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A B S T R A C T   

Modelling the dynamic mechanical response of rock mass under sequential explosive detonation, especially the 
fracture and energy evolution characteristics, is the key to optimizing the spatial distribution and initiation time 
interval of explosives. A hybridized continuum-discontinuum element method and energy statistics algorithm are 
implemented in this study to accurately investigate the rock dynamic response induced by sequential detonation 
loading. Based on the rock fracture status and the stress–strain curve of bilinear cohesive fracture model, an 
energy statistics algorithm considering all energy components is first proposed, and its accuracy and robustness 
are verified. Then, the continuum-discontinuum element method and energy statistics algorithm are adopted to 
simulate the dynamic response of rock mass under sequential detonation loading. The results indicate that the 
area of cracked interfaces generated by each explosive first increases and then decreases, which caused by 
explosive 2 is the largest, accounting for 38.19%. Due to the damage to rock caused by the previous detonation 
loading, the rock around explosive 1 mainly undergoes shear fracture, while the rock around explosives 2 and 3 
mainly undergoes tensile fracture. The change trends of various energy components are different, and the ex
plosion energy is mainly converted into friction energy and element kinetic energy.   

1. Introduction 

In the fields of mining, slope and tunnel engineering, blasting tech
niques have become an efficient and effective measure to break rock 
masses in the past few decades, and they have gradually evolved from 
single-hole blasting to multiple-hole blasting. For multiple-hole blasting, 
the spatial distribution distance and initiation time interval of explosives 
are key control parameters. To enhance the fragmentation effect of the 
rock mass and reduce the detrimental effect on the surrounding facilities 
as much as possible, it is necessary to first model the dynamic me
chanical response of the rock mass under detonation loading, which lays 
the foundation for optimizing the control parameters of multiple-hole 
blasting and improving the utilization efficiency of explosion energy 
(Chen et al., 2021; Zhou et al., 2021; Bhagat et al., 2022). 

Since laboratory and field experiments have the disadvantages of 
being expensive and time-consuming, numerical simulation has become 
a promising alternative method to investigate the blast-induced dynamic 

response of rock. Based on the differences in their inherent assumptions, 
numerical algorithms are categorized into continuum-based algorithms 
(e.g., FEM, XFEM, CEM, PD, and DDM) (Qin et al., 2021; Abdollahipour 
et al., 2016; Rezanezhad et al., 2019; Abdollahipour and Marji, 2020; 
Han et al., 2020b; Zhang et al., 2020b), discontinuum-based algorithms 
(e.g., DEM and DDA) (Ni et al., 2020; Wang and Nguyen, 2022) and 
mesh-free algorithms (e.g., SPH and MPM) (Jayasinghe et al., 2019; 
Wang et al., 2021a). Since each numerical algorithm has some limita
tions, an increasing number of coupled algorithms (e.g., FEM/DEM, 
DEM/SPH, DDA/SPH, FEM/SPH) have been proposed (Wu et al., 2018; 
Ai and Chen, 2020; Liu et al., 2020; Mardalizad et al., 2020; Peng et al., 
2021). 

Based on the numerical algorithms mentioned above, scholars have 
simulated the dynamic response of rock mass under detonation loading 
and investigated the trends of the variations in different mechanical 
parameters. Hajibagherpour et al. (2020) numerically studied the 
mechanism of rock fragmentation due to blast-induced shock waves in a 

* Corresponding author. 
E-mail address: zhuxg@imech.ac.cn (X. Zhu).  

Contents lists available at ScienceDirect 

Computers and Geotechnics 

journal homepage: www.elsevier.com/locate/compgeo 

https://doi.org/10.1016/j.compgeo.2023.105607 
Received 24 January 2023; Received in revised form 15 June 2023; Accepted 16 June 2023   

mailto:zhuxg@imech.ac.cn
www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2023.105607
https://doi.org/10.1016/j.compgeo.2023.105607
https://doi.org/10.1016/j.compgeo.2023.105607
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2023.105607&domain=pdf


Computers and Geotechnics 162 (2023) 105607

2

single blasthole by a 2D discrete element code, and the numerical result 
was in good agreement with the experimental result. Zhu and Zhao 
(2021) presented a nonordinary peridynamics computational approach 
to model blast-induced rock fractures, and the fracturing process of rock 
was assessed based on both the JH2 damage model and tensile failure 
model. Gharehdash et al. (2020) investigated the blast-induced fracture 
process of Barre granite using a penalty-based contact treatment in 
smoothed particle hydrodynamics along with variable particle resolu
tions. Bird et al. (2023) presented a 3D nonlinear finite element model to 
study the fracture intensity caused by blasting, which is able to handle 
damage to rock due to both compression and tension. Ma et al. (2022) 
analysed the pressure of the hole wall, energy evolution and crack 
propagation during blasting and found that the strain energy of rock 
mass and the area of blast-induced cracks are negatively correlated with 
the uncoupling coefficient of the charge. Lak et al. (2019a, 2019b) 
simulated the dynamic fracture process in a jointed rock mass based on 
the dual fracture media approach and discrete element method, and the 
results indicated that the deployed procedure is able to model the 
different fracture propagation patterns observed in rock mass. Banadaki 
(2011) numerically studied the stress field and blast-induced dynamic 
fracture in Barre and Laurentian granites, and JH2 strength and failure 
models along with polynomial EOS were adopted. Alizadeh et al. (2023) 
investigated the dynamic response of heterogeneous geomaterials under 
cyclic loads based on the 2D boundary element method. Based on the 
dynamic finite element model, Jiang et al. (2023) proposed that tensile 
cracks dominate the damage of discontinuity tips in the initial stage after 
detonation, while shear cracks may dominate near the end of blasting. 
Some scholars have conducted research on the cumulative damage of 
rock under repeated blast loading. Wang et al. (2021b) found that 
repeated blast loading contributes little to rock breakage in the direction 
of the minimum principal stress and that the cracks mainly propagate 
along the direction of the maximum principal stress. Han et al. (2020a) 
studied the damage evolution of rock during contour blasting in the 
bench of a deeply buried tunnel and found that the in situ stresses 
impeded the blast-induced damage evolution. 

In the numerical simulation of the dynamic response of rock under 
blast loading, how to accurately characterize the initiation and propa
gation of cracks is a research focus. Due to the advantages of complete 
theoretical derivation, convenience of implementation and avoiding 
stress singularity, the cohesive zone model is widely adopted to simulate 
the dynamic fracture process of rock (Cordero et al., 2019; Saadat and 
Taheri, 2019; Nairn and Aimene, 2021). Within the framework of the 
combined finite-discrete element method and ICEM-based cohesive el
ements, Fukuda et al. (2021) studied the dynamic fracture process of 
marbles in dynamic BTS tests and UCS tests. Han et al. (2023) used the 
combined finite-discrete element method to model the rock fracture 
process induced by single-hole destress blasting and found that the 
fractures shift the high abutment pressure from the tunnel face. Wang 
et al. (2021c) introduced the methodology of compiling the rate- 
dependent model for cohesive elements via a user subroutine, and the 
sensitivity of the dynamic branching model results to the element size, 
mesh structure and material parameters was discussed. 

Currently, numerical research on the dynamic response of rock mass 
under detonation loading has two deficiencies. First, most of the adopted 
numerical methods are continuum-based and mesh-free methods. The 
continuum-based method simulates the dynamic expansion process of 
cracks mainly by deleting elements, which has the disadvantages of not 
following the laws of conservation of energy, mass and momentum. The 
mesh-free method has difficulty accurately characterizing the initiation 
and propagation process of cracks. Therefore, the adopted numerical 
methods have difficulty accurately simulating the dynamic mechanical 
response of rock mass under detonation loading. Second, the researchers 
only investigated the change characteristics of rock deformation energy 
and kinetic energy without studying other types of energy (e.g., fracture 
energy, friction energy), which limits the study of the utilization effi
ciency of explosion energy. 

