flexible superhydrophilic

patterns on the heat-treated laser-patterned MG surfaces.

Fig. 5(b) presents a schematic illustration of the constructed

extreme wettability contrast surface, where the super-

hydrophilic “JLU” pattern is fabricated by secondary laser

patterning, and the other regions retain superhydrophobicity.

Fig. 5(c) presents the dispersion of droplets with different

volumes falling on the “JLU” pattern. The droplets spread

completely according to the designed “JLU” pattern, confirm-

ing the good ability of the constructed superhydrophilic-

superhydrophobic hybrid wettability surface in controlling

the spreading of droplets.
4. Conclusions

In this study, laser patterning and low-temperature heat

treatment were used to tune the surface wettability of Zr-

based MG. The polished MG surface showed hydrophilicity,

and it became more hydrophilic after laser patterning, which

could be attributed to the increased surface roughness and
laser-induced metal oxides. After heat treatment, the hydro-

philic laser-patterned surfaces were transformed into hydro-

phobic ones, and such wettability transition resulted from the

adsorption of organic matter mainly including CeC(H) groups

from the ambient air. By rationally designing the surface

microstructure, a gradient wetting surface was obtained,

which could achieve the directional transport of droplets. By

performing secondary laser patterning, complex freeform

superhydrophilic patterns could be created on the heat-

treated laser-patterned surfaces, which exhibited good abil-

ity in controlling the spreading of aqueous liquid. This study

provides technical guidance for fabricating functional MG

surfaces with tailored wettability, which would broaden the

practical engineering applications of MGs.
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