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Abstract
In this work, we develop an accurate and stable Updated Lagrangian particle hydrodynamics (ULPH) modeling to simulate
complicated free-surface fluid flows. Leveraging its inherent properties as a Lagrangian particle method, the ULPH has
natural advantages in modeling free-surface flows. However, similar to other meshfree methods, ULPH is subject to numerical
instabilities and non-physical pressure fluctuations when solving the Navier–Stokes equation in the explicit numerical scheme.
Within the framework of the ULPH method, several innovative enhanced treatment techniques have been proposed and
combined with other previouly developed methods to establish an ULPH single-phase flow model. The main novelties of
these techniques are the derivation of the density diffusive term in the continuum equation inspired by δ-SPH to eliminate
pressure oscillations, and the proposal of a new free-surface search algorithm to determine the particles and their normal
vectors at the free surface. The ULPH is a nonlocal fluid dynamics model, which is in fact a prototype of Peridynamics
in fluid mechanics. Considering the nature of free-surface fluid flows, we strategically implement the diagonalization and
renormalization of the shape tensor for particles located in close proximity to the free-surface region to improve the numerical
stability of computations. Several complex free-surface flow benchmark examples have been simulated, which confirms
that the enhanced treatment techniques can effectively capture the details of surface flow evolution and maintain long-term
stability. Moreover, the qualitative and quantitative analyses of the results indicate that the proposed ULPH surface flowmodel
is highly accurate and stable for simulating complex free-surface fluid flows.
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1 Introduction

Free-surface fluid flows are a common occurrence in both
natural phenomena and industrial applications, especially in
hydraulic and ocean engineering, as well as environmental
fluid mechanics engineering and sciences. Manifestations of
such phenomena encompass a diverse range of events such
as flood flow, dam breaks, tsunami waves, offshore waves
and tidal bore, ship waves, liquid sloshing, water entry, deck
waves, among others. These events are often associated with
or dictated by intense nonlinear physical phenomena, includ-
ing large deformations of free surfaces, rolling and breaking
ofwaves, and splashing of liquid droplets. These free-surface
flows can induce violent impact loads on hydraulic, offshore,
and naval or marine structures. Evaluating these impact loads
is very important for designing engineering structures to
guarantee the human safety as well as the safety of civil
operations, facilities, and equipment.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02368-x&domain=pdf


298 Computational Mechanics (2024) 73:297–316

Over the years, the fluid dynamics of free-surface flows
has been extensively investigated in numerical modelings
by many researchers. However, the development of robust
and efficient numerical techniques for accurately simulat-
ing complex free-surface fluid flows continues to present
a significant challenge. For grid-based methods, such as
Finite VolumeMethod (FVM) [1], Finite Difference Method
(FDM) [2] and Finite Element Method (FEM) [3], the evolu-
tion of physical quantities is carried out on grid nodes, which
are significantly influenced by the connectivity of the grid.
The flexibility of FVM and FEM lies in their adaptability to
unstructured grids, allowing them to effectively handle com-
plex geometries. To simulate free-surface flows, specifically
in situations involving substantial interface deformation, sup-
plementary techniques such as volume of fluid (VOF) [4,
5] and level set (LS) [6, 7] methods are often necessary in
these grid-based approaches. However, it’s worth acknowl-
edging that the implementation of these additional techniques
to track and capture changing free surfaces can require
significant computational resources. Conversely, meshfree
methods, which are intrinsically Lagrangian, possess inher-
ent advantages in addressing complex free-surface flows.
Typical particle methods of this kind include Smoothed Par-
ticle Hydrodynamics (SPH) [8–10], Material Point Method
(MPM) [11, 12], Moving Particle Semi-implicit method
(MPS) [13, 14], and Reproducing kernel particle method
(RKPM) [15], etc.

SPH is a well-known particle method initially proposed
for modeling astrophysical problems [16] before being
adapted for simulating free-surface flows byMonaghan [17].
Through continuous improvement and development, SPH
has been widely employed to simulate violent free-surface
flows, such as sloshingflows [18],wavebreaking [19], bubble
dynamics [20], tsunami flows [21], hydroelastic impact [22],
etc. TheMPSmethod,whichwas proposed byKoshizuka and
Oak [13], has demonstrated success in simulating complex
hydrodynamic environments [23–25]. TheMPMmethodwas
proposed by Sulsky et al. [26], which has the advantages of
Eulerian and Lagrangian methods and can deal with free-
surface flow problems with large deformations [27, 28].

Recently, Tu and Li [29] proposed a novel meshfree
particle method to solve hydrodynamics problems, namely
UpdatedLagrangianParticleHydrodynamics (ULPH),which
is inspired by Peridynamics [30, 31] and SPH [32], and it
is essentially a prototype of nonlocal computational fluid
dynamics model. As a Lagrangian meshfree particle method,
the ULPH is based on nonlocal theory and nonlocal differen-
tial operators. In ULPH, the nonlocal differential operators
are utilized to decouple the fluid governing equations dis-
cretely. Since the accuracy of nonlocal differential operator
depends on the polynomial basis, it can achieve any order of
precision that one desires [33–36]. Therefore, ULPH has a
higher accuracy compared to that of the conventional SPH.

Yan et al. [33, 37] have developed the ULPH multiphase
flow model for simulating complex multiphase flows with
high viscosity and density ratios. Liu et al. [38] have cou-
pled ULPH with PD to investigate the motion and damage
characteristics of ice when it was impacted by a sphere under
ice-water interaction. Despite these advancements, to date,
there has been no application of the ULPH model specifi-
cally to free-surface fluid flows. The development of a unified
ULPH single-phase flowmodelmay hold the potential to sig-
nificantly enhance the current state of free-surface fluid flow
simulation technology.

The primary objective of this work is to develop an
accurate and stable ULPH single-phase flow model for sim-
ulating complex free-surface flows. To accomplish that, we
will first establish the ULPH basic scheme for free-surface
flows based on nonlocal theory. Thanks to the Lagrangian
meshfree feature, ULPH can easily simulate violent free-
surface flows with large deformations by directly tracking
particles. Despite the strong capacities of ULPH, it also
suffers from numerical instabilities and non-physical pres-
sure fluctuations like other meshfree methods, which are
mainly caused by errors due to Lagrange motion and the
weakly compressible hypothesis. The Lagrangian particles
follow the streamlines, and, to some extent, they will lead
to non-uniform particle distributions and particle clustering.
To ensure numerical stabilities and eliminate pressure fluc-
tuations, several innovative enhanced treatment techniques
have been proposed within the framework of ULPH mod-
eling. A conservative density diffusive term is added into
the continuity equation to handle spurious numerical fluctu-
ations in the density/pressure fields. This term is derived from
Taylor series expansion, motivated by the δ-SPH method
[39–41]. The particle shifting technology [42] is also adopted
in the ULPH single-phase flow model to correct particle
positions and prevent particle clustering. Based on the prop-
erties of the dimensionless moment matrix and the geometric
features of the free surface, a newmethod for identifying free-
surface particles is proposed. In addition, an optimal moment
matrix is developed for particles near free surface, which can
effectively eliminate the ill-conditioned moment matrix and
significantly improve the numerical stability. By using these
enhanced treatment techniques, the proposed ULPH single-
phase flow model can be well applied to various complex
free-surface fluid flows.