To accurately model the dynamic mechanical response (e.g., 
displacement, fracture) of rock mass under sequential detonation 
loading and obtain the complex conversion process of explosion energy, 
the continuum-discontinuum element method (CDEM) and energy sta
tistics algorithm are implemented in the study. Compared with other 
numerical algorithms, CDEM achieves the conservation of energy, mass 
and momentum during the initiation and propagation of cracks, which is 
essential for accurately modelling the dynamic response of rock mass. In 
addition, the energy statistics algorithm achieves the accurate statistics 
of various energy components in the rock mass. First, the energy sta
tistics algorithm for the bilinear cohesive fracture model is established. 
Then, the accuracy and robustness of the energy statistics algorithm are 
verified. Finally, a full-time numerical simulation of rock mass under 
sequential detonation loading is conducted, and the displacement, 
fracture and energy evolution characteristics are quantitatively ana
lysed, which lays the foundation for optimizing the spatial distribution 
and initiation time interval of explosives. 

2. Methodology 

2.1. Continuum-discontinuum element method 

As a dynamic explicit numerical method, the continuum- 
discontinuum element method (CDEM) is established based on the 
Lagrangian energy system. To improve the applicability of solving large- 
deformation problems, CDEM adopts the dynamic relaxation method for 
explicit iterative solutions. Since the initiation and expansion of cracks 
are not realized by deleting elements in CDEM, it follows the laws of 
conservation of energy, mass and momentum (Zhang et al., 2020a; Lin 
et al., 2022b). The basic numerical model in CDEM includes blocks and 
interfaces, as shown in Fig. 1. The interfaces include the real interfaces 
(denoted by the black solid lines in Fig. 1(a)) and the virtual interfaces 
(denoted by the red solid lines in Fig. 1(a)). The real interfaces are used 
to represent the real discontinuous features (e.g., joints, faults) of the 
material. The virtual interface (as shown in Fig. 1(b)) has two main 
functionalities: to connect blocks and transfer mechanical information 
and to provide the potential space for crack initiation and propagation. 
To improve the efficiency of contact detection and simplify the calcu
lation of contact force, the semi-spring and semi-edge combined contact 
model (as shown in Fig. 1(c)) is introduced (Feng et al., 2014). 

According to the Lagrangian theory of energy systems, the governing 
equation of CDEM is established as follows: 

d
dt

⎛

⎝∂L
∂u̇i

⎞

⎠ −
∂L
∂ui

= Qi (1)  

where Qi denotes the nonconservative force of the Lagrangian system, ui 
denotes the displacement, and u̇i denotes the velocity. L denotes the 
energy functional of the Lagrangian system, which is written as 

L =
∏

m
+
∏

e
+
∏

f
(2)  

where Πm, Πe and Πf denote the systematic kinetic energy, the system
atic deformation energy and the work of conservative force, 
respectively. 

Taking an element in the Lagrangian system as the research object, 
the energy functional of the element is written as 

L =

∫

V

1
2

ρu̇2
i dV +

∫

V

1
4

σij
(
ui,j + uj,i

)
dV −

∫

V
fiuidV (3)  

where ρ denotes the element density, σij denotes the element stresses, ui,j 
denotes the derivative of displacement ui in the j direction, uj,i denotes 
the derivative of displacement uj in the i direction, fi denotes the body 
force of the element node, and V denotes the element volume. 

The nonconservative force includes the damping force Qμ and 
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external force QT, which is defined as 

Qμ =

∫

V
μu̇idV, QT = −

∫

S
T idS (4)  

where μ denotes the damping coefficient and Ti denotes the surface force 
at the element boundary. 

Substituting Eq. (2) to Eq. (4) into Eq. (1) yields 

−

(∫

V
ρüidV +

∫

V
σij

∂ui,j

∂ui
dV −

∫

V
fidV

)

=

∫

V
μu̇idV −

∫

S
T idS (5)  

where üi denotes the acceleration. 
Using the partial integration expression (as shown in Eq. (6), the 

Lagrangian equation Eq. (5) is simplified to Eq. (7). 
∫

V
σij

∂ui,j

∂ui
dV =

∫

S
σijnjdS −

∫

V
σij,jdV (6)  

∫

V

(

σij,j + fi − ρüi − μu̇i

)

dV +

∫

S

(
T i − σijnj

)
dS = 0 (7) 

Eq. (7) can be solved numerically based on the FEM. The internal 
force acting on the element node is equal to the partial derivative of the 
element deformation energy with respect to the nodal displacement, 
which is written as 

Fe
i =

∂Πe

∂ui
= Ke

ijuj (8)  

where Ke
ij denotes the element stiffness matrix. 

The Lagrangian equation is transformed to 
∫

V
ρüidV+

∫

V
μu̇idV+Fe

i =

∫

V
fidV +

∫

S
T idS (9) 

Finally, the governing equation of the element is written as Eq. (10). 
Solving the governing equation Eq. (10) is the core of the CDEM 
computation, and it is solved based on the explicit Euler forward dif
ference method. 

Ma(t)+Cv(t)+Ku(t) = F(t) (10)  

where a(t), v(t) and u(t) denote the acceleration vector, velocity vector 
and displacement vector, respectively. M, C, and K denote the mass 
matrix, damping matrix and stiffness matrix, respectively. F(t) denotes 
the external force vector. 

2.2. Contact detection algorithm 

For the 3D block discrete element method, the direct method, com
mon plane method, penetration edge approach and incision body 
scheme are the four typical algorithms for detecting the contact between 
blocks. To simplify the contact detection procedure and improve the 

contact detection accuracy, a semi-spring and semi-edge combined 
contact detection algorithm is proposed and introduced into the CDEM 
(Feng et al., 2014). 

For the 3D block contact, there are six contact types. vertex to vertex, 
vertex to edge, vertex to face, edge to edge, edge to face and face to face. 
In the semi-spring and semi-edge combined contact detection algorithm, 
to detect the target edge and target face easily, the vertices and edges of 
block indent to each face, as shown in Fig. 2, and the semi-spring and 
semi-edge are created subsequently. Based on this algorithm, the six 
contact types are simplified to two contact types, i.e., semi-spring and 
target face contact, semi-edge and target edge contact. 

2.2.1. Semi-spring contact algorithm 
For the semi-spring and target face contact, two contact cases can be 

found: (I) the distance d between the semi-spring and target face is less 
than the searching tolerance dst, and the projection point of the semi- 
spring is located within the target face; (II) the semi-spring is located 
within the block. 

For case I, the distance d between the semi-spring and target face is 
obtained by Eq. (11), which is written as 

d =

⃒
⃒
⃒nf
→⋅
(

Ps
→

− Cf
̅→
)⃒
⃒
⃒ (11)  

where nf
→ denotes the unit outwards normal vector of the target face, Ps

→

denotes the coordinate of the semi-spring, and Cf
→ denotes the coordinate 

of the target face centre. 
Once the distance d is less than the searching tolerance dst, Eq. (12) is 

adopted to judge whether the projection point of the semi-spring is 
located within the target face. If the projection point is located within 
the target face, Jijk should be 1 for any composition of vertices i, j and k. 

