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Abstract
In this paper a phase-field formulation based on an extended F-criterion (the
normalized strain energy release rate criterion) is proposed to simulate tensile-
compressive-shear rock fractures. By applying the F-criterion, the phase-field
crack-driving energy decomposition is determined by a direction search which
maximizes the local fracture dissipation. In compressive-shear states, the com-
putation is supplemented by an explicitly expressed confinement-dependent
mode-II fracture energy release rate, and the cracking angle is determined by
both the fracture energy and strain states. The hybrid formulation and alternate
minimization algorithm are adopted for the numerical examples in this paper.
Fractures for rock and rock-like specimens subjected to compression demon-
strate the ability of the present model in capturing tensile-compressive-shear
rock fracture behaviors.
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1 INTRODUCTION

During uniaxial and biaxial compression tests, rock may exhibit a combination of flaw slippage, onset, and propagation
of wing and secondary cracks, and coalescence and branching of these cracks, depending on material properties and
stress states. Capturing such failure mechanisms faithfully in a numerical model is, nevertheless, not a trivial task. In
recent years, the phase-field model has emerged as an elegant and attractive method for fracture initiation, propagation,
and coalescence simulation. Originated from the Griffith’s theory,1 the phase-field model has now been applied to brit-
tle fracture,2,3 quasi-brittle fracture,4–6 dynamic fracture,7–9 ductile fracture,10–13 thermo-mechanical-driven fracture,14,15
hydro-fracture,16,17 and so on.
In examining rock fracture, numerous efforts have been made for phase-field models to adapt to fracturing character-

istics of rock, including the compressive-shear fracture and the difference in mode-I and mode-II fracture energies. The
sphere-deviatoric split18 and spectral split19 proposed in the classical phase-field models to prevent damage under com-
pression alone are unable to capture these complex phenomena. Zhang et al.20 was the first to normalize the contribution
ofmode-I andmode-II crack driving energy by the corresponding critical fracture energy based on themodifiedmaximum
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energy release rate criterion, or the so-called F-criterion.21 Their work successfully reproduces classical experimental tests
for rock-like specimens with a single flaw and double flaws under compression. Liu et al.22 used volumetric-deviatoric
split, the Benzaggagh-Kenane failure criterion for mixed-mode fracture and non-isotropic degradation function to cap-
ture complex rock fracture features. To consider the effect of cohesion and internal friction angle on rock strength and
inspired by the macroscopic Mohr-Coulomb strength criterion, Zhou et al.23 and Xu et al.24 proposed a cracking driving
energy formulated by the over shear force based on the Mohr-Coulomb strength criterion. Similarly, Jia et al.25 proposed
an over-shear formulation for cracking driving energy based on the Hoek-Brown strength criterion.
The aforementionedwork generally does not consider the direction of the regularized smeared crack. Strobl and Seelig26

was the first to notice the problem of an isotropic degradation of stiffness when the crack is fully developed, and proposed
to decompose the strain taking crack orientations into account. Bryant and Sun27 later used a different approach for
energy decomposition by locally searching the maximum energy dissipation direction. The local energy minimization is
also based on the F-criterion. Wang et al.28,29 proposed a universal fracture criterion in phase-field models for tensile-
compressive-shear fracture. In their formulation, the crack direction is determined by a local maximation of normalized
stress. Steinke and Kaliske30 proposed a directional stress decomposition to derive a proper crack driving strain energy
termwhich fulfills basic crack characteristics defined for ideal plane and frictionless crack surfaces. Fan et al.31 developed
a directional splitting method for mixed-mode fracture in which the local crack coordinate system is determined by the
F-criterion and a quasi-monolithic algorithm is used therein. Their stress split for the mode-I fracture can find its origin
in the work by Freddi and Royer-Carfagni32 for the phase-field model and by Wu and Cervera33 for continuum damage
mechanics (CDM) model. To consider energy consumption by the frictional force on the closed sliding surface, Fei and
Choo34,35 proposed a unique stress-decomposition scheme in phase-field models for pressure-sensitive geomaterials. In
their model, the cracking direction is the same as that obtained from the macroscopic Mohr–Coulomb strength theory.
To accurately simulate material behaviors in the post-fracture stage, Luo et al.36 presented a phase-field model with a
directional strain decomposition to consider the crack surface normal and a stress-driven crack opening indicator to dis-
tinguish the opening and closure of pre-cracks. Steinke et al.37 discussed in detail the spatial orientation of the potential
crack surface and the issue of internal locking and lateral phase-field evolution due to local orientation misalignment.
As stated by many researchers, the shear fracture energy of rock is dependent on the confining pressure. Backers

et al.38,39 foundMode-II fracture toughness increases for limestone,marble, and granitewith increasing confining pressure
until a plateau is reached when the confining pressure exceeds 30MPa. Choo et al.40 investigated experimental data in the
literature for stiff clays and shales, and established an empirical power equation between rock shear fracture energy and
confining pressure. Zhang et al.41 performed confined rock fracture tests on short core in compression (SCC) specimens,
which show a linear increase of the mode-II fracture toughness with confining pressure in the range of 0–35 MPa, and its
value exhibited at 35 MPa confining pressure is two to three times higher than that at atmospheric pressure. Wu et al.42
performed particle flow code (PFC) simulations for punch-through shear tests and obtained similar confinement-related
shear fracture energy increasing behavior, which is consistent with Backers’ findings.
Asmentioned byBackers et al.,38 the confinement effect ismost likely related to the friction effect of rock. It is interesting