The rest of this paper is organized as follows. Section2
presents the governing equations and ULPH scheme for free-
surface flows. Subsequently, some processing techniques to
enhance numerical stability and accuracy, such as the den-
sity diffusive term, particle shifting technology, free-surface
detection approach and optimal moment matrix at the free-
surface vicinity, are also introduced in this section. In Sect. 3,
by using the proposed method, some challenging and well-
known free-surface flow benchmark cases are simulated to
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validate the accuracy and significance of the proposed ULPH
single-phase flow model. Finally, we conclude the work in
Sect. 4, providing remarks and future perspectives on the
proposed method.

2 ULPH free-surface fluid flowmodel

In this section, we outline the principal methodology of
the Updated Lagrangian Particle Hydrodynamics (ULPH)
method and present the proposed technical ingredients for
the ULPH free-surface flow model.

2.1 Governing equations

For general weakly compressible barotropic fluids, the gov-
erning equations in the Lagrangian form [43] are expressed
as

⎧
⎨

⎩

Dρ
Dt = −ρ∇ · v
ρ Dv

Dt = −∇p + Fν + ρg
Dr
Dt = v

(1)

where ρ, v and p respectively represent the fluid density,
velocity and pressure, Fν is the viscous force, g is gravi-
tational acceleration, and r indicates the position of fluid
particles.

In system (1), it is closed by the equation of state (EOS)
to construct the relationship between the fluid density and
pressure. Following the assumption of weakly compressible
fluid, a linear equation of state [44] is adopted as

p = c20 (ρ − ρ0) (2)

where c0 and ρ0 represent the reference speed of sound and
reference density, respectively. The EOS limits the density
variation to less than 1%, which is in accordance with the
assumption of aweakly compressible fluid, as theMach num-
ber of the fluid is kept below 0.1. Since the simulation time
step selection is straightly connected to the conditions for
stability, the artificial sound speed of c0 ≥ 10Vmax is chosen
as the reference value rather than the actual physical sound
speed to get a reasonable time step, with Vmax being the
maximum expected velocity.

2.2 ULPH scheme for free-surface fluid flows

In the ULPHmethod, nonlocal differential operators derived
from Taylor series expansion are adopted to calculate com-
mon differential operators [33], such as divergence, gradient
and curl. The feature of the nonlocal differential operator is
that its support holds a finite characteristic length, and it can
be regarded as a generalization of the local operator. When

the support of the nonlocal differential operator degenerates
to a single point, the nonlocal differential operatorwill reduce
to the local operator. The nonlocal divergence operator and
nonlocal gradient operator [33] are respectively defined as
follows:

∇I · (•) :=
∫

HI

ω(x I J )
(�(•)

) · (
M−1

I x I J
)
dVJ (3)

∇I ⊗ (•) :=
∫

HI

ω(x I J )
(�(•)

) ⊗ (
M−1

I x I J
)
dVJ (4)

where symbol (•) represents the arbitrary field, and �(•) :=
(•)J − (•)I is the finite difference operator. HI indicates
the support domain of particle I , referred to as the horizon,
the subscript J represents the J -th particle within the hori-
zon of particle I , and x I J = x J − x I . ω(x I J ) is the kernel
function and must meet specific criteria, such as symme-
try, normalization and compactness. The influence domain of
the kernel function is determined by the smoothing length,
denoted by h. In this study, the Wendland kernel function
[45] is employed with h = 2�x , where �x indicates the ini-
tial particle spacing. M represents the moment matrix with
symmetric properties defined as

MI :=
∫

HI

ω(x I J )x I J ⊗ x I JdVJ . (5)

As a Lagrangian particle method, the ULPH method
requires the discretization of the computational domain into
particles with physical properties. Therefore, nonlocal differ-
ential operators presented inEqs. (3) and (4) can be expressed
in the particle approximation form [33] as follows:

∇I · (•) =
N∑

J=1

ω(x I J )
(�(•)

) · (
M−1

I x I J
)
VJ (6)

∇I ⊗ (•) =
N∑

J=1

ω(x I J )
(�(•)

) ⊗ (
M−1

I x I J
)
VJ (7)

in which N represents the neighboring particle number of
particle I .

The moment matrix defined in Eq. (5) is discretized in the
particle approximation form as

MI =
N∑

J=1

ω(x I J )x I J ⊗ x I J VJ . (8)

Based on the above nonlocal differential operators and
Peridynamic theory [30], governing equations of the ULPH
model [43] are defined as follows:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DρI
Dt = −ρI

∑N
J=1 ω (x I J ) (vJ − vI )M

−1
I x I J VJ ,

DvI
Dt = − 1

ρI

∑N
J=1 ω (x I J )

(
pJM

−1
J + pIM

−1
I

)
x I J VJ

+ 1
ρI
Fν,I + gI ,

DrI
Dt = vI , pI = c20 (ρI − ρ0), VI = mI

ρI
,

(9)

where the viscous force Fν,I can be approximated by an arti-
ficial viscous term �I in the present work, defined as

�I = αhc0ρ0

N∑

J=1

ω (x I J ) πI JM
−1
I x I J VJ (10)

where α indicates the coefficient for the artificial viscous
term. The term πI J in the artificial viscous term can be
expressed as

πI J = vI J · x I J

|x I J |2 + (0.1h)2
. (11)

The relationship between parameter α and kinematic viscos-
ity ν [46] is defined as

α = 2(n + 2)

hc0
ν (12)

where n represents the spatial dimension of the problem.
Consequently, the real viscosity of the fluid can be considered
in the simulation by the transformation of Eq. (12). For the
scope of the current work, unless explicitly state otherwise,
a value of 0.1 is assigned to the parameter α when the actual
viscosity of the fluid is not specifically discussed.