Jijk =
(

Vsi
̅→

× Vsj
̅→
)

⋅
(

Vsj
̅→

× Vsk
̅→
)

(12)  

where i, j, and k are three vertices of the target face in the clockwise 
direction. Vsi

̅→ denotes the relative coordinate vector pointing from 

Fig. 1. Basic numerical model in CDEM.  

Fig. 2. Schematic diagram of the semi-spring and semi-edge.  

Q. Lin et al.                                                                                                                                                                                                                                      



Computers and Geotechnics 162 (2023) 105607

4

vertex s to vertex i. 
For case II, Eq. (13) is adopted to judge whether the semi-spring is 

located within the block. If JCi > 0 is satisfied for any face of the block, 
the semi-spring is located within the block. Once it is determined that 
the semi-spring s is located within the block, the face of the block nearest 
to the semi-spring is regarded as the target face. 

JCi = Vsi
̅→⋅ n→ (13)  

where Vsi
̅→ denotes the relation coordinate vector pointing from semi- 

spring s to the centre of face i. 

2.2.2. Semi-edge contact algorithm 
To search the target edge of the semi-edge, the target face where the 

target edge is located is found first. All the faces of the potential blocks 
are looped, and the most likely face of the potential blocks is determined 
by Eq. (14). 

PF = min
(

nm
̅→⋅np

→) (14)  

where PF denotes the most likely face where the target edge is located, 
nm
̅→ denotes the unit outwards normal vector of the face where the semi- 
edge is located, and np

̅→ denotes the unit outwards normal vector of the 
probable face. 

Once the most likely face PF is found, each edge of the face PF is 
judged whether it is parallel to the semi-edge or not based on Eq. (15). If 
PFp < 1, these two edges are not parallel. 

PFp =

⃒
⃒
⃒Vmm
̅̅→⋅ Vtt

̅→
⃒
⃒
⃒ (15) 

Eq. (16) is adopted to calculate the distance de between these two 
edges. 

de =

⃒
⃒
⃒

(
Vmm
̅̅→

× Vtt
̅→
)

⋅Vmt
̅→
⃒
⃒
⃒ (16) 

If PFp < 1 and de < dst, the edge is regarded as the target edge, and the 
intersection between the target edge and semi-edge is judged. The co
ordinates of semi-edge and target edge are projected to a plane with the 
normal vector (Vmm

̅̅→
× Vtt
̅→

). On the projection plane, the intersection 
point is obtained first. Once the intersection point is located inside two 
edges at the same moment, the contact between the target edge and 
semi-edge will be established. 

Based on the semi-spring contact and semi-edge contact, contact 
detection between 3D blocks is achieved, and the contact force is 
calculated. A more detailed algorithm introduction was written by Feng 
(Feng et al., 2014). 

2.3. Bilinear cohesive fracture model 

In the semi-spring and semi-edge combined contact detection algo
rithm, a local Cartesian coordinate system is created, and the contact 
force F of the numerical spring is decomposed into the tangential force 
Fpx along the × direction, tangential force Fpy along the y direction and 
normal force Fpz along the z direction. During the iterative computation 
of the contact force, Fpx, Fpy and Fpz are calculated independently. The 
trial normal force and trial tangential force at the next time step t1 are 
first calculated, which is determined via 
⎧
⎪⎪⎨

⎪⎪⎩

Ft1
px = Ft0

px − ksspΔux

Ft1
py = Ft0

py − ksspΔuy

Ft1
pz = Ft0

pz − knspΔun

(17)  

where Ft0
px, Ft0

py and Ft0
pz denote the tangential contact force, tangential 

contact force and normal contact force at the current time step t0, 
respectively. Ft1

px, Ft1
py and Ft1

pz denote the trial tangential contact force, 
trial tangential contact force and trial normal contact force at the next 

time step t1, respectively. kn and ks denote the normal contact stiffness 
and tangential contact stiffness per unit area, respectively. sp denotes the 
sectional area of the numerical spring. Δun denotes the normal relative 
displacement increment from t0 to t1, and Δux and Δuy denote the 
tangential relative displacement increment from t0 to t1. 

The occurrence of tensile failure is determined based on Eq. (18). 
Once the tensile failure criterion is satisfied, the normal contact force 
and tensile strength are corrected. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if − Ft1
pz⩾σt0

ptsp

then Ft1
pz = − σt0

ptsp, σt1
pt =

−
(

σt0
pt

)2
un

2Gft
+ σ0

pt

(18)  

where σ0
pt, σ

t0
pt and σt1

pt denote the tensile strength at the initial time step, 
current time step and next time step, respectively. Gft denotes the tensile 
fracture energy. 

The occurrence of shear failure is determined based on Eq. (19). 
Once the shear failure criterion is satisfied, the tangential contact force 
and cohesion are corrected. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if Ft1
ps⩾Ft1

pztanφ + ct0
p sp

then Ft1
ps = Ft1

pztanφ + ct0
p sp, ct1

p =
−
(

ct0
p

)2
us

2Gfs
+ c0

p

(19)  

where c0
p, ct0

p and ct1
p denote the cohesion at the initial time step, current 

time step and next time step, respectively. us denotes the tangential 
relative displacement at the current time t0. φ denotes the friction angle. 
Gfs denotes the shear fracture energy. Ft1

s denotes the resultant tangential 
contact force at the next time step t1. 

According to Eq. (18) and Eq. (19), the normal and tangential 
stress–strain curves of the numerical spring can be drawn, as shown in 
Fig. 3. 

3. Energy statistics algorithm 

3.1. Energy classification 

According to the failure state of the material and the basic charac
teristics of the CDEM model, Lin et al. (2022a) proposed the energy 
types in the model at different stages, as shown in Fig. 4. When the 
model is at the continuous stage, the energy includes the element 
deformation energy WEE, element kinetic energy WEV, spring deforma
tion energy WPE, damping energy WD and gravitational potential energy 
WG. With the appearance of cracks, when the model changes from the 
continuous stage to the discontinuous stage, spring fracture energy WPC 
appears. When the model is at the discontinuous stage, the spring frac
ture energy WPC disappears, and friction energy WR appears. 

To accurately investigate the evolution characteristics of various 
energy components, it is necessary to not only accurately judge the 
model stage to determine the energy types but also accurately calculate 
the values of various energy components. An energy statistics algorithm 
has been established and verified for the case of adopting the Mohr- 
Coulomb brittle fracture model as the interface constitutive model 
(Lin et al., 2022a). However, when the bilinear cohesive fracture model 
is adopted as the interface constitutive model, the statistical algorithm 
for spring deformation energy WPE, spring fracture energy WPC and 
friction energy WR needs to be re-established. Moreover, the statistical 
algorithm for gravitational potential energy WG was not established in 
the previous study. Therefore, this study needs to re-establish the sta
tistics algorithm for WPE, WPC, WR and WG. 
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3.2. Detailed algorithm description 

3.2.1. Spring deformation energy WPE 
In the bilinear cohesive fracture model, the spring deformation en

ergy WPE includes normal deformation energy wpet and tangential 
deformation energy wpes. The normal deformation energy wpet is plotted 
in Fig. 5. For the elastic stage, the area of triangle ODE in Fig. 5(a) is 
equal to wpet. For the softening stage, the area of triangle DFE in Fig. 5(b) 
is equal to wpet. The tangential deformation energy wpes is plotted in 
Fig. 6. For the elastic stage, the area of triangle ODE in Fig. 6(a) is equal 
to wpes. For the softening stage, the area of triangle DFE in Fig. 6(b) is 
equal to wpes. For the cracked stage, the area of triangle DFE in Fig. 5(c) 
is equal to wpes. 