to note that this property is considered in deriving the crack driving energy term in phase-field models by a subtraction of
internal friction force in the work of Zhou et al.23 and Fei and Choo.43 In this paper, the friction effect is considered in an
alternative way by using an explicit expression of shear fracture energy dependence on the normal stress. Furthermore,
the cracking angle is solved locally by using the F-criterion to obtain the corresponding crack driving energy, which is the
main novelty of this work and fundamental for future contact simulation of rock blocks.
This paper is organized as follows. In Section 2, the phase-field formulation based on an extended F-criterion for rock

fracture is detailed. In Section 3, the implementation aspects are shortly introduced followed by numerical examples in
Section 4. Section 5 concludes this paper.

2 PHASE-FIELD FORMULATION BASED ON AN EXTENDED F-CRITERION

2.1 Crack topology regularization and variational principle

In phase-field models, a discrete crack surface Γ (Figure 1) is regularized by a crack surface density function 𝛾(𝑑,∇𝑑) as

𝛾 (𝑑,∇𝑑) =
1

𝑐0

(
1

𝑙0
𝛼 (𝑑) + 𝑙0(∇𝑑)

2
)

with 𝑐0 = 4
1∫
0

√
𝛼 (𝛽)𝑑𝛽 (1)
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252 SUN et al.

F IGURE 1 Crack topology regularization in phase-field models: (A) discrete crack; (B) regularized crack.

𝑑 is the phase-field variable and ∇𝑑 is its gradient. The classical AT1, AT2 and PF-CZM44 models use, respectively

𝛼 (𝑑) =

⎧⎪⎨⎪⎩
𝑑, 𝐴𝑇1 𝑚𝑜𝑑𝑒𝑙

𝑑2, 𝐴𝑇2 𝑚𝑜𝑑𝑒𝑙

2𝑑 − 𝑑2, 𝑃𝐹 − 𝐶𝑍𝑀

, and 𝑐0 =

⎧⎪⎨⎪⎩
8∕3, 𝐴𝑇1 𝑚𝑜𝑑𝑒𝑙

2, 𝐴𝑇2 𝑚𝑜𝑑𝑒𝑙

𝜋, 𝑃𝐹 − 𝐶𝑍𝑀

(2)

In this paper, the AT2 model is used. The energetic degradation function is defined upon 𝑑 and the most generic form
is the quadratic one, which reads

𝑔 (𝑑) = (1 − 𝑑)
2 (3)

Then, the free energy of a cracked body is written as

Π = ∫
Ω

𝑔 (𝑑) 𝜓0 (∇
𝑠𝑢) dΩ + ∫

Ω
𝐺𝑐𝛾 (𝑑,∇𝑑) dΩ − ∫

Ω

𝑓T ⋅ 𝑢dΩ− ∫
𝜕Ω𝑡

𝑡T ⋅ 𝑢dS (4)

where 𝜓0(∇
𝑠u) is the elastic energy density for undamaged materials, 𝐺𝑐 is the critical energy release rate, 𝑓 is the

body force, and 𝑡 is the traction. Using the minimization of the total energy leads to the following strong form for the
displacement field and phase field

⎧⎪⎨⎪⎩
∇ ⋅ 𝜎 + 𝑓 = 0

𝜎 ⋅ 𝑛 = 𝑡∗ o𝑛 𝜕Ω𝑡

𝑢 = 𝑢∗ (o𝑛) 𝜕Ω𝑢

(5)

{
2 (1 − 𝑑)


𝐺c

−
𝑑

𝑙0
+ 𝑙0Δ𝑑 = 0

∇𝑑 ⋅ 𝑛 = 0 on 𝜕Ω
(6)

𝜎 is the stress tensor and 𝑛 is the outward normal to the traction boundary 𝜕Ω𝑡. In Equation (6), a history variable 
recording the maximum 𝜓0 reached in the loading history is used to prevent crack healing. Further, to distinguish the
difference of rock inmode-I andmode -II critical energy release rate, Zhang et al.20 proposed to replace 

GC

term in driving

phase field propagation in Equation (6) with I

GIc

+
II

GIIc

, whereI andII are history variables, respectively, contributed
by volume dilation and shear deformation as

I = 𝜆 ⟨𝑡𝑟 [𝜀]⟩2+ , II = 𝜇𝑡𝑟
[⟨𝜀⟩2+] (7)
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SUN et al. 253

F IGURE 2 The relation between the local crack coordinate system, the principal strain, and the global coordinate system.

⟨⋅⟩ denotes theMacaulay brackets. 𝜆 and 𝜇 are the Lamé constants.𝐺I𝑐 and𝐺II𝑐 are respectively themode-I andmode-II
critical energy release rate.

2.2 Directional split for crack-driving energy

To derive a kinematically consistent energy dissipationwhich considers the direction of the potential crack, the directional
strain split is used inmany papers for phase-fieldmodels. Let 𝑟 denotes the crack normal vector and 𝑠 the tangential vector
which are parameterized by 𝑠 = (cos 𝜃, sin 𝜃)T and 𝑟 = (− sin 𝜃, cos 𝜃)T , in which 𝜃 is the anticlockwise rotating angle
between the major principal strain axis and the crack tangential vector, that is, 𝑛1 and 𝑠, respectively (Figure 2).