2.3 The density diffusive term

Since the liquid is regarded as the weakly compressible fluid
in the current ULPH model, the solution procedure is com-
pletely explicit. Pressure is explicitly calculated according to
theEOS,which is different from the incompressible approach
implicitly calculating the pressure from the Poisson equa-
tion. Hence, the weakly compressible approach may bring
out abundant unphysical pressure oscillations [43], which
also has the same issue in the SPH method. Over the years
of SPH development, several numerical correction methods
have been proposed to address this drawback, such as density
filter [39], adding conservative diffusive terms to the equation
of continuity, and Riemann solvers [47], etc.

Inspired by the δ-SPH [40], introducing a density diffu-
sive term within the continuity equation can help eliminate
spurious high-frequency numerical oscillations in the den-
sity/pressure fields. Equivalent to adding an artificial viscous
term to the momentum equation, the density diffusive term
in the equation of continuity approximates the Laplacian

of the density, δ∇2ρ, where δ = O(h). The conservative
diffusive term, which is incorporated into the continuity
equation, is derived from Taylor series expansion to meet
the global conservation of mass. For a generic scalar func-
tion f (x) ∈ C2(R3), it holds the following Taylor series:

f (x J ) = f (x I ) + ∇ f |I · x I J + 1

2
xTI J · H f |I · x I J

+O(h3) (13)

f (x I ) = f (x J ) + ∇ f |J · x J I + 1

2
xTJ I · H f |J · x J I

+O(h3) (14)

Subtracting Eq. (13) from Eq. (14), we can get

2
(
f
(
x J

) − f (x I )
) = (∇ f |J + ∇ f |I ) · x I J + xTI J

·
(
H f |I − H f |J

2

)

· x I J . (15)

Through further transformation, one may obtain

(
H f |I − H f |J

2

)

· x I J = 2
f (x J ) − f (x I )

x I J

− (∇ f |J + ∇ f |I
)
. (16)

To simplify the notation,
(

H f |I− H f |J
2

)
= D(x I ) is defined

as conservative diffusive term:

D(x I ) · x I J = 2
f (x J ) − f (x I )

x I J
− (∇ f |J + ∇ f |I

)
.

(17)

Multiplying both sides of Eq. (17)withω(x I J ) and x I J , inte-
grating over the horizon of particle I can yield the following
equation

∫

HI

D (x I ) · ω (x I J ) x I J ⊗ x I J dVJ

=
∫

HI

2
(
f (x J ) − f (x I )

)
ω (x I J ) dVJ

−
∫

H1

(∇ f |J + ∇ f |I
)
ω (x I J ) x I J dVJ . (18)

Substituting Eq. (5) into Eq. (18),

D (x I )MI =
∫

HI

2
(
f (x J ) − f (x I )

)
ω (x I J ) dVJ

−
∫

HI

(∇ f |J + ∇ f |I
)
ω (x I J ) x I J dVJ .

(19)
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Multiplying both sides of Eq. (19) with M−1
I , Eq. (19) can

be rewritten as

D (x I ) =
∫

H1

2
(
f (x J ) − f (x I )

)
ω (x I J )M

−1
I dVJ

−
∫

HI

(∇ f |J + ∇ f |I
)
ω (x I J )M

−1
I x I J dVJ (20)

D (x I ) =
∫

HI

ω (x I J ) φI JM
−1
I x I J dVJ (21)

where the term φI J is defined as

φI J = 2 ( f (x J ) − f (x I )) x I J

|x I J |2
− (∇ f |J + ∇ f |I

)
. (22)

Subsequently, Eq. (21) can be expressed in the discrete form
as

D (x I ) =
N∑

J=1

ω (x I J ) φI JM
−1
I x I J VJ . (23)

Similar to the form of artificial viscous term, the coefficient
δ, smoothing length h and initial sound speed c0 should be
multiplied by Eq. (23) to control themagnitude of the density
diffusive term

�I = δhc0

N∑

J=1

ω (x I J ) φI JM
−1
I x I J VJ . (24)

For all numerical simulations, the coefficient δ is set to 0.1,
unless otherwise stated. Finally, the continuity equation with
the density diffusive term can be rewritten as

DρI

Dt
= −ρI

N∑

J=1

ω (x I J ) (vJ − vI )M
−1
I x I J VJ + �I .

(25)

2.4 Particle shifting technology (PST)

For meshfree particle methods, the particles move along
the streamline and corresponding Lagrangian trajectory due
to solving the Navier–Stokes equation in Lagrangian form.
Consequently, particle stretching and compressing occur
under specific conditions, which may lead to particle aggre-
gation and tensile instability. These inherent weaknesses of
meshfree methods will influence the numerical stability and
accuracy. To eliminate these drawbacks and enhance the
numerical stability, the particle shifting technology (PST) is
widely applied in meshfree particle methods for simulating
fluid flows. Xu et al. [42] initially implemented the PST in
the incompressible SPHmethod to correct particle positions,

where the particle shifting vector is calculated by neighbor-
ing particles. The distribution of particles is nearly uniform
after shifting, whichwill reduce the singularity of the particle
distribution.

In the present work, we adopt the PST developed by
Xu et al. [42] in the ULPH model. The particle position is
corrected by a shifting vector as

x I ′ = x I + δx I (26)

where x I represents the position of particle I before shifting,
while x I ′ denotes the position after shifting. The shifting
vector δxI is expressed as

δx I = CζRI (27)

whereC is the coefficient ranging from0.01 to 0.1.Avalue of
0.04 is generally adopted. ζ is the shiftingmagnitude defined
as

ζ = Vmax�t (28)

where Vmax and �t respectively represent the maximum
expected velocity and time step.

The shifting direction RI is defined as

RI =
N∑

J=1

|x̄ I |2
|x I J |2

ξ I J (29)

where |x I J | represents the distance between particle I and
particle J , |x̄ I | denotes the average particle distance within
the particle I horizon, defined as

x̄ I = 1

N

N∑

J=1

|x I J | . (30)

ξ denotes the unit distance vector between particle I and
particle J , expressed as

ξ I J = x I J

|x I J | . (31)

The summationof ξ I J represents the anisotropyof particle
spacings, and |x̄ I |2/|x I J |2 performs as a weighting function
to decrease the influence of remote neighbouring particles. It
is worth noting that the distances of particle shifting are sig-
nificant enough to avoid particle clustering, but they are still
considerably shorter than convection distances. Exceeding
the convection distances with particle shifting can intro-
duce other numerical errors during simulation. Due to fluid
particles moving along streamlines, the maximum particle
shifting distance should be less than 0.2�x .
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As an optional step, the velocity field can be updated based
on a Taylor series approximation after the particles have been
shifted, which can be defined as follows:

vI ′ = vI + δx I · ∇vI . (32)

Considering that the pressure field is not utilized in predict-
ing the subsequent time step, the pressure field is not updated
after the particle shifting. Since the calculated particle shift-
ing distance is relatively small compared to the particle
spacing within a time step, the updated velocity is only
slightly different from the previous velocity. Consequently,
the linear correction of Eq. (32) can also be disregarded after
implementing the PST in the present work.