To obtain the spring deformation energy WPE of the entire model, 
first, the normal deformation energy wpet is calculated based on Eq. (20). 
Subsequently, the tangential deformation energy wpes is calculated 
based on Eq. (21). Finally, all springs are looped to obtain the spring 
deformation energy WPE of the entire model (as shown in Eq. (22). 

wpet =
1
2

σ2
pz

kn
sp (20)  

wpes =
1
2

(
σ2

px

ks
+

σ2
py

ks

)

sp (21)  

WPE =
∑Np

k=1

(
wpet + wpes

)
(22)  

where Np denotes the number of numerical springs. 

3.2.2. Spring fracture energy WPC 

3.2.2.1. Loading path. When the normal stress σpz reaches the tensile 
strength σpt, the normal stress–strain curve enters the softening stage, σpt 
decreases continuously, and it is determined that the spring undergoes 
tensile damage. Once σpt decreases to zero, it is determined that the 
spring undergoes tensile crack. For the resultant tangential stress σps, 
when it reaches the shear strength σs, the tangential stress–strain curve 

Fig. 3. Stress–strain curve of the bilinear cohesive fracture model.  

Fig. 4. Energy types at the different stages.  

Fig. 5. Normal deformation energy wpet.  
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enters the softening stage, σs and cohesion cp decrease continuously, and 
it is determined that the spring undergoes shear damage. Once cp de
creases to zero, it is determined that the spring undergoes shear crack. 

Based on the stress–strain curve of the bilinear cohesive fracture 
model, it is concluded that some energy will be dissipated once the 
spring undergoes damage, and the dissipation energy is defined as the 
fracture energy. Since there are differences in the statistical algorithm of 
spring fracture energy WPC when the spring undergoes damage or crack, 
it is described separately.  

(1) Damage status. 

When the spring undergoes tensile damage, the normal stress is in 
the softening stage, and the area of quadrilateral OADE in Fig. 7 is equal 
to the tensile fracture energy wpct, which is written as Eq. (23). When the 
spring undergoes shear damage, the tangential stress is in the softening 
stage, and the area of quadrilateral OADE in Fig. 8 is equal to the shear 
fracture energy wpcs, which is written as Eq. (24). 

wpct =

[
1
2

σptεtd −
1
2
σpz

(
εtd −

(
εpz −

σpz

kn

))]

sp (23)  

where εtd denotes the tensile cracked strain and εpz denotes the normal 
strain. 

wpcs =

[
1
2
cpεsd −

1
2
(
σps − σpztanφ

)
(

εsd −

(

εps −
σps

ks

))

+ σpztanφ
(

εps

−
σps

ks

)]

sp

(24)  

where εsd denotes the shear cracked strain and εps denotes the resultant 
tangential strain.  

(2) Cracked status 

In the bilinear cohesive fracture model, when the tensile strength σpt 
becomes zero, the spring undergoes tensile fracture, and the cohesion cp 
becomes zero accordingly. Therefore, when the spring undergoes tensile 
fracture, not only the tensile fracture energy wpct but also the shear 
fracture energy wpcs must be calculated. When cp becomes zero, the 
numerical spring undergoes shear fracture, and σt also becomes zero. 
Therefore, when the spring undergoes shear fracture, not only the shear 
fracture energy wpcs but also the tensile fracture energy wpct must be 
calculated. 

When the spring undergoes only tensile fracture, the area of triangle 
OAB in Fig. 9(c) is equal to wpct. For the shear fracture energy wpcs, there 
are differences in the calculation according to the tangential stress state. 

Fig. 6. Tangential deformation energy wpes.  

Fig. 7. Tensile fracture energy wpct for the tensile damage.  

Fig. 8. Shear fracture energy wpcs for the shear damage.  
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When the tangential stress corresponds to the elastic stage and the 
tangential stress is less than or equal to the sliding friction stress σsd, wpcs 
is equal to zero. When the tangential stress corresponds to the elastic 
stage and is larger than σsd, the area of quadrilateral ODFE in Fig. 10(a) 
is equal to wpcs. When the tangential stress corresponds to the softening 
stage, the area of pentagon OADFE in Fig. 10(b) is equal to wpcs. 

When the spring undergoes only shear fracture, the area of quadri
lateral OABD in Fig. 10(c) is equal to wpcs. For the tensile fracture energy 
wpct, there are differences in the calculation according to the normal 

stress state. When the normal stress is in compression, wpct is equal to 
zero. When the normal spring is at the elastic stage of tension, the area of 
triangle ODE in Fig. 9(a) is equal to wpct. When the normal stress cor
responds to the softening stage of tension, the area of quadrilateral 
OADE in Fig. 9(b) is equal to wpct. 

When the spring undergoes combined tensile fracture and shear 
fracture, the area of triangle OAB in Fig. 9(c) is equal to wpct, and the 
area of quadrilateral OABD in Fig. 10(c) is equal to wpcs. 

To obtain the spring fracture energy WPC of the entire model, first, 

Fig. 9. Tensile fracture energy wpct.  

Fig. 10. Shear fracture energy wpcs.  
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the tensile fracture energy wpct is calculated based on Eq. (25). Second, 
the shear fracture energy wpcs is calculated based on Eq. (26). Subse
quently, the fracture energy wpc of each cracked spring is calculated 
based on Eq. (27). Finally, all cracked springs are looped to obtain the 
spring fracture energy WPC of the entire model (as shown in Eq. (28). 

wpct =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

σ2
pz

kn
sp Fig.9(a)

[
1
2
σptεtd −

1
2

σpz

(
εtd −

(
εpz −

σpz

kn

))]

sp Fig.9(b)

1
2

σptεtdsp Fig.9(c)

(25)  

wpcs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
2

(
σps − σpztanφ

)2

ks
+ σpztanφ

(
σps − σpztanφ

)

ks

]

sp Fig.10(a)

[
1
2
cpεsd −

1
2
(
σps − σpztanφ

)
(

εsd −

(

εps −
σpztanφ

ks

))

+σpztanφ
(

εps −
σpztanφ

ks

)

]sp Fig.10(b)

(
1
2
cpεsd + σpztanφεsd

)

sp Fig.10(c)

(26)  

wpc = wpct +wpcs (27)  

WPC =
∑Npc

k=1
wpc (28)  

where Npc denotes the number of cracked springs. 

3.2.2.2. Unloading path. For the normal stress of numerical spring, the 
tensile fracture energy wpct during the unloading process is plotted in 
Fig. 11. At time ti, the normal stress is located at point D. From ti to ti+1, 
the normal stress undergoes unloading, and it is located at point G at 
time ti+1. The area of quadrilateral OADE in Fig. 11 is equal to the value 
of tensile fracture energy wpct, which is defined as 

wpct =
1
2
(
σpt + σtm

)(
εtm −

σtm

kn

)
sp (29)  

where εtm denotes the tensile strain at point D and σtm denotes the tensile 
stress at point D. 

For the tangential stress of numerical spring, the shear fracture en
ergy wpcs during the unloading process is plotted in Fig. 12. At time ti, the 
tangential stress is located at point D. From ti to ti+1, the tangential stress 
undergoes unloading, and it is located at point G at time ti+1. The area of 
quadrilateral OADE in Fig. 12 is equal to the value of shear fracture 
energy wpcs, which is defined as 

wpcs =
1
2
(
σps + σsm

)
(

εsm −
σsm

kt

)

sp (30)  

where εsm denotes the tangential strain at point D and σsm denotes the 
tangential stress at point D. 