The strain tensor 𝜀 =

[
𝜀𝑟𝑟 𝜀𝑟𝑠
𝜀𝑠𝑟 𝜀𝑠𝑠

]
in the local crack coordinate system is computed by

⎧⎪⎪⎨⎪⎪⎩
𝜀𝑟𝑟 =

𝜀1+𝜀2

2
+

𝜀1−𝜀2

2
cos (2𝜃)

𝜀𝑠𝑠 =
𝜀1+𝜀2

2
−

𝜀1−𝜀2

2
cos (2𝜃)

𝜀𝑟𝑠 = 𝜀𝑠𝑟 =
𝜀1−𝜀2

2
sin (2𝜃)

(8)

𝜀1 and 𝜀2 are, respectively, the major and minor principal strain.
To differentiate tensile/compressive/shear contribution from the strain components, 𝜀 is split by

𝜀 = 𝜀+
I

+ 𝜀+
II
+ 𝜀− (9)

𝜀+
I
is the tensile crack-driving part and is given by

𝜀+
I
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝜀𝑟𝑟 0

0 𝜀𝑠𝑠

)
, 𝑖𝑓 𝜀𝑟𝑟 +

𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 and 𝜀𝑠𝑠 > 0(

𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 0

0 0

)
, 𝑖𝑓 𝜀𝑟𝑟 +

𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 and 𝜀𝑠𝑠 ≤ 0(

0 0

0 0

)
, 𝑖𝑓 𝜀𝑟𝑟 +

𝜆

𝜆+2𝜇
𝜀𝑠𝑠 ≤ 0

(10)

In Equation (10), 𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 indicates a positive normal stress 𝜎𝑟𝑟 on the potential crack surface because
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254 SUN et al.

F IGURE 3 An arbitrary crack opening
results in degraded stress in both directions.

𝜎𝑟𝑟 = 𝜆 (𝜀𝑟𝑟 + 𝜀𝑠𝑠) + 2𝜇 𝜀𝑟𝑟 = (𝜆 + 2𝜇)

(
𝜀𝑟𝑟 +

𝜆

𝜆 + 2𝜇
𝜀𝑠𝑠

)
(11)

This judging criterion assumes new fractures can sustain compressive, but not tensile normal stress perpendicular to
its surface.31
In the second case of Equation (10), that is, 𝜀𝑟𝑟 +

𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 a𝑛𝑑 𝜀𝑠𝑠 ≤ 0, a degraded stress 𝜎+

I
is calculated as

𝜎+
I
=

(
𝜎𝑟𝑟 0

0
𝜆

(𝜆+2𝜇)
𝜎𝑟𝑟

)
(12)

An arbitrary crack opening (given by 𝜀𝑟𝑟) results in a degraded stress in both normal and shear directions of the cracks.
In this way, the lateral deformation or necking of the elastic material caused by Poisson’s effect will be released completely
in a fully damaged state30,45 (depicted in Figure 3).

𝜀+
II
is the shear crack-driving part and is given by

𝜀+
II
=

(
0 𝜀𝑟𝑠
𝜀𝑠𝑟 0

)
(13)

𝜀− is the remaining non-crack-driving part.
Then, the cracking direction is determined based on the F-criterion, that is, by searching the direction, whichmaximize

𝐹(𝜃) where

𝜃 = arg 𝑚𝑎𝑥 (𝐹 (𝜃)) (14)

𝐹 (𝜃) =
𝑊+

I (𝜃)

𝐺I𝑐
+

𝑊+
II (𝜃)

𝐺II𝑐
=

1

2

𝜎+
I
∶ 𝜀

𝐺I𝑐
+

1

2

𝜎+
II
∶ 𝜀

𝐺II𝑐
(15)

𝜎+
I
, 𝜎+

II
, and 𝜎− are the counterparts for 𝜀+

I
, 𝜀+

II
, and 𝜀− and are given by

𝜎+
𝐼
= 𝐷 ∶ 𝜀+

𝐼
, 𝜎𝐼𝐼

+ = 𝐷 ∶ 𝜀𝐼𝐼
+, 𝜎− = 𝐷 ∶ 𝜀− (16)

𝔻 = 𝜆(𝐈 ⊗ 𝐈) + 2𝜇𝕀 is the fourth-order elasticity tensor. I and 𝕀 are, respectively, the second-order identity tensor and the
fourth-order symmetric identity tensor.
To search the direction 𝜃 maximizing 𝐹, we combine Equations (10), (13), (15), and (16) to calculate the necessary

condition 𝜕𝐹(𝜃)

𝜕𝜃
= 0, and obtain
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SUN et al. 255

F IGURE 4 Linear/quadratic/cubic relationship between shear fracture energy and normal pressure.