2.5 Free-surface detectionmethod

On account of the kernel truncation, when the PST is
employed to free-surface flow simulations, Eq. (27) may cal-
culate the inaccurate shifting vector δx I for the particles near
or belonging to the free surface [48]. Therefore, some spe-
cial treatments are necessary for free-surface particles and
their neighbor particles when applying PST. Identifying the
free-surface particles located on the free-surface region is a
crucial step, and it involves a two-stage detection algorithm:

(1) Detecting particles in the free-surface vicinity region
based on the properties of dimensionless moment matrix;

(2) Detecting particles that are actually part of the free
surface by examining their geometric properties and eval-
uating their normals.

In the first step, it calculates the minimum eigenvalue of
the dimensionless moment matrix defined as

MD
I =

N∑

J=1

ω (x I J )
x I J

�x
⊗ x I J

�x
VJ (33)

where �x is the initial particle distance. The value of the
minimum eigenvalue λ of the dimensionless moment matrix
MD

I is influenced by the spatial distribution of the particles
J within the horizon of particle I . The smoothing length h
also affects the minimum eigenvalue λ. Different smoothing
lengths adopted in the weighting function will have distinct
minimum eigenvalues ofMD

I , because the smoothing length
influences the particle number in the domain. For a specific
smoothing length h, the change range of minimum eigenval-
ues in the computational domain will be fixed. According to
the characteristic of the smallest eigenvalue λ of the dimen-
sionless shape tensor, the particles in the free-surface vicinity
region can be identified.

In the present work, using the ULPH method to simulate
free-surface fluid flows, the Wendland kernel function [45]
with the smoothing length h = 2�x is adopted. As a result,
it must be considered that all the results and conclusions
drawn in the present work are only valid for h/�x = 2, as
mentioned above.

Several tests have been conducted to determine appro-
priate thresholds for the eigenvalue λ. By calculating the
minimum eigenvalues, free-surface particles can be roughly
identified. As particles approach the free surface, the mini-
mum eigenvalue λ tends to be 0, while for internal particles
λ tends to be 1.1. The particles with λ < 0.6 are identified as
free-surface particles (I ∈ F), while the particles with λ > 1
are classified as internal particles (I ∈ I). When the eigen-
values of particles lie between 0.6 and 1, an additional step is
required to differentiate free-surface particles from internal
particles.

In the second step, an umbrella-shaped region [49],
definedby local normal vector to the free surface, is employed
to detect free-surface particles, as illustrated in Fig. 1,
which is based on the geometrical rules. This umbrella-
shaped region contains two subregions, namely R1 and R2,
respectively. In the two-dimensional case, the criterion that
determines whether the candidate particle J resides within
the umbrella-shaped region of particle I [49] is defined as

⎧
⎨

⎩

∀J ∈ |x I J | ≥ √
2h and |xSJ | < h, J ∈ R1

∀J ∈ |x I J | <
√
2h and

(|nI · xSJ | + |τ I · xSJ |) < h, J ∈ R2

(34)

where S represents the point that is situated at a distance of
h from particle I , in a direction perpendicular to the free
surface. n and τ respectively denote the local unit normal
vector and tangential vector of the free surface.

In the three-dimensional case, the criterion [49] is defined
as

⎧
⎪⎨

⎪⎩

∀J ∈ |x I J | ≥ √
2h and |xSJ | < h, J ∈ R1

∀J ∈ |x I J | <
√
2h and

arccos
( |nI ·x I J ||x I J |

)
< π

4 , J ∈ R2

(35)

If there are no neighbor particles in the region of R1 and R2,
the concerned particles are identified as free-surface particles
(I ∈ F).

As illustrated in Fig. 1, the fluid particles containing free-
surface particles within their horizon are specified as free-
surface vicinity particles (I ∈ Fv). When there are no other
particles in the fluid particle horizon, this particle is regarded
as a splashed particle (I ∈ S). The local unit normal vector
n of particle I in the free-surface region can be calculated by
the spatial gradient of λ as
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Fig. 1 Schematic illustration of
free-surface vicinity particles
and the defined umbrella-shaped
region at the free surface

nI = ∇λI

|∇λI | (36)

where ∇λI is solved by the nonlocal gradient operator as

∇λI =
N∑

J=1

ω(x I J )(λJ − λI ) ⊗ (M−1
I x I J )VJ . (37)

Another condition that should be considered is that when
the fluid flow is violent, the free surface may form thin jets.
Due to the small number of neighbor particles, the normal
vectors calculated at these thin jet regions may be less accu-
rate, which will cause spurious numerical influences in the
PST. Therefore, the PST should be switched off in these
regions which are identified by λ < 0.4. Other particles in
the vicinity of a free surface are exclusively displaced in the
tangential direction of the free surface without any displace-
ment occurring in the normal direction.

Finally, the particle in diverse regions will be shifted with
different values, defined as

δ x̂ I =
⎧
⎨

⎩

0 if λI < 0.4 and I ∈ Fv ∪ S

(I − nI ⊗ nI ) δx I if λI ≥ 0.4 and I ∈ Fv

δx I if I ∈ I

(38)

where I is the identity tensor.
To evaluate the exactness of the proposed algorithm for

detecting free surface, a classical two-dimensional dambreak
simulation is conducted. The initial setup of the dam break
is presented in Fig. 2. The water column has a length and
height of 0.6 m and 0.3 m, respectively, where is located
in a rectangular tank with the size of [1.6 m × 1.0 m]. The
density of water is ρ = 1000 kg/m3, and it is subjected to the
acceleration of gravity g = 9.81 m/s2. The initial particle
distance in the computational domain is set as�x = 0.01 m,
and the dimensionless time is defined as T = t

√
g/h.

Fig. 2 The initial configuration of the two-dimensional dambreakprob-
lem

Figure 3 shows the outcomes of the free-surface detection
method and the normal direction at the free-surface region
at T = 2.06 and T = 5.72. In the figure, the green particles
represent the fluid particles located at the free surface, the red
particles indicate the inner particles within the vicinity of the
free surface, and the blue particles illustrate the internal fluid.
Thefigure demonstrates that the free-surface search approach
proposed in this paper can effectively identify the particles at
the free surface, and accurately calculate the normal of fluid
particles near the free-surface region. Consequently, it can be
concluded that the free-surface search algorithm proposed in
this paper has good accuracy and robustness.