3.2.3. Friction energy WR 
After the interface cracks, the blocks on both sides slide, which 

consumes some energy, and the friction energy WR is only related to the 
tangential stress and tangential strain of numerical spring. The tangen
tial state of spring at each time step is divided into a cracked state and 
uncracked state. Therefore, the state of spring from time t-Δt to time t 
includes four types: uncracked → uncracked, uncracked → cracked, 
cracked → uncracked and cracked → cracked. Considering both the 
tangential stress–strain curve and the interaction characteristics be
tween blocks, it is concluded that the friction energy wr is not zero only 
in the two cases of uncracked → cracked and cracked → cracked. When 
the tangential stress state of numerical spring changes from uncracked to 
cracked, the area of quadrilateral BDFE in Fig. 13(a) is equal to wr. When 
the tangential stress state of numerical spring changes from cracked to 
cracked, the area of quadrilateral DHFE in Fig. 13(b) is equal to wr. Since 
the CDEM adopts an explicit iterative algorithm, the relative friction 
displacement ΔUi from time t-Δt to time t is written as 

ΔUi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Gt− Δt = Guc,Gt = Guc
[(

εt
pi −

σt
pi

ks

)

−

(

εt− Δt
pi −

σt− Δt
pi

ks

)]

lpi if Gt− Δt = Guc,Gt = Gc

[(

εt
pi −

σt
pi

ks

)

−

(

εt− Δt
pi −

σt− Δt
pi

ks

)]

lpi if Gt− Δt = Gc,Gt = Gc

0 if Gt− Δt = Gc,Gt = Guc

(31)  

where εt− Δt
pi and εt

pi denote the tangential strain components of numerical 
spring at time t-Δt and t, respectively. σt− Δt

pi and σt
pi denote the tangential 

stress components of numerical spring at time t-Δt and t, respectively. lpi 
denotes the characteristic length of numerical spring. 

To calculate the friction energy WR of the entire model, first, the 
relative friction displacement ΔUi is calculated based on Eq. (31). Sub
sequently, the friction energy wr of each numerical spring is calculated 
based on Eq. (32). Finally, all springs are looped to obtain the friction 
energy WR of the entire model (as shown in Eq. (33). 

wr = σpxspΔUx + σpyspΔUy (32)  

WR =
∑NP

k=1
wr (33)  

3.2.4. Gravitational potential energy WG 
The gravitational potential energy WG is the energy that an object 

has because of the action of gravity, and the WG of an object at a position 
in space is equal to the work done by gravity in moving the object from 
that position to a reference position. The gravitational potential energy 
WG of the entire model is defined as 

Fig. 11. Tensile fracture energy wpct during unloading.  

Fig. 12. Shear fracture energy wpcs during unloading.  
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WG =
∑NE

k=1
ρvgh (34)  

where ρ denotes the element density. v denotes the element volume. g 
denotes the gravitational acceleration. h denotes the elevation of the 
element body centre relative to the reference position. Ne denotes the 
number of elements. 

The change in gravitational potential energy ΔWG is defined as 

ΔWG =
∑NE

k=1
ρvgΔh (35) 

The calculation flow is plotted in Fig. 14. First, the acceleration, 
velocity and displacement of nodes are calculated. Subsequently, the 
deformation force of the elements and numerical springs is calculated, 
followed by obtaining the resultant force of the nodes. Then, the energy 
statistics algorithm is conducted to obtain the value of various energy 
components. Finally, the system calculation time is obtained, and it is 
determined whether to terminate the iterative calculation. 

In the energy statistics algorithm, there are many variables, some of 

which are basic parameters of the numerical model (e.g., element 
number NE, spring sectional area sp), some of which are basic parameters 
of the bilinear cohesive fracture model (e.g., cohesion cp, tensile strength 
σpt, friction angle φ), and some of which are process variables of the 
numerical simulation (e.g., spring normal stress σpz, spring tangential 
stress σps, spring normal strain εpz, spring tangential strain εps). When 
the energy statistics algorithm is introduced into the numerical simu
lation, no additional parameters need to be input. The researchers only 
need to set the constitutive model parameters of the material, and the 
energy statistical algorithm automatically reads the mechanical pa
rameters to complete the computation of various energy components. 

3.3. Verification 

The accuracy of CDEM in simulating the mechanical response of 
material under static and dynamic loading has been verified by many 
scholars. Therefore, this section mainly investigates the accuracy and 
robustness of the energy statistics algorithm for the bilinear cohesive 
fracture model. 

3.3.1. Uniaxial stretching test with a prefabricated groove 
In the uniaxial stretching test with a prefabricated groove, the 

specimen mainly undergoes tensile fracture. To verify the accuracy of 
the energy statistics algorithm in the uniaxial stretching test with a 
prefabricated groove, a 3D numerical model is established (as shown in 
Fig. 15), with length l = 50 mm, height h = 100 mm, and thickness d =
20 mm. A groove is preset in the middle of the left side of the model, with 
width w = 0.2 mm and length b = 12 mm. The model is meshed with 
tetrahedral elements, with a total of 24,489 nodes and 126,675 ele
ments. To simulate the fracture process of the specimen under uniaxial 

Fig. 13. Friction energy WR.  

Fig. 14. Schematic diagram of the calculation flow in CDEM.  
Fig. 15. Numerical model of the uniaxial stretching test with a pre
fabricated groove. 
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stretching conditions, vertical stretching displacement loading is 
applied at the top and bottom boundaries, and the loading velocity vy =

1 × 10-9 m/s. During the numerical simulation of the uniaxial stretching 
test with a prefabricated groove, local nonviscous damping is adopted as 
the damping algorithm, and the value of the local damping coefficient αL 
is set to 0.6. The mechanical parameters of the specimen are listed in 
Table 1. According to the energy conservation law, the cumulative value 
WT of various energy components should be equal to the external work 
WO made by the displacement loading. 

The vertical displacement results of the specimen are plotted in 
Fig. 16. The crack expansion path at the outer surface of specimen is 
plotted in Fig. 17, and green indicates that the interface undergoes 
tensile fracture. The change curves of WT and WO are plotted in Fig. 18 
(a). With increasing tensile strain, WT and WO continue to increase, and 
their change trends are basically the same. When the tensile strain εt 
reaches 0.8‰, the cumulative value of various energy components is WT 
= 8.37 × 10-2 J, the external work is WO = 8.47 × 10-2 J, and the error is 
γ = 1.18%. The change curves of various energy components are plotted 
in Fig. 18(b). It can be concluded that the energy in the model is mainly 
the element deformation energy WEE during the initial loading period. 
As the loading time increases, cracks gradually appear, and the element 
deformation energy WEE gradually decreases. The spring fracture energy 
WPC and damping energy WD gradually increase. 

Based on the corresponding relationship between WO and WT and the 
change trends of various energy components, the accuracy of the energy 
statistical algorithm in the uniaxial stretching test with a prefabricated 
groove is verified. 

3.3.2. Uniaxial compression test with a hole 
In the uniaxial compression test with a hole, the specimen undergoes 

tensile fracture, shear fracture and sliding friction. To verify the accu
racy of the energy statistics algorithm in the uniaxial compression test 
with a hole, a 3D numerical model is established (as shown in Fig. 19), 
with length l = 100 mm, height h = 100 mm, and thickness d = 50 mm. A 
cylindrical hole with a diameter d = 20 mm is preset in the middle of the 
model. The model is meshed with tetrahedral elements, with a total of 
12,622 nodes and 63,923 elements. To simulate the fracture process of 
the specimen under uniaxial compression conditions, a normal 
displacement constraint is applied at the bottom boundary, a vertical 
compression displacement loading is applied at the top boundary, and 
the loading velocity is vy = 1 × 10-8 m/s. During the numerical simu
lation of the uniaxial compression test with a hole, local nonviscous 
damping is adopted as the damping algorithm, and the value of the local 
damping coefficient αL is set to 0.8. The mechanical parameters are 
listed in Table 2. According to the energy conservation law, the cumu
lative value WT of various energy components should be equal to the 
external work WO made by the displacement loading. 