(i) Case 1 (𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 and 𝜀𝑠𝑠 > 0)

𝜕𝐹 (𝜃)

𝜕𝜃
= 𝜇(𝜀1 − 𝜀2)

2
(

1

𝐺II𝑐
−

1

𝐺I𝑐

)
sin (4𝜃) (17)

(ii) Case 2 (𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 > 0 and 𝜀𝑠𝑠 ≤ 0)

𝜕𝐹 (𝜃)

𝜕𝜃
=

2𝜇 (𝜆 + 𝜇)

𝑀𝐺I𝑐

(
𝜀2
2
− 𝜀2

1

)
sin (2𝜃) + 𝜇(𝜀1 − 𝜀2)

2
(

1

𝐺II𝑐
−

𝜇

𝑀𝐺I𝑐

)
sin (4𝜃) (18)

(iii) Case 3 (𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 ≤ 0)

𝜕𝐹 (𝜃)

𝜕𝜃
= 𝜇(𝜀1 − 𝜀2)

2 1

𝐺II𝑐
sin (4𝜃) (19)

where𝑀 = 𝜆 + 2𝜇 is the one-dimensional constrained modulus.
For the above three cases, solving 𝜕𝐹(𝜃)

𝜕𝜃
= 0 gives the following three possible solutions: 𝜃 = 0, 𝜃 =

1

2
cos−1(

(𝜆+𝜇)𝐺II𝑐

𝑀𝐺I𝑐−𝜇𝐺II𝑐

⋅
𝜀1+𝜀2

𝜀1−𝜀2
), 𝜃 =

𝜋

4
. The three possible cracking angles are then used to compute 𝐹(𝜃), and the

angle which gives the maximum 𝐹(𝜃) is chosen as the local potential crack direction. The calculated 𝜃 can be inherited
by the voxel crack model46,47 used in numerical manifold method (NMM) for the further contact simulation of the crack
detached rock blocks, to complete the whole process from fracture initiation, propagation to the collapse of rock masses.
More details will be introduced and investigated in our future work.

2.3 Confinement-dependent 𝑮𝐈𝐈𝒄 for directional split

To further consider the dependence of 𝐺II𝑐 on confinement, a non-constant 𝐺II𝑐 is used in this paper to calculate the
cracking angle. Assume a linear relationship between the normal pressure 𝜎𝑟𝑟 and 𝐺II𝑐 in the compressive regime, while
constant in the tensile regime (Figure 4), that is,

𝐺II𝑐 = 𝐴𝜎𝑟𝑟− + 𝐵, (wℎ𝑒𝑟𝑒) 𝜎𝑟𝑟− =
𝜎𝑟𝑟 − 𝑎𝑏𝑠 (𝜎𝑟𝑟)

2
(20)

𝐴 and 𝐵 have the unit of [m] and [N ⋅ m−1], respectively.
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256 SUN et al.

With this assumption, for case 3 (𝜀𝑟𝑟 +
𝜆

𝜆+2𝜇
𝜀𝑠𝑠 ≤ 0), a different cracking angle should be computed to find themaximum

𝐹(𝜃). In this case,

𝑊+
I (𝜃) = 0, 𝑊+

II (𝜃) =
1

2
𝜇(𝜀1 − 𝜀2)

2
sin2 (2𝜃) , 𝐹 (𝜃) =

𝑊+
II (𝜃)

𝐺II𝑐
(21)

Then, we have

𝜕𝐹 (𝜃)

𝜕𝜃
=

𝜇(𝜀1 − 𝜀2)
2
sin (2𝜃) ⋅

(
𝐴𝜇 (𝜀1 − 𝜀2) cos

2 (2𝜃) + [2𝐴 (𝜆 + 𝜇) (𝜀1 + 𝜀2) + 2𝐵] cos (2𝜃) + 𝐴𝜇 (𝜀1 − 𝜀2)
)

(𝐴 [(𝜆 + 𝜇) (𝜀1 + 𝜀2) + 𝜇 (𝜀1 − 𝜀2) cos (2𝜃)] + 𝐵)
2

(22)

If 𝐴 = 0, which means a constant shear fracture energy over the entire stress state, we can have

2𝐵 cos (2𝜃) = 0 ⇒ 𝜃 =
𝜋

4
(23)

If 𝐴 ≠ 0, we can have

𝜃 =
1

2
cos−1

(
−𝑏 +

√
𝑏2 − 4𝑎2

2𝑎

)
(24)

where

𝑎 = 𝐴𝜇 (𝜀1 − 𝜀2) , 𝑏 = 2𝐴 (𝜆 + 𝜇) (𝜀1 + 𝜀2) + 2𝐵 (25)

Similarly, if a quadratic relationship ( 𝐺II𝑐 = (𝐴⟨𝜎𝑛𝑛⟩− + 𝐵)2 ) is assumed, then the cracking angle 𝜃 is derived as

𝜃 =
1

2
cos−1

(
−𝐴𝜇 (𝜀1 − 𝜀2)

𝐴 (𝜆 + 𝜇) (𝜀1 + 𝜀2) + 𝐵

)
(26)

If a cubic function ( 𝐺II𝑐 = (𝐴⟨𝜎𝑛𝑛⟩− + 𝐵)3 ) is assumed, then

𝜃 =
1

2
cos−1

(
−𝑏 +

√
𝑏2 − 4𝑎𝑐

2𝑎

)
(27)

where

𝑎 = − 𝐴𝜇 (𝜀1 − 𝜀2) , 𝑏 = 2𝐴 (𝜆 + 𝜇) (𝜀1 + 𝜀2) + 2𝐵, 𝑐 = 3𝐴𝜇 (𝜀1 − 𝜀2) (28)

This angle is added to the selection pool for calculating the cracking angle. An example of the calculation of 𝜃 in the
principal strain plane is shown in Figure 5 for varying 𝐺0

II𝑐
∕𝐺I𝑐 ratio. With decreasing 𝐺0

II𝑐
, the red region which stands

for the crack propagation along the maximum shear direction (𝜃 = 45o ) widens.