2.6 Optimal momentmatrix at the free-surface
vicinity

In the nonlocal differential operators, the moment matrix has
an essential influence on the calculation accuracy. As the
matrix inversion is required in the nonlocal differential oper-
ators, the moment matrix will be ill-conditioned when the
particle distribution is highly disordered and neighbor par-
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Fig. 3 The free surface search
results (left column) and the
normal vector at the free-surface
region (right column) of the
two-dimensional dam break at
different times

ticles in the horizon are largely missing [43]. It will cause
numerical instability and may even terminate the simulation.

For the violent free-surface flows, the moment matrix
may be ill-conditioned at the free-surface vicinity. To main-
tain the numerical stability, we have developed an optimal
moment matrix for particles located in the free-surface vicin-
ity. When calculating the derivative of a specific direction,
it is reasonable to assume that the contribution of this direc-
tion is dominant, while the contribution of other directions
is insignificant and can be neglected. The elements on the
off-diagonal of the moment matrix are close to zero, when
the particles are in the uniform distribution and the matrix
has full rank. This characteristic is similar to the evalua-
tion of partial derivatives in the finite difference method,
where the partial derivatives in a specific direction are usually
replaced by finite differences in the same direction. Based on
this assumption, the moment matrix for particles in the free-
surface vicinity in three-dimensional space can be optimized
into the following form by ignoring contributions from other
directions:

M′
I =

⎛

⎜
⎝

∑N
J=1 ω(x I J )(xJ − xI )2VJ 0 0

0
∑N

J=1 ω(x I J )(yJ − yI )2VJ 0
0 0

∑N
J=1 ω(x I J )(z J − zI )2VJ

⎞

⎟
⎠ . (39)

It can be seen that the optimal moment matrix M′
I is

a diagonal matrix with zero off-diagonal elements. There-
fore, the inverse of the optimal moment matrix is obtained
by replacing each element in the diagonal with its recipro-
cal, which improves the calculation efficiency. The optimal
moment matrix can not only avoid the ill-condition of the
original moment matrix, but also keep the accuracy of the
simulation.

As a consequence, themomentmatrixM of particles at the
free-surface vicinity identified by the free-surface detection
algorithm proposed in Sect. 2.5 should be replaced by the
optimal moment matrix M′ to participate in the solution of
governing equations.

2.7 Time integration

Considering theULPH is an explicit time integrationmethod,
the predictor–corrector method [43] is used for time inte-
gration, and the time step size should satisfy the following
Courant–Friedrichs–Levy (CFL) condition
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�t ≤ 0.25min

{
h

c + Vmax
;
√

h

|amax|

}

(40)

where Vmax represents the expected maximum velocity and
amax indicates the acceleration of fluid particles.

3 Numerical examples

This section presents several numerical cases of free-surface
flows to reveal the accuracy and effectiveness of the ULPH
modeling and simulation. Furthermore, the comparisons are
made between the ULPH results and the experimental results
as well as other numerical solutions.

3.1 Oscillating droplet under a central conservative
force field

Firstly, a classic two-dimensional water droplet benchmark,
situatedwithin a central conservative force field, is conducted
to investigate the performance of the proposed ULPH single-
phase flow model. This test case serves as a well-established
benchmark for validating numerical schemes, primarily due
to its theoretical solution initially proposed by Monaghan
and Rafiee [50]. The body force acting upon the fluid is a
conservative force field of per unit mass [51, 52], defined as

{
fx = −�2x
fy = −�2y

(41)

where � is a dimensional parameter and is assigned a value
of 1.2. The fluid density is ρ0 = 1000 kg/m3, and it is con-
sidered to be non-viscous and incompressible. The initial
droplet is circular, possessing a radius of R = 0.5 m. The
velocity field of the droplet at the initial state is defined as

⎧
⎪⎨

⎪⎩

u0(x, y) = �0x
v0(x, y) = −�0y

p0(x, y) = ρ�2
0

2

[
R2 − (

x2 + y2
)]

(42)

where�0 is the initial value of the transient velocity parame-
ter and set to 0.4. The circular droplet periodically oscillates
like an ellipse over time, and the period of the oscillation is
T = √

2π/� = 3.7 s. The schematic of this case is shown in
Fig. 4, where a and b respectively represent the semi-major
and semi-minor axes of the oscillating droplet.

The theoretical solution of the single-phase oscillating
droplet can be obtained according to the formulation pro-
posed by Monaghan and Rafiee [50] in the multiphase flow

Fig. 4 Schematic diagrams of the oscillating droplet

as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�(t)
dt = (

�(t)2 + �2
) (

b(t)2−a(t)2

a(t)2+b(t)2

)

da(t)
dt = �(t)a(t)

a(t)b(t) = R2

a(0) = b(0) = R
�(0) = �0 = 0.4

(43)

To assess the accuracy and convergence of the proposed
ULPH model, three different particle resolutions are consid-
ered for droplet discretization, corresponding to�x = R/50,
�x = R/100 and �x = R/200. The maximum velocity in
the domain is about �0R = 0.2 m/s, and to guarantee the
weakly compressible condition, the initial artificial sound
speed is taken as c0 = 10 m/s.

As shown in Fig. 5, the left panel illustrates the initial
pressure field of the oscillating droplet with the particle reso-
lution of �x = R/50, the middle panel depicts the detection
of particles within the free-surface region, while the right
panel displays the normal vectors of particleswithin the same
region. The results demonstrate that the proposed ULPH
method can accurately calculate the normal vectors of parti-
cles within the free-surface region.

Figure 6 displays the time evolution of the shape and pres-
sure field of the oscillating droplet during the second period
with initial particle resolution �x = R/100. Under central
conservative force, the droplet first moves along the x-axis
at the center point. The droplet’s radius gradually decreases
in the y-axis direction, while the radius in the x-axis direc-
tion increases.When the radius in the x-axis direction reaches
the maximum value, the droplet reaches an equilibrium state.
Under the action of the central conservative force, it starts to
move along the y-axis direction from the center. When the
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Fig. 5 Oscillating droplet subjected to a central conservative force field.
Left: initial pressure field. Middle: the detection of free-surface region
particles. (The free-surface particles of the droplet are marked with
green color, while the free-surface vicinity particles are marked with

red color. The inner particles of the droplet are colored with blue color.)
Right: the normal vectors evaluated on the free-surface region. The ini-
tial particle resolution is �x = R/50. (Color figure online)

radius reaches its maximum value in the y-axis direction, it
continues to move along the x-axis, and the cycle repeats.
It can be observed that the pressure field in Fig. 6 is sta-
ble and smooth when the droplet is oscillating, which shows
that the density dissipation term can effectively eliminate the
pressure oscillations.