The vertical displacement results of the specimen are plotted in 
Fig. 20. The crack expansion path at the outer surface of the specimen is 
plotted in Fig. 21. Green indicates that the interface undergoes tensile 
fracture, and red indicates that the interface undergoes shear fracture. 
The change curves of WT and WO are plotted in Fig. 22(a). It can be 
concluded that with increasing compressive strain, WT and WO continue 
to increase, and their change trends are basically the same. When the 
compressive strain εc reaches 5‰, the cumulative value of various en
ergy components WT = 94.09 J, the external work WO = 95.69 J, and the 
error γ = 1.67%. The change curves of various energy components are 
plotted in Fig. 22(b). It can be concluded that the energy in the model is 
mainly the element deformation energy WEE during the initial loading 

period and that the spring deformation energy WPE also increases 
slowly. As the loading time increases, cracks gradually appear, and the 
element deformation energy WEE and spring deformation energy WPE 
gradually decrease. The spring fracture energy WPC, friction energy WR 
and damping energy WD gradually increase. 

Based on the corresponding relationship between WO and WT and the 
change trends of various energy components, the accuracy of the energy 
statistical algorithm in the uniaxial compression test with a hole is 
verified. 

Based on the numerical results of the uniaxial stretching test and 
uniaxial compression test, not only the accuracy and robustness of the 
energy statistics algorithm for the bilinear cohesive fracture model but 
also the conservation of energy and mass of the CDEM during the 
initiation and propagation of cracks are verified. Therefore, the CDEM 
and energy statistics algorithm are adopted to conduct the full-time 
numerical simulation of rock mass under sequential detonation 
loading, and the displacement, fracture and energy evolution charac
teristics of the rock mass are investigated. 

4. Numerical results 

4.1. Basic background 

4.1.1. Numerical model 
The numerical model of the rock mass and explosives is plotted in 

Fig. 23, and the top boundary and left boundary of the model represent 
the ground. The horizontal length of the rock mass l = 20 m, the vertical 
height of the rock mass h = 8 m, and the diameter of the explosives d =
0.025 m. Three explosives are arranged at the same horizontal level with 
a vertical distance of 3 m from the top boundary, and the horizontal 
distance between adjacent explosives is 5 m. The model is meshed by 
triangular elements, with a total of 4270 nodes and 132,801 elements. 
To avoid stress wave reflection at the artificial truncation boundary, the 
right boundary and bottom boundary of the model are set as the 
reflection-free boundary. 

Although local nonviscous damping was originally proposed to 
equilibrate static and quasistatic simulations, it has some advantages 
that make it attractive for dynamic simulations, and local nonviscous 
damping is adopted for the dynamic simulation in this study. According 
to the relationship between the local damping coefficient αL and critical 
damping D, αL is set to 0.001 in the dynamic simulation. Kuhlemeyer 
and Lysmer (1973) proposed that for the accurate simulation of wave 
transmission, the element size Δl must be smaller than 1/10 ~ 1/8 of the 
wavelength associated with the highest frequency component of the 
wave. Considering the computational efficiency and the influence of the 
mesh size on the high-frequency component dispersion, the mesh of the 
explosives and rock mass around the explosives is refined, and this mesh 
size is set to 0.01 m. As the distance from the explosive increases, the 
mesh size of the rock mass gradually increases to a maximum mesh size 
of 0.2 m, which is sufficient to accurately describe the wave 
transmission. 

4.1.2. Mechanical parameters 
The Jones-Wilkins-Lee (JWL) equation of state is adopted to simulate 

the explosive initiation process. The equation of state was proposed by 
Lee in 1965 based on the work of Jones and Wilkins and is written as 

P = A
(

1 −
ω

R1V′

)

e− R1V′
+B
(

1 −
ω

R2V′

)

e− R2V′
+

ωE0

V′ (36)  

where P denotes the instantaneous pressure of detonation products, V’ 
denotes the relative volume of detonation products, and E0 denotes the 
specific internal energy of detonation products at the initial moment. A, 
B, R1, and R2 are obtained from the cylindrical test. 

The type of explosive simulated in the paper is TNT, and the JWL 
parameters of TNT derived from Liu (Liu et al., 2022) are listed in 

Table 1 
Mechanical parameters of the specimen.  

Density(kg/ 
m3) 

Elastic modulus 
(GPa) 

Cohesion 
(MPa) 

Tensile strength 
(MPa) 

Friction 
angle(◦) 

2300 5 8 5 35  
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Table 3. To simulate the sequential detonation process, the initiation 
time interval tg between explosives is set to 0.03 s, and the mechanical 
parameters of the rock mass are listed in Table 4. 

4.2. Displacement characteristics 

4.2.1. Resultant displacement results 
The resultant displacement nephograms of the rock mass under 

sequential detonation loading at different moments are plotted in 
Fig. 24. t = 0.00 s, t = 0.03 s and t = 0.06 s indicate the start times of the 
first explosion, second explosion and third explosion, respectively. t =

0.01 s, t = 0.04 s and t = 0.07 s indicate the end times of the first ex
plosion, second explosion and third explosion, respectively. 

At the end of the first explosion (Fig. 24(a)), the rock in the triangular 
area on the left side is significantly deformed and slightly slipped under 
the action of the explosion gas. There are two funnel-shaped areas (the 
yellow areas in Fig. 24(a)) where the rock has a larger displacement than 
that in the surrounding area; one funnel-shaped area is located between 
explosive 1 and the left boundary, and the other funnel-shaped area is 
located between explosive 1 and the top boundary. Although the ex
plosion gas of explosive 1 disappears, the slipped rock has a larger 
movement velocity, and the displacement of rock in the triangle area 

Fig. 16. Vertical displacement nephograms.  

Fig. 17. Crack expansion path at the outer surface of the specimen.  

Q. Lin et al.                                                                                                                                                                                                                                      



Computers and Geotechnics 162 (2023) 105607

12

continues to increase from t = 0.01 s to t = 0.03 s. By the start time of the 
second explosion (Fig. 24(b)), the rock in the triangular area has expe
rienced significant slippage, and the increase in displacement of the 
funnel-shaped area is larger than that of the surrounding area. 

Under the action of the explosion gas of explosive 2, the rock above 
explosive 2 also slips, and the newly emerging slippage area is connected 
to the slippage area generated by explosive 1 at the end time of the 
second explosion (Fig. 24(c)). At the start time of the third explosion 
(Fig. 24(d)), the rock on the left of explosion 1 and above explosive 1 is 
significantly scattered, and the rock above explosive 2 also slips 
obviously. 

At the end of the third explosion (Fig. 24(e)), the scattering phe
nomenon of rock above and on the left of explosive 1 becomes more 
significant, the displacement of rock above explosive 2 also continues to 
increase, and the rock above explosive 3 slips slightly. By t = 0.1 s 
(Fig. 24(f)), the rock above explosive 3 has obviously slipped, and the 
scattering phenomenon of rock above explosive 1, on the left of explo
sive 1 and above explosive 2 becomes more obvious. 