3 NUMERICAL IMPLEMENTATION

The standard finite element discretization for the displacement field and phase field, and their variation and gradient
read

𝑢 = 𝐍𝑢 𝐮̃, 𝛿𝑢 = 𝐍𝑢 𝛿𝐮̃, 𝛆 = 𝐁𝑢 𝐮̃ (29)

𝑑 = 𝐍𝑑 𝐝̃, 𝛿𝑑 = 𝐍𝑑 𝛿𝐝̃, ∇𝑑 = 𝐁𝑑 𝐝̃ (30)
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SUN et al. 257

F IGURE 5 The calculation of 𝜃 in the principal strain plane (in degree).

N𝑢 and N𝑑 represent the shape functions for the displacement and phase field respectively. B𝑢 and B𝑑 are their
derivatives where

𝐁𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕𝑁𝑢
1

𝜕𝑥
0 ⋯

𝜕𝑁𝑢
𝑖

𝜕𝑥
0

0
𝜕𝑁𝑢

1

𝜕𝑦
⋯ 0

𝜕𝑁𝑢
𝑖

𝜕𝑦

𝜕𝑁𝑢
1

𝜕𝑦

𝜕𝑁𝑢
1

𝜕𝑥
⋯

𝜕𝑁𝑢
𝑖

𝜕𝑦

𝜕𝑁𝑢
𝑖

𝜕𝑥

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝐁𝑑 =

⎡⎢⎢⎢⎣
𝜕𝑁𝑢

1

𝜕𝑥

𝜕𝑁𝑢
2

𝜕𝑥
⋯

𝜕𝑁𝑢
𝑖

𝜕𝑥

𝜕𝑁𝑢
1

𝜕𝑦

𝜕𝑁𝑢
2

𝜕𝑦
⋯

𝜕𝑁𝑢
𝑖

𝜕𝑦

⎤⎥⎥⎥⎦ (31)

𝐮̃ and 𝐝̃ are nodal unknown vectors for the two fields.
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258 SUN et al.

ALGORITHM 1 Material cracking angle and 𝐹(𝜃) computation for the present phase-field model

Input: 𝜀, ()𝑡=𝑡𝑛−1

Output: 𝜃, ()𝑡=𝑡𝑛

Calculate the valid angle for possible cracking directions
under the current strain state:
𝜃 = 0, 𝜃 =

𝜋

4
, 𝜃 =

1

2
cos−1(

(𝜆+𝐺)𝐺II𝑐

𝑀𝐺I𝑐−𝐺𝐺II𝑐

⋅
𝜀1+𝜀2

𝜀1−𝜀2
), 𝜃 =

1

2
cos−1(

−𝑏+
√
𝑏2−4𝑎2

2𝑎
).

Calculate the equivalent crack driving force 𝐹(𝜃) along these
possible angles.
Choose the angle 𝜃 which gives the maximum 𝐹(𝜃).
Update the history variable ()𝑡=𝑡𝑛 according to Equation 38).

End

The weak form for Equations (5) and (6) can be written as

∫
Ω

𝜎 ∶ ∇𝑠𝑦𝑚𝛿𝑢dΩ = ∫
Ω
𝑓 ⋅ 𝛿𝑢dΩ + ∫

𝜕Ω𝑡
𝑡 ⋅ 𝛿𝑢dS (32)

∫
Ω

(
1

𝑙0
𝑑𝛿𝑑 + 𝑙0∇𝑑∇𝛿𝑑

)
dΩ = ∫

Ω

2 (1 − 𝑑)𝛿𝑑dΩ (33)

Then, the discretized form is written as

(𝛿𝐮̃)
T

∫
Ω

(𝐁𝑢)
T 𝜕𝜎

𝜕𝜀
𝐁𝑢dΩ 𝐮̃ = (𝛿𝐮̃)

T

∫
Ω

(𝐍𝑢)
T

⋅ 𝑓dΩ + (𝛿𝐮̃)
T ∫
𝜕Ω𝑡

(𝐍𝑢)
T
⋅ 𝑡dΩ (34)

(
𝛿𝐝̃

)T
∫
Ω

{
1

𝑙0
(𝐍𝑑)

T
𝐍𝑑 + 𝑙0(𝐁𝑑)

T
𝐁𝑑

}
dΩ𝐝̃ +

(
𝛿𝐝̃

)T
∫
Ω

2(𝐍𝑑)
T
𝐍𝑑dΩ 𝐝̃ =

(
𝛿𝐝̃

)T
∫
Ω

2(𝐍𝑑)
T
dΩ (35)

For arbitrary admissible 𝛿𝐮̃ and 𝛿𝐝̃, Equations (34) and (35) hold. Then, we have

∫
Ω

(𝐁𝑢)
T 𝜕𝜎

𝜕𝜀
𝐁𝑢dΩ 𝐮̃ = ∫

Ω

(𝐍𝑢)
T
⋅ 𝑓dΩ + ∫

𝜕Ω𝑡

(𝐍𝑢)
T
⋅ 𝑡dΩ (36)

∫
Ω

{
1

𝑙0
(𝐍𝑑)

T
𝐍𝑑 + 𝑙0(𝐁𝑑)

T
𝐁𝑑 + 2(𝐍𝑑)

T𝐍𝑑

}
dΩ 𝐝̃ = ∫

Ω

2 (𝐍𝑑)
TdΩ (37)