The evolutions of the horizontal semi-major and verti-
cal semi-minor axes of droplet oscillations for three particle
resolutions are shown in Fig. 7, and quantitatively compared
with the analytical solution [50]. It is observed that the droplet
presents periodic oscillation under the action of the central
conservative force. The droplet’s semi-major axis in the hori-
zontal direction and semi-minor axis in the vertical direction
also present periodic changes. By comparing with the analyt-
ical solution, it can be obtained that the higher the resolution
of the particles, the closer the ULPH results are to the ana-
lytical solution.

To further evaluate the accuracy and efficiency of the pro-
posed ULPH single-phase flow model with other meshfree
particle methods, we compare the time evolutions of verti-
cal semi-minor axis of the droplet oscillations at the initial
particle resolution �x = R/100 obtained by theory, ULPH
and different SPH methods, as shown in Fig. 8. It can be
seen that the ULPH result and SPH result with the imple-
mentation of improved particle shifting technology (IPST)
obtained by Wang et al. [48], align more closely with the
analytical solution over long-term simulations. This accuracy
can be attributed to themore uniformparticle distribution and
lower dissipation these two methods offer compared to the
δ-SPHmethod [44]. Figure9 further presents the comparison
of execution times for first 100 timesteps of different particle
resolutions, across the different methods. These simulations
are all performed on a single core on the same personal com-
puter with Intel Core i7-12700K processor. Upon increasing

the number of particles, it canbe found that the execution time
correspondingly rose significantly. The time required by the
ULPHmethodmirrored that of the δ-SPHmethod [44], while
the SPHmethod [48] required the most time. This is because
in the SPH method of Wang et al. [48], they proposed an
IPST method to make the particles in the vicinity of the free
surface more uniform, which is a time-consuming process.
It can be concluded that the proposed ULPH method, while
matching the accuracy of the SPH method [48], offers the
advantage of reduced computational time.

3.2 Rotation of an initially square fluid patch

The second benchmark test case involves rotating the initially
square patch of fluid, which is commonly employed to assess
the stability and effectiveness of the meshfree method [48,
53, 54]. The side length of the square fluid domain is set
as L = 1 m, as illustrated in Fig. 10. The square fluid is
initialized with a rotation velocity field as

{
u0(x, y) = ω̂y
v0(x, y) = −ω̂x

(44)

in which ω̂ = 20 rad/s is the steady angular velocity of the
square fluid. The fluid density is set to ρ0 = 1000 kg/m3.
The initial pressure field [53] is obtained as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x∗ = x + L
2

y∗ = y + L
2

p0(x, y) = ρ0
∑∞

m
∑∞

n
−32ω̂2

mnπ2[(nπ/L)2+(mπ/L)2]
sin

(
mπx∗
L

)
sin

(
nπ y∗
L

)
m, n ∈ Nodd

(45)
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(d) (e) (f)

(a) 3.75 st � (b) 4 st � (c) 4.68 st �

5.63 st � 5.8 st � 6.57 st �

0    1    2    3     4     5     6
0/ ( )p R��

Fig. 6 The pressure field evolutions during the second period of the oscillating droplet subjected to a conservative force field

Fig. 7 The evolutions of the horizontal semi-major axis and vertical semi-minor axis of the droplet oscillations at three different particle resolutions
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Fig. 8 Time evolutions of vertical semi-minor axis of the droplet oscil-
lations obtained by δ-SPH, SPH and ULPH together with theoretical
solution at the initial particle resolution of �x = R/100

Fig. 9 Execution time comparisons for computing first 100 timesteps
of the droplet oscillations calculated by different methods at different
particle resolutions

The maximum expected velocity of the square fluid is√
2/2ω̂L and the initial artificial sound speed is specified

as 5
√
2ω̂L . The square fluid is discretized into initial uni-

form particle distributions with the particle resolutions of
�x = L/100.

Figure 11 shows the evolutions of the square fluid patch
at three dimensionless times, tω̂ = {0.6, 1.2, 2.04}, and the
distribution of the pressure field. The black dotted line in
Fig. 11 is the free-surface result, which is computed by the
Lagrangian finite differencemethod (FDM) [51]. Comparing
the results of ULPHwith those of FDM, the results of ULPH

Fig. 10 Initial state of a square fluid patch

and FDM are in good agreement at the free surface, but slight
differences are observed at the four sharp corners. In the
rotating of the square fluid, the pressure is negative in the
computational domain. However, the pressure field is still
stable and smooth under negative pressure, which shows that
applying PST can effectively suppress the tension instability
caused by negative pressure. Figure12 displays the velocity
field of the fluid patch as the same dimensionless times in
Fig. 11. It is evident that the velocity in the central area tends
to 0 during the rotation, and the speed is the highest on the
four spiral arms.

To obtain more shape evolution of the square fluid patch
when it rotates, Fig. 13 shows the shape evolution of the
fluid and the distribution of the pressure field at different
dimensionless times, tω̂ = {4, 6, 8}. As time progresses,
the corners of the square fluid become increasingly thin,
eventually leading to fragmentation (sudden disconnection
of particles at the thinnest region), which occurs due to the
lack of specific resolution. When the Lagrangian finite dif-
ference method is used to simulate this example, due to the
limitation of the grid, it is unable to simulate the rotational
shape of the fluid after tω̂ = 4. Figure 14 presents the time
dependent pressure curve at the center of rotating square fluid
patch and compares the ULPH results with those obtained
from BEM-MEL solver [51]. It can be concluded that the
ULPH method has unique advantages when dealing with
large deformations of free surfaces compared with the tra-
ditional grid-based methods.

3.3 Sloshing of liquid in a rectangular tank

In this subsection, liquid sloshing within a rectangular tank
under horizontal excitation is numerically investigated. This
liquid sloshing is a complex free-surface flow that gener-
ates nonlinear problems such as free-surface fragmentation,
high-speed wall slamming, and droplet formation. Due to
the complexity and nonlinear character of this phenomenon,
the liquid sloshing has been studied and analyzed in several
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Fig. 11 Pressure fields of the rotating square fluid patch at three different dimensionless times

Fig. 12 Velocity fields of the rotating square fluid patch at three different dimensionless times

Fig. 13 Pressure fields of the rotating square fluid patch at three different time moments

academic works for model validation of meshfree method
[55–58].