4.2.2. Resultant displacement curve 
The resultant displacement curves at the left boundary are plotted in 

Fig. 25. The displacement at the same position continues to increase 
with increasing time. For the same moment, the displacement first in
creases and then decreases with increasing y because the distance be
tween the monitoring point and explosives first decreases and then 

increases with increasing y. When the distance between the monitoring 
point and explosives decreases, the detonation loading that the rock 
bears increases, resulting in larger deformation and displacement. In 
addition, the value of y corresponding to the maximum displacement is 
larger than the value of y corresponding to the explosive because of the 
overlying rock weight. 

The resultant displacement curves at the top boundary are plotted in 
Fig. 26. Within the first 0.07 s, the displacement first increases and then 
decreases with increasing ×, and the value of × corresponding to the 
maximum displacement is approximately equal to the value of × cor
responding to explosive 1. When the time t = 0.1 s, there are three in
flection points on the curve, and the values of × corresponding to the 
first, second and third inflection points are approximately equal to the 
value of × corresponding to explosions 1, 2 and 3, respectively. During 
the initial period, although the detonation loading of explosives 2 and 3 
has an influence on the acceleration of the rock mass, the influence on 
the displacement is negligible. With increasing time, the influence on the 
displacement gradually becomes obvious, and three inflection points 
appear. 

4.3. Fracture characteristics 

4.3.1. Fracture ratio α 
To quantitatively study the fracture evolution characteristics of the 

rock mass under sequential detonation loading, a dimensionless quan
tity, the fracture ratio α, is introduced: 

α =
Sc

Sa
(37)  

where α denotes the fracture ratio. Sc denotes the area of the cracked 
interface. Sa denotes the area of all interfaces. 

The time-history curve of fracture ratio α is plotted in Fig. 27. Periods 
A, C and E represent the first, second, and third explosion periods, 
respectively; Periods B, D and F represent the first, second, and third 
post-explosion periods, respectively. The fracture ratio α gradually in
creases with increasing time, and the time-history curve of α has an 
obvious staged characteristic, which is closely related to the character
istics of the explosives. During the explosion periods, α increases 
sharply, and the rate of increase is not constant. At the beginning of the 
explosion period, α increases rapidly, and then the rate of increase 
gradually decays, which is due to the gradual reduction in explosion gas 
pressure. During the post-explosion periods, α increases slowly and ul
timately no longer changes because of the disappearance of explosion 
gas. At the end of the first explosion period, the fracture ratio αa =

14.49%. At the end of the second explosion period, the fracture ratio αc 
= 33.13%. At the end of the third explosion, the fracture ratio αe =

Fig. 18. Change curves of stress and energy in the uniaxial stretching test.  

Fig. 19. Numerical model of the uniaxial compression test with a hole.  

Table 2 
Mechanical parameters of the specimen.  

Density(kg/ 
m3) 

Elastic modulus 
(GPa) 

Cohesion 
(MPa) 

Tensile strength 
(MPa) 

Friction 
angle(◦) 

2630  24.7 29  7.19 30  
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Fig. 20. Vertical displacement nephograms.  

Fig. 21. Crack expansion paths at the outer surface of the specimen.  

Fig. 22. Change curves of stress and energy in the uniaxial compression test.  
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48.81%. It can be concluded that fracture ratio α increases the most 
during the second explosion period. This is due to the appearance of new 
free faces after the first explosion, and some interfaces have been 
damaged but not fractured, which are then easily fractured under 
detonation loading during the second explosion period. 

4.3.2. Initial fracture results 
To further investigate the fracture type and spatial distribution 

characteristics of cracked interfaces, the initial fracture nephograms of 
interfaces are plotted in Fig. 28. The green line indicates that the 
interface undergoes tensile fracture, and the red line indicates that the 
interface undergoes shear fracture. At the end of the first explosion 
(Fig. 28(a)), the cracked interfaces are mainly near explosive 1, and the 
interfaces near explosive 1 and the top boundary mainly undergo shear 
fracture. As the distance from explosive 1 increases, the proportion of 
interfaces that undergo tensile fracture gradually increases. From t =

Fig. 23. Numerical model of the rock mass and explosives.  

Table 3 
JWL parameters of TNT.  

Charge density 
(kg/m3) 

Initial internal energy 
(J/m3) 

CJ pressure 
(Pa) 

Detonation velocity 
(m/s) 

1630 7e9 21e9 6930  

Table 4 
Mechanical parameters of the rock mass.  

Density 
(kg/m3) 

Elastic 
modulus(GPa) 

Cohesion 
strength(MPa) 

Tensile 
strength(MPa) 

Friction 
angle(◦) 

2500 50 6 2 40  

Fig. 24. Resultant displacement nephograms of the rock mass.  

Q. Lin et al.                                                                                                                                                                                                                                      



Computers and Geotechnics 162 (2023) 105607

15

0.01 s to t = 0.03 s (Fig. 28(b)), there are still a few interfaces that 
undergo tensile fracture and shear fracture. At the end of the second 
explosion (Fig. 28(c)), the newly cracked interfaces are mainly near 
explosive 2, and compared to explosive 1, the proportion of the interface 
undergoing tensile fracture around explosive 2 significantly increases. 
As the distance from explosive 2 increases, the proportion of interfaces 
that undergo tensile fracture gradually increases. From t = 0.04 s to t =
0.06 s (Fig. 28(d)), there are still a few interfaces that undergo tensile 
and shear fracture. Since the tensile fracture energy and tensile strength 
are much less than the shear fracture energy and shear strength, the 
newly cracked interfaces mainly undergo tensile fracture. At the end of 
the third explosion (Fig. 28(e)), the newly cracked interfaces are mainly 
near explosive 3, and the interfaces near explosive 3 mainly undergo 
tensile fracture. By time t = 0.1 s (Fig. 28(f)), the fracture nephogram no 
longer changes. Based on the fracture nephograms at different moments, 

the fracture type and the spatial distribution characteristics of cracked 
interfaces are closely related to the characteristics of explosives 1, 2 and 
3. 

4.4. Energy characteristics 

4.4.1. Element energy WEE and WEV 
The time-history curve of element deformation energy WEE is plotted 

in Fig. 29(a), and it is observed that the time-history curve has an 
obvious staged characteristic. During the explosion periods of explosions 
1, 2 and 3, the change trends of WEE are similar. However, there is a 
significant difference in the change trends between the explosion period 
and the post-explosion period. At the beginning of the explosion period, 
WEE increases sharply to the maximum value due to the high explosion 
gas pressure. Subsequently, WEE decreases sharply due to the reduction 
in explosion gas pressure and the interaction between elements, 
including fracture and slippage. At the beginning of the post-explosion 
period, the external force applied at the elements decreases sharply 
due to the disappearance of explosion gas, resulting in a sharp decrease 
in the element deformation energy WEE, and then the decreasing trend 
decays. The maximum values of WEE during the three explosion periods 
are basically the same, which indicates that the fracture and movement 
of the rock mass caused by the previous explosion do not have a sig
nificant influence on the maximum value of WEE. 

The time-history curve of element kinetic energy WEV is plotted in 
Fig. 29(b), and it is observed that the time-history curve has an obvious 
staged characteristic. During the explosion periods of explosions 1, 2 and 
3, the change trends of WEV are similar. However, there is a significant 
difference in the change trends between the explosion period and the 
post-explosion period. At the beginning of the explosion period, the 
element acceleration is large due to the high explosion gas pressure, 
which results in a sharp increase in WEV. Subsequently, with the 
reduction in explosion gas pressure, the force exerted by the explosion 
gas on the elements gradually decreases, and the element acceleration 
gradually decreases, which results in a decrease in the rate of increase in 
WEV. During the post-explosion period, WEV gradually decreases due to 
gravity and the interaction between elements. WEV increases the most 
during the first explosion period, and the increase in WEV during the 
explosion periods gradually decreases with increasing time. 