To enforce crack irreversibility, a history variable is used in Equations (35) and (37), which is defined as

()
𝑡 =𝑡𝑛 = 𝑚𝑎𝑥

{
()

𝑡 =𝑡𝑛−1 , 𝐹 (𝜃)
}

(38)

𝐹(𝜃) is calculated in each iteration in each loading step for every quadrature points. The pseudo code for the cracking angle
(therefore the crack surface normal) and 𝐹(𝜃) computation based on the current strain state is presented as Algorithm 1:
The displacement balance subproblem (Equation (36)) is nonlinear due to the direction-based strain energy decompo-

sition, as with many decomposition schemes accounting for tension/compression asymmetry. In the commonly adopted
staggered algorithm for solving phase field models, Equations (36) and (37) are alternatively solved in every loading step
until convergence is achieved based on the selected criterion. However, when solving the displacement field 𝑢with a fixed
phase field 𝑑, the tangent stiffness term 𝜕𝜎

𝜕𝜀
in Equation (36) depends on the cracking angle (and therefore 𝑢) which results
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SUN et al. 259

D

a

H

t

h

C

(A) (B)F IGURE 6 Short core in compression
tests: (A) experimental configuration; (B)
numerical configuration.

in nonlinearity, because only 𝜎+
I
and 𝜎+

II
are degraded

𝜕𝜎

𝜕𝜀
= (1 − 𝑑)

2

(
𝜕𝜎+

I

𝜕𝜀
+

𝜕𝜎+
II

𝜕𝜀

)
+

𝜕𝜎−

𝜕𝜀
(39)

In this paper, the hybrid formulation proposed by Ambati et al.48 is used to avoid the iterations required in solving
Equation (36), which simplifies Equation (39) to

𝜕𝜎

𝜕𝜀
= (1 − 𝑑)

2
𝐃𝑒 (40)

𝐃𝑒 is the elasticity matrix for the undamaged material. The convergence is judged by residuals and nodal updates for
both fields in this paper. The alternate minimization or the so-called staggered algorithm has been proven to be more
robust than the monolithic algorithm in solving phase-field equations. Noteworthy are date-driven models49–51 recently
developed for solving phase-field problems monolithically.

4 NUMERICAL EXAMPLES

In this paper, all existing cracks or notches are represented as meshed-in and pre-existing flaws, and their surface contact
is not considered. Plane stress state is assumed for all the examples.

4.1 Short core in compression (SCC) tests

To investigate the applicability of the proposed model in capturing the confinement effect, the short core in compression
tests, which are widely used for examining rock shear fracture behaviors,52–54 are first modeled. The geometrical and
material parameters are taken from.54 As shown in Figure 6, the granite core diameter 𝐷 = 50 mm and the core height
𝐻 = 100 mm. The prefabricated notches with an aperture of 𝑡 = 1 m𝑚 extend from the outer surface to the core center
with a net distance 𝐶 = 39 mm. The material parameters of the granite are listed in Table 1.
According to,54 all the surfaces of SCC specimens are subjected to the same confining pressure under triaxial loading.

Themode-II fracture toughness are then calculated based on the ultimate bearing capacity under different confining pres-
sure, and themorphology features of shear fracture surfaces are studied from three-dimensional optical scanner data. Due
to the detailed experimental data regarding mode-II rock fracture in,54 the SCC experiments are chosen here to verify the
proposed model. Using the relation between 𝐾I𝑐(𝐾II𝑐) and 𝐺I𝑐(𝐺II𝑐) from linear elastic fracture mechanics, we have 𝐺I𝑐 =

0.091N∕mmand 𝐺II𝑐 = (0.024𝑃 + 0.561)2 N∕mm which equates to 𝐴 = −0.024
√
N∕mm∕MPa, 𝐵 = 0.561

√
N∕mm in

Equation (24). A two-dimensional plane numerical model instead of a three-dimensional setup is established as shown
in Figure 6B for computational efficiency. The uniform confining pressure are applied as a uniform isotropic initial
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260 SUN et al.

TABLE 1 The mechanical parameters of granite[54].

Properties Value
Young’s modulus 𝐸 (GPa) 40.16
Poisson’s ratio 𝜈 0.31
Brazilian tensile strength 𝜎𝑡 (MPa) 11.3
Cohesion 𝑐 (MPa) 28.81
Internal friction angle (o) 56
Mode-I fracture toughness 𝐾I𝑐 (MPa ⋅

√
m) 1.91

Mode-II fracture toughness 𝐾II𝑐(MPa ⋅
√
m) 3.77+0.152Pa

aP is the confining pressure.
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F IGURE 7 Nominal shear stress-axial strain curves under different confining pressure.

compressive strain. The bottom boundary is fixed in the vertical direction and a pin is applied to the middle of the top
boundary. The top boundary is then compressed by a downward displacementwith an increment ofΔ𝑢 = 0.001 mm.The
phase-field length parameter is set as 𝑙0 = 0.4 mm.Quadrilateral linear elements (141,255) are used to discretize the whole
analysis domain with the central area locally refined. The characteristic mesh size in the central region is ℎ = 0.12 mm.