Figure15 illustrates the initial setup for liquid sloshing,
which corresponds to the experiment conducted by Faltin-
sen et al. [59]. The rectangular tank has a length of L =
1.72 m and a height of H = 1.15 m. Initially, the hight of
the water in the tank is H = 0.5 m. To monitor the temporal
evolution of the water surface height, a measuring point is

positioned 0.5 m from the left wall of the rectangular tank
at the free surface. The water inside the tank, which has a
density of ρ = 1000 kg/m3, is considered as an inviscid
fluid. The acceleration of gravity is set to g = 9.81 m/s2.
The rectangular liquid tank is excited by a regular sinusoid
in the horizontal direction (x-axis), and the velocity of the
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Fig. 14 The pressure time histories of the domain center of the rotating
square fluid patch

Fig. 15 Sketch of initial setup of the liquid sloshing

rectangular tank is set as

{
u(t) = − 2π

T A0 sin
( 2π
T t

)

v(t) = 0
(46)

in which A0 = 0.032 m is the amplitude and the period is set
to be T = 1.875 s. The initial particle distance of the com-
putational domain is set as �x = 0.01 m. The simulation
for this example is conducted for a total of 10 s. Through-
out the entire sloshing period of the liquid tank, the highest
estimated velocity is 2m/s. Furthermore, the reference sound
speed is specified as c0 = 40 m/s.

Figure16 shows the evolutions of the liquid and pressure
field distribution at different times of tank sloshing under hor-
izontal excitation. As can be observed, the rectangular tank
undergoes horizontal back-and-forth motion under periodic
external excitation. This motion, in turn, causes the water
inside the tank to move back and forth, generating signifi-
cant deformation of the free surface. The pressure field of

water is smooth, without pressure fluctuations, and the free-
surface particle distributions are also continuous, without
non-physical gaps. Therefore, it can be concluded that the
ULPH single-phase flowmodel is stable and accurate in sim-
ulating large deformation free-surface flow problems.

Figure17 displays the evolution of the water free-surface
height at the measuring point over time and compares it
with the experimental results [59].When the rectangular tank
moves cyclically along the horizontal orientation, the water
surface height at the measuring point continuously increases
with the sloshing period. As the time processes, the water
surface height at the measuring point also becomes higher.
Comparing the ULPH results with the experimental data, we
can notice that the ULPH results exhibit excellent agreement
with the experiment. It demonstrates that the ULPH single-
phase flow model can obtain correct and stable results when
simulating tank sloshing problems, and shows the expected
accurate physical behavior, which lays a foundation for sim-
ulating complex three-dimensional tank sloshing problems.

3.4 Flow past a circular cylinder near a free surface

This section presents the simulation of flow past a circu-
lar cylinder placed beneath a free surface. The purpose
of this investigation is to validate the significance of the
proposed ULPH single-phase flow model. Similar to the
previous works carried out by Reichl et al. [60] and Bous-
casse et al. [61], the results of Bouscasse et al. [61] is adopted
as the reference data. Figure18 shows the initial setup of the
problem. A cylinder of d = 0.1 m in diameter is situated
in the computational domain, and its center is defined as the
origin of the two-dimensional coordinate system. In the ini-
tial state, the whole fluid domain is regarded as static and the
fluid density is ρ = 1000 kg/m3. The distance between the
undisturbed free surface and the cylinder top is defined as hc,
and the initial non-dimensional gap ratio is set to hc/d = 1.5.
The distance from the cylinder center to the bottom is 8d. The
inlet boundary and outlet boundary are 10d and 35d away
from the cylinder center, respectively. The technique of the
open boundary condition presented by Federico et al. [62] is
adopted in the present work. To make the full kernel support,
each wall, inlet and outlet boundary has 5 layers of particles.
The bottom boundary is applied as the free-slip condition,
while the cylinder is enforced with a no-slip condition.

The Froude andReynolds numbers are used as dimension-
less parameters in this study, with values of Fr = U/

√
gd =

1 and Re = Ud/ν = 180, respectively. U denotes the
uniform inflow velocity and ν denotes the fluid kinematic
viscosity. To avoid the sudden start leading to the pressure
shockwave in the flowfield, the velocity of the inflow bound-
ary increases linearly from rest to the desired velocity U
with an acceleration of 1, and then the inflow velocity is kept
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Fig. 16 The development of the free surface and pressure field distribution of the rectangular tank sloshing at different times under horizontal
excitation

Fig. 17 Temporal evolutions of water surface height hw at the measur-
ing point, where red dotted line corresponds to the ULPH result, and
the black solid line corresponds to the experimental result obtained by
Faltinsen et al. [59]

constant. The initial particle resolution of the computational
domain is set to d/�x = 25.

Figure19 illustrates the distributions of vorticity and free
surface in the local area of the fluid field at several time
instants. The von Kármán vortex shedding pattern is evident
in the flow features, which is similar to the ones obtained
by Bouscasse et al. [61] (see Fig. 8 in their paper). The free
surface above the cylinder is lifted up by the influence of the
cylinder, and forms a downward plunging jet, causing the
continuous tumbling and splashing of the free surface. At the
early stages of vortex shedding, the shedding vortex of the
cylinder is greatly affected by the free surface and presents
irregularities in the flow field, as depicted in Fig. 19b and c.
Due to the periodic vortex shedding of the cylinder wake, the
cyclic breaking events of the free surface take place. In the
downstream region of the cylinder, the vortices generated by
the free surface breaking interacts with the cylinder wave. At
t
√
g/d = 68.59 and t

√
g/d = 136.68, as shown in Fig. 19d

Fig. 18 Sketch of the
computational domain for flow
past a circular cylinder near a
free surface
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Fig. 19 Vorticity field plots of flow past a circular cylinder at different time instants
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Fig. 20 Vorticity field plots for different depths at t
√
g/d = 84.19

and f, the vorticity field of the cylinder wake is similar, but
the motion characteristics of the free surface are different.

To further analyze the influence of cylinder immersion
depth on flow field, different gap ratios h/d are investi-
gated for Fr = 1 in this part. Figure20 depicts the vorticity
field for various gap ratios ranging from h/d = 0.5 to
h/d = 2.5 at t

√
g/d = 84.19. The results indicate that

the von Kármán vortex shedding is blocked at h/d = 0.5,
and the wake of the cylinder is nearly steady, although the
free surface remains unstable. The flow jet formed downward
above the cylinder interacts with the fluid behind the cylin-
der, resulting in the generation of a complex wake pattern
downstream of the cylinder, as shown in Fig. 20a. The simi-
lar phenomena for the smaller gap ratio are demonstrated by

Bouscasse et al. [61] and Colagrossi et al. [63]. As the depth
of the cylinder increases, the vortex shedding phenomenon
occurs at h/d = 1. The proximity of the cylinder to the free
surface results in an intense interaction between the shed-
ding vortex and the free surface, and the wake of the cylinder
cannot formperiodic vortex (seeFig. 20b). The clear vonKár-
mán vortex shedding pattern is visible, when the gap ratios
h/d increase to 1.5 and 2.5, as displayed in Fig. 20c and d.
The trajectory of the vortex shedding is less affected by the
free surface. The cylinder wakes in Fig. 20c and d are simi-
lar, but the free surface has different motion characteristics.
As can be seen from the results that the vortex shedding is
clearly visible, large deformations of the free surface can be
well captured, and the particles in the fluid field are uniform
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Fig. 21 Sketch of initial setup
of the three-dimensional dam
break

distributed without noise, which show the effectiveness and
stability of the ULPH single-phase flow model.