4.4.2. Spring energy WPE and WPC 
The time-history curve of the spring deformation energy WPE is 

plotted in Fig. 29(c). The change trends of WPE at the beginning stage of 
the three explosion periods are similar, but there are a few differences in 
the change trend during the three explosion periods at the later stage. In 
addition, there is a significant difference in the change trends between 
the explosion period and the post-explosion period. At the beginning of 
the explosion period, the squeezing and slippage between the elements 
near the explosive cause the normal stress and tangential stress of the 
numerical springs to increase sharply, so WPE increases sharply to the 
maximum value. As the explosion gas pressure decays, the squeezing 
and slippage between the elements are weakened, resulting in a rapid 
decrease in WPE. However, since the rock far from the explosive has not 
yet been significantly displaced, when the rock near the explosive moves 
to the outside, squeezing and slippage between the elements occur 
again, so WPE fluctuates during the three explosion periods at the later 
stage. When the explosion gas disappears, the interaction between the 
elements is significantly weakened, resulting in a sharp decrease in WPE, 
followed by a gradual decrease. 

The time-history curve of the spring fracture energy WPC is plotted in 
Fig. 29(d), and it is observed that the time-history curve has an obvious 
staged characteristic. During the explosion periods of explosives 1, 2 and 
3, the change trends of WPC are similar. However, there is a significant 
difference in the change trends between the explosion period and the 
post-explosion period. According to Eq. (23) to Eq. (30), the change 
trend of WPC is closely related to the change trend of the cracked area Sc. 

Fig. 25. Displacement curves at left boundary.  

Fig. 26. Displacement curves at top boundary.  

Fig. 27. Time-history curve of fracture ratio α.  
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At the beginning of the explosion period, many interfaces satisfy the 
fracture criterion and become cracked, so WPC increases sharply. Sub
sequently, as the explosion gas pressure decreases, the increase in stress 
at the interface decays, which leads to a gradual decrease in the increase 
in Sc, so the increase in WPC also gradually decays. After the explosion 
gas disappears, the stress at some interfaces continues to increase, the 
fracture criterion is satisfied, and the interface cracks, so WPC slowly 
increases. Finally, no interface satisfies the fracture criterion, and WPC 
no longer increases. Until the next explosion happens, many interfaces 
crack, causing WPC to increase sharply again. 

4.4.3. Dissipated energy WR and WD 
The time-history curve of friction energy WR is plotted in Fig. 29(e), 

and it is observed that the time-history curve has an obvious staged 
characteristic. During the explosion periods of explosives 1, 2 and 3, the 
change trends of WR are similar. However, there is a significant differ
ence in the change trends between the explosion period and the post- 
explosion period. According to Eq. (31), WR only occurs at the cracked 
interface, so its increasing trend is closely related to that of cracked area 
Sc. At the beginning of the explosion period, many interfaces satisfy the 
fracture criterion and become cracked due to the high explosion gas 
pressure. Sliding friction occurs between the elements on both sides of 
the cracked interface, so WR increases sharply. Subsequently, as the 
explosion gas pressure decreases, the increase in Sc decays, which leads 
to a gradual decrease in the increase in WR. During the post-explosion 
period, the elements on both sides of the cracked interface still un
dergo sliding friction, so WR increases slowly. 

The time-history curve of damping energy WD is plotted in Fig. 29(f), 
and it is observed that the time-history curve has an obvious staged 
characteristic. During the explosion periods of explosions 1, 2 and 3, the 
change trends of WD are similar. However, there is a significant 

difference in the change trends between the explosion period and the 
post-explosion period. According to the formula of WD, WD is only 
related to the damping coefficient, nodal force and displacement 
increment, and the damping coefficient is constant. At the beginning of 
the explosion period, the nodal force is large because of the high ex
plosion gas pressure. Although the displacement increment is small, WD 
still increases sharply. Along with the decay of explosion gas pressure, 
the nodal force gradually decreases, resulting in a gradual decrease in 
the increase in WD. Although the explosion gas disappears in the post- 
explosion period, the nodal force and displacement increment are not 
zero, resulting in a slow increase in WD. By comparing the increase in WD 
among the different post-detonation periods, it is concluded that as the 
time of explosions increases, the increase in WD gradually increases. 

4.4.4. Gravitational energy ΔWG 
The time-history curve of the change ΔWG in gravitational potential 

energy is plotted in Fig. 29(g). The change trends of ΔWG during the 
explosion period and post-explosion period are similar, and the increase 
in ΔWG during the explosion period gradually increases as the time of 
explosion increases. Based on Eq. (35), the value of ΔWG is only related 
to the gravitational acceleration, mass and vertical displacement incre
ment. Since the gravitational acceleration and mass do not change, the 
change trend of ΔWG is only determined by the vertical displacement 
increment. During the explosion period, the vertical displacement 
increment is larger than zero because of the action of the explosion gas, 
so ΔWG gradually increases. Since the vertical acceleration of the rock 
mass is positive, the vertical velocity and displacement increment 
gradually increase, resulting in the rate of increase in ΔWG gradually 
increasing. During the post-explosion period, the rock elements still 
move upwards, and ΔWG gradually increases. However, due to the in
fluence of gravity and the interaction between elements, the vertical 

Fig. 28. Initial fracture nephograms of interfaces.  
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velocity gradually decreases, and the rate of increase in ΔWG is smaller 
than that during the explosion period. In addition, with the increase in 
the time of explosions, the rate of increase in ΔWG during the post- 
explosion period gradually increases. 

5. Conclusions 

To optimize the control parameters of multiple-hole blasting, reduce 
the detrimental effect on surrounding facilities and improve the 

Fig. 29. Time-history curves of various energy components.  
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utilization efficiency of explosion energy, the dynamic mechanical re
sponses of rock mass under sequential explosive detonation, including 
the displacement, fracture and energy evolution characteristics, are 
investigated in this study. Based on the rock fracture status and the 
stress–strain curve of the bilinear cohesive fracture model, an energy 
statistics algorithm considering all energy components is first proposed, 
and the accuracy and robustness are verified. Then, the CDEM and en
ergy statistics algorithm are adopted to simulate the dynamic response 
of rock mass under sequential detonation loading, and a dimensionless 
index, the fracture ratio α, is introduced to quantitatively analyse the 
change trend of the cracked interface. The results indicate that the 
CDEM and energy statistics algorithm can accurately model the dynamic 
response of rock mass under sequential detonation loading and obtain 
the complex conversion process of explosion energy in the rock mass. 
The following conclusions can be drawn:  

1) The weight of the overlying rock mass affects the spatial distribution 
of displacement at the free face. For the top free face, the horizontal 
position corresponding to the maximum displacement is equal to the 
horizontal position of explosive 1. However, for the left free face, the 
vertical position corresponding to the maximum displacement is 
higher than the vertical position of the explosives.  

2) The cracked interface mainly appears during the explosion periods, 
and the cracked interface generated by explosive 2 is largest because 
of the new free face caused by explosive 1. The damage on the 
interface caused by the previous explosion has a significant effect on 
the fracture type; the rock around explosive 1 mainly undergoes 
shear fracture, while the rock around explosives 2 and 3 mainly 
undergoes tensile fracture.  

3) The change trends of various energy components are different during 
the explosion periods and post-explosion periods, which is closely 
related to the dynamic response of the rock mass. The explosion 
energy is mainly converted into friction energy WR and element ki
netic energy WEV, and only a small proportion of explosion energy is 
used to break the rock mass. 
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