The SCC tests under 0 MPa/5 MPa/25 MPa confining pressure are modeled using the proposed numerical model. The
obtained nominal shear stress-axial strain curves are shown in Figure 7. An approximately linear stress-strain response
is observed until an abrupt brittle failure occurs. The nominal peak shear stress shows an increasing trend with elevated
confining pressure, which is consistent with experimental findings. However, due to the ignorance of initial porosity and
micro-cracks of the presentmodel, discrepancy exists in the pre-peak regionwhen compared to the experimental data in.54
The failure surfaces obtained by experiments and numerical models under different confining pressure are then com-

pared. As can be seen from Figure 8, the ultimate failure plane forms between the upper and lower notches, showing an
upright shear fracture behavior. In addition, with elevated confining pressure, the failure plane becomes smoother, which
is consistent with experimental results. In,54 the fracture roughness is quantified by the fractal dimension𝐷, and𝐷 shows
a degrading trend with confining pressure. In the numerical model, the fractal dimension cannot be easily measured, but
the tortuosity of the ultimate failure plane shows a distinctly similar trend.
To investigate the influence of discretization and the phase-field length parameter on material behaviors,

additional simulations have been performed. At first different discretization with characteristic mesh size ℎ =

0.2 , 0.16 , 0.12 , 0.08 , 0.05 m𝑚 in the refined zone and a fixed phase-field length parameter 𝑙0 = 0.4 mm for the cases
under 0 and 25MPa confinement is utilized. The obtained failure patterns are shown in Figure 9 and Figure 10. As shown,
convergencewith refined discretization is observed. Then the phase-field length parameter 𝑙0 is variedwith the samemesh
ℎ = 0.12 mm for the same confinement scenarios. The obtained nominal shear stress versus 𝑙0 is plotted in Figure 11,
and the failure surfaces are compared in Figures 12 and 13. For both loading cases, with decreasing length parameter 𝑙0,
the failure strength increases and the crack sharpens.
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SUN et al. 261

F IGURE 8 Failure surfaces obtained by numerical models (left column) and experiments (right column) under different confining
pressure: (A) 𝑃 = 0 MPa; (B) 𝑃 = 5 MPa; (C) 𝑃 = 25 MPa.

F IGURE 9 Failure surfaces with different discretization under no confining pressure.

F IGURE 10 Failure surfaces with different discretization under confining pressure 𝑃 = 25 M𝑃𝑎.
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262 SUN et al.
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F IGURE 11 Nominal shear strength with different phase-field length parameters.

F IGURE 1 2 Failure surfaces with different phase field length parameter under no confining pressure.

F IGURE 13 Failure surfaces with different phase field length parameter under confining pressure 𝑃 = 25 M𝑃𝑎.
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SUN et al. 263

F IGURE 14 The failure surfaces obtained: (A) without confinement effect; (B) with confinement effect.

F IGURE 15 The cracking angle 𝜃 obtained (in degree) when 𝑢∗
𝑦 = 0.079 mm: (A) without confinement effect; (B) with confinement

effect.

To further demonstrate the necessity of incorporating the confining pressure dependent mode-II fracture energy,
we deactivate the fourth solution (Equation 26) for the cracking angle calculation and rerun the simulation with 𝑙0 =

0.4 mm and mesh size ℎ = 0.12 m. The obtained cracking pattern is plotted in Figure 14A). As seen, the model without
incorporating confinement effect produces erroneous horizontal cracks.
We plot also the cracking angle 𝜃 and 𝐹-contours of the above two models obtained in one pre-peak loading step (with

a downward displacement 𝑢∗𝑦 = 0.079 mm) in Figures 15 and 16. Differences in the cracking angle distribution can be
observed, especially around the notch front. For themodel without confinement effect, the normalized crack driving force
𝐹 concentrates right ahead of the notch front, whereas for the proposed approach with confinement effect, 𝐹 concentrates
in the central area between two notches.
To quantitatively demonstrate the difference between the two models, the strain tensor of the material point

lying 1 mm horizontally ahead of the upper notch tip is analyzed. For the model without confinement effect,

the strain tensor 𝜀 =

[
−5.317 × 10−4 −1.3685 × 10−4

−1.3685 × 10−4 −2.586 × 10−3

]
. The calculated cracking angle 𝜃 = 45o and the equiva-

lent cracking driving force 𝐹 = 0.093∕mm. While for the model with confinement effect, the strain tensor 𝜀 =[
−5.417 × 10−4 −1.347 × 10−4

−1.347 × 10−4 −1.962 × 10−3

]
. The calculated cracking angle 𝜃 = 38.4o and the equivalent cracking driving force
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264 SUN et al.

F IGURE 16 The 𝐹 obtained when 𝑢∗
𝑦 = 0.079 mm: (A) without confinement effect; (B) with confinement effect.

F IGURE 17 Rock-like specimen with two inclined flaws.

𝐹 = 0.0031∕mm. Obviously, when the confinement effect is not incorporated, the predicted cracking is along the
maximum shear direction under compressive-shear loading. With the proposed model, the maximum shear direction
corresponds to a larger normal stress 𝜎𝑟𝑟 = −72.86 MPa and gives 𝐺II𝑐 = 5.493N∕mm. While along 𝜃 = 38.4o plane,
although with a smaller shear stress, the smaller 𝜎𝑟𝑟 = −67.83 MPa gives a smaller 𝐺II𝑐 = 4.942N∕mm and therefor a
larger 𝐹.