3.5 Three-dimensional dam break

As previous test cases are all two-dimensional for validating
the ULPH single-phase flow model, but in actual engineer-
ing, hydrodynamic flow exists in three-dimensional space.
Hence, the ULPH single-phase flow model should be inves-
tigated for simulation enhancement of the three-dimensional
case. Therefore, this section presents a simulation of a three-
dimensional dam break to further validate the proposed
ULPH single-phase flow model.

The initial schematic diagram of the three-dimensional
dam-break is shown is Fig. 21, the initial parameters
employed are based on the experimental settings ofLobovsky
et al. [64]. The two pressure sensor points P1 and P2 in the
Fig. 21 are located on the downstream solid wall. The length,
height and width of the water column are 0.6 m, 0.3 m and
0.15 m, respectively. The water density is ρ = 1000 kg/m3

and is considered as an inviscid fluid. The acceleration of
gravity is g = 9.8 m/s2. According to the shallow water the-
ory, the maximum predicted velocity in the computational
domain is around vmax = 2

√
gH , in which H is water

height. Therefore, the reference sound speed is determined as
c0 = 35m/s. For the convenience of the simulation, thewater
column is released from zero initial pressure, instead of being
released by quickly lifting the baffle as in the experiment. The
initial particle distance of the computational domain is set as
�x = 0.005 m.

Figure 22 displays the evolution of three-dimensional dam
break flow with time and the distribution of pressure field. It
can be observed that after the water column is released from
the initial state, it starts to flow downstream under the influ-
ence of gravity, forming a water head (see Fig. 22b and c).
When the water head hits the downstream solid wall, a verti-

cal upward jet is generated along the solid wall, as illustrated
in Fig. 22d and e. It then falls downwards by gravity, form-
ing a tongue of water (see Fig. 22f and g), falling back into
the fluid below. The falling fluid impinges on the main fluid
forming a secondary jet backwards and upwards. Over time,
the secondary jet falls back down into the fluid by grav-
ity, causing fragmentation and tumbling of the free surface.
Throughout the numerical simulation process, the pressure
field is stable and smooth, with no significant non-physical
oscillations. Comparing the ULPH simulation results with
the experimental data from Lobovsky et al. [64], it can be
found that the ULPH results align well with the experimental
results before the water head hits the downstream solid wall.
After the water tongue falls back into the fluid, the ULPH
results are somewhat different from the experimental results,
but the overall movement trend of the fluid is consistent. The
reasons for this difference can be attributed to several uncer-
tainties such as the effect of air, turbulence, the roughness of
the solid wall and the repeatability of the experiment.

Figure23 portrays qualitative comparisons of the pres-
sure time histories obtained by ULPH and experiment [64],
which are recorded at the two pressure sensor points P1 and
P2. As shown in the figure, the pressure at the measuring
point P1 rises extremely after the water column hits the wall,
and then gradually decreases. Due to the location of point
P2 being higher than point P1, the peak pressure at point P2
is lower than point P1, but the duration of peak pressure at
point P2 is longer than point P1. The comparison between the
ULPH result and the experimental result shows good agree-
ment, which further validates the accuracy and effectiveness
of the ULPH single-phase flow model in simulating three-
dimensional problems.
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Fig. 22 The evolution and pressure field distribution of the three-dimensional dam break

Fig. 23 The time history of pressure of ULPH results compared with experimental results [64]

4 Conclusions

In this work, we have developed a novel ULPH formulation
of the single-phase surface fluid flow model for simulating
complex free-surface flows.Wehave implemented theULPH
surfacefluidflowmodel in numerical simulations, and further
validated the proposed method. As ULPH can be regarded
as a nonlocal fluid dynamics as an analog of Peridynam-
ics in solids, the ULPH single-phase flow model established
in this work further expands the application of Peridynam-

ics in hydrodynamics. Within the ULPH framework, some
enhancement techniques are proposed and integrated into the
ULPH formulation to improve the accuracy and significance
of numerical simulations of the ULPH method.

In specific, the conservative density diffusive term derived
from the Taylor series expansion is approximated as the
Laplacian of density, which is similar to the artificial viscos-
ity term and needs some corrections according to the problem
nature. The density diffusive term, when added to the conti-
nuity equation, can efficiently suppress pressure oscillation
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and maintain a smooth and stable pressure field in fluid
domains. The particle shifting technology is adopted for the
uniform distribution of particles, and hence it helps elimi-
nate numerical noise within the pressure/density field. The
free-surface detection method demonstrates a high level of
accuracy in identifying particles near the free surface and
determining their normal direction in this region. In the free-
surface vicinity, the shifting vectors can be adjusted based on
the normal direction of the particles to improve the accuracy
of the shifting magnitude. Furthermore, the optimal moment
matrix is developed for the particles near the free-surface to
prevent numerical instability caused by ill-conditionedmatri-
ces, which significantly improves computational efficiency.

The proposed model is tested and validated by several
challenging and popular free-surface flow benchmark prob-
lems, including oscillating droplet, rotating patch, liquid
sloshing, flow past circular cylinder near free surface and
three-dimensional dam break. A convergence study of the
oscillating droplet with different particle resolutions demon-
strates that the proposedULPH single-phase fluid flowmodel
is convergent. Namely, the finer the resolution, the higher
the accuracy that can be obtained. As shown in all con-
ducted test examples, the ULPH single-phase flow model
exhibits robust computation capabilities for complex free-
surface flows, and the proposed enhancement techniques can
effectively improve the accuracy and robustness of numerical
simulations.

For futureworks,we shall carry out the sensitivity analysis
on the density diffusion term in relation to energy dissipa-
tion, which needs to be studied comprehensively. It is worth
utilizing the proposed model to investigate large-scale and
high Reynolds number hydrodynamic problems in indus-
trial applications. To achieve this, the efficient GPU parallel
computing strategies and the Large–Eddy Simulation (LES)
model in the ULPH framework will be the future directions
for developments.
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