4.2 Rock-like specimen with coplanar and noncoplanar flaws

Mixed-mode fracture in rock-like specimens containing two flaws shown in Figure 17 studied by Bobet and Einstein55–57
is then tested. The specimen is 76.2 mm ×152.4 mm (width × height), and the length and width of the initial flaws are
2𝑎 = 12.7 mm and 0.1 mm. The configuration of the two flaws is described by “𝛼 − 𝑐 − 𝑤” where 𝛼 denotes inclination
angle, 𝑐 denotes continuity, and 𝑤 denotes spacing. We simulate two noncoplanar cases “45o − 𝑎 − 2𝑎” and “45o − 2𝑎 −

2𝑎” and one coplanar case “60o − 0 − 2𝑎.” The elasticity parameters are measured in55,56 and directly adopted in the
simulation: 𝐸 = 5.96 G𝑃𝑎, 𝜈 = 0.24. In the previous simulation,43 the phase-field length parameter 𝑙0 is set as 0.2 mm.
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SUN et al. 265

F IGURE 18 Crack propagation process for the noncoplanar configuration “45o − 𝑎 − 2𝑎.”

F IGURE 19 Crack patterns for rock-like specimens for the “45o − 𝑎 − 2𝑎” configuration: (A) the present simulation; (B) simulation
results by Zhang et al.20 and the experiment.

The tensile and shear fracture energies are then calibrated to match the experimental coalescence stresses and are given
by 𝐺I𝑐 = 0.016N∕mm and 𝐺II𝑐 = 0.205N∕mm. In this paper, the phase-field length parameter 𝑙0 is set as 0.5 mm and
mode-I fracture energy 𝐺I𝑐 is set as 0.04N∕mm to keep 𝐺I𝑐

𝑙0
unchanged. The mode-II fracture energy is then calibrated to

match the coalescence stresses, and is given by 𝐺0
II𝑐

= 0.41N∕mm and 𝐺II𝑐(𝜎𝑟𝑟 = 30 MPa) = 2𝐺0
II𝑐
.

The noncoplanar case “45o − 𝑎 − 2𝑎” is first presented. The region where the crack is likely to propagate is refined
a priori with a mesh size ℎ = 0.25 mm. In total the mesh includes 172156 quadrilateral elements. The simulated crack
propagation process is shown in Figure 18. At first wing cracks initiate from both tips of both flaws (Figure 16A), thenwing
cracks continue to propagate but with an uneven speed (Figure 18B and 18C). Finally, an oblique crack connects the inner
two tips, as shown in Figure 18D. Figure 19 shows the consistency of the present simulation with the results by Zhang
et al.20 and the experiment.
Then, the noncoplanar configuration “45o − 2𝑎 − 2𝑎” is studied. In total the mesh includes 172,365 quadrilateral ele-

ments. The crack propagation process and final crack pattern are presented in Figure 20. Similar to the previous case, the
tensile wing cracks initiate and propagate before the coplanar shear cracks, but the coalescence pattern is not the same.
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F IGURE 20 Crack propagation process and final crack patterns for the “45o − 2𝑎 − 2𝑎” configuration: simulation and experimental
results.

F IGURE 2 1 Crack propagation process and final crack patterns for the “60o − 0 − 2𝑎” configuration: simulation and experimental
results. The experimental is redrawn from.57

In this case, the coalescence is generated by a coplanar shear crack from one tip joining the tensile wing crack from the
other tip, which is also consistent with experimental findings.43
For the coplanar configuration “60o − 0 − 2𝑎,” the analysis domain is discretized by 138,656 quadrilateral elements.

Figure 21 presents the final crack pattern as compared to the experimental results in.57 The coalescence type is
characterized by secondary shear crack between the inner two crack tips, consistent with the statement in.57
For a quantitative comparison, the coalescence stress level for the above three cases is presented in Figure 22

together with experimental results. The maximum relative error is around 9.59% ,which shows good consis-
tency. So far, the potential of the proposed model in capturing crack pattern and failure strength has been
validated.
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F IGURE 22 Crack coalescence stress for rock-like specimen with coplanar and non-coplanar flaws.

5 CONCLUSION

In this paper, a phase-field formulation based on an extendedF-criterion is proposed to simulate tensile-compressive-shear
rock fractures. The phase-field crack-driving energy decomposition is determined by a direction search which maximizes
the local fracture dissipation based on the F-criterion. In compressive-shear states, the computation is supplemented
by an explicitly expressed confinement-dependent mode-II fracture energy. The cracking angle is obtained relying on
both the fracture energy and strain states, which is a critical parameter for the future contact simulation of the crack
detached rock blocks. This extension provides the present formulation with the ability to capture the pressure-sensitivity
of rock and rock-like materials. Fracture from notches and coplanar/noncoplanar cracks in rock and rock-like specimens
demonstrates the ability of the present model in capturing tensile-compressive-shear rock fracture behaviors.
Simple generic relationships between the normal stress and mode-II fracture energy are assumed to derive the analyt-

ical solution of the cracking direction, which can be generalized for more complex occasions. The adopted formulation
is variationally inconsistent because of the incorporation of the history variable accounting for crack irreversibility and a
hybrid strategy in calculating damaged stress for the simplified displacement subproblem. The influence of a hybrid for-
mulation on crack evolution should be further explored. Extension to 3D should also be sought after proper consideration
of the intermediate stress. Drastic changes of cracking directions are one of the main limitations of this paper, as with
many directional-split based phase-field models. Studies on dealing with multiple cracking directions will be carried out
in the future.
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