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Abstract—The diffusion and deformation coupled problem are considered in many material and engi-
neering areas, and it has been studied on both theory and solution methods. However, the analytical
solutions for this problem are relatively fewer, especially for two-dimensional problems. In this paper,
based on a diffusion and mechanical coupled continuum model, the plane strain problem in the polar
coordinates considering mass diffusion was studied. The relationship between volume strain and mass
concentration was deduced by using a displacement potential function, and the analytical expression
for concentration was then deduced. To comply with the mechanical boundary conditions, the Airy
stress function was applied. The analytical expressions for stress components were also completely
determined. After that, a numerical example of a cylinder with variant concentration distribution on
its cylindrical surface was given, the results showed that concentration gradient distribution would
cause the generation of stresses and the value of stresses positive correlated to the concentration gra-
dient.

Keywords: diffusion-induced stress, analytical solution, Airy stress function, chemo-mechanical cou-
pling
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1. INTRODUCTION

‘When the diffusion equation with mechanical effect term incorporated and the motion equations con-
tain the effect of concentration, this kind of problem is called coupled diffusion and deformation problem.
This problem may arise in many materials and engineering areas, including soft materials [1], batteries [2],
and biomedicine [3].

The diffusion induced stress was first researched by analogy with the thermal stress by Prussin [4]. Fol-
lowing his work, quantities of theoretical models concerning diffusion and deformation were proposed.
These models can be classified into two categories, ie., the linear and non-linear theories. For nonlinear
theories, the large deformation [5], concentration dependent material parameters [6], reaction [7] and
plastic flow [8, 9] were considered. Larch and Cahn [10] developed a linear theory of thermochemical
equilibrium of solid based on thermodynamics. The linearization method has been employed in many
continuum models that diffusion and deformation were coupled [11—14].

Based on these developed models, the concentration and stress distribution of various structures, like,
nanowire [15], composite structures [16, 17], thin film [18, 19] were studied. Mostly, the numerical sim-
ulation or numerical methods were used, analytical solutions usually appear in one-dimensional cases
[20—22].

In this paper, based on a diffusion and deformation coupled linear model, a plane strain problem in
the polar coordinates considering steady state mass diffusion was analytically solved by using a displace-
ment potential function and Airy stress function. Then a traction free cylinder long enough with half of its
flank under constant concentration boundary conditions were analysed. The numerical results showed
that the gradient distribution of concentration would cause the generation of stresses because of the defor-
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Fig. 1. The sketch of a circular cylinder.

mation mismatch induced by the difference of concentration. The value of stresses would increase with
concentration gradient.

2. BASIC FORMULATIONS OF COUPLED DIFFUSION AND DEFORMATION

Following the linear continuum model [14], a homogenous isotropic active media with steady mass
flow, the concentration will satisfy the equation

AgAc + AbAe = 0, 2.1)

where A is the species mobility, g is the scalar chemistry modulus, e = div u represents the volume strain,
and coefficient b is chemistry-strain modulus that can be expressed by Lame constants A, G and chemical
dilation coefficient [ as

b=—-(3\L+2G)B. 2.2)
The inertia term and body force are ignored, the basic equation of motion is
GAu+(AL+G)V(V-u)+5bVe=0. 2.3)

3. GENERAL SOLUTION FOR A LONG CYLINDER

Considering a circular cylinder with radius a as showed in Fig. 1, and supposed that the applied trac-
tions on the cylindrical boundaries which parallel to the z-axis and the species concentration distribution
are independent of the axial coordinate z.

It is convenient to suppose that the diffusion only occurred in the radial direction and the cylinder is
long enough, so that the problem can be simplified as plane strain problem. The polar coordinates are

adopted here and the Laplace operator in polar coordinates is A = — + ~—+ = —. To analyze this
or° ror r 900

chemo-mechanical coupled problem, the displacement method is used, and a chemical displacement
potential function y is introduced. Equation (2.3) in polar coordinates can be stated as

(1= 2v)Au, +9¢= b _0c 3.1)
or  A+Gor
(1= 2v)Au, +19¢ = __b_19¢, (3.2)
rod  A+Grado
where e = % +4 %ug is the volume strain, u, and u, represent radial displacement and circumferential
r r r

displacement respectively. The particular solution of Egs. (3.1) and (3.2) can be related to the chemical
displacement potential function y as follows

Y

d
=2 = 1oy (3.3)

Fo0
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From Eq. (3.3), it is obviously to have e = Ay, then Egs. (3.1) and (3.2) are written as

0 b Odc
1-v)2 (Ay) = -2 2 3.4
( V)ar( v) A+ Gor (4)
10 b lac
119 (ay) = 35
( V)rae( )= A+Groo (3-5)

And these two partial differential equations can be satisfied when the chemical displacement potential
y is the solution of following equation

Ay =1+Ype (3.6)
The stresses expressions corresponding to the chemical displacement potential y are
2
s Z_L lal]"_%a_\g 5 (37)
I1+viror r” 00
E 82\|!
Cgg = — — 3.8
00 1 Ty arz ( )
G, = Li(la_‘”) (3.9)
1+vor\rodo

and the stress component in z direction is
6., =v(0, +Gg) — EBc. (3.10)

From Eq. (3.6) and accommodate the relations between volume strain e and potential function y, the
diffusion equation can be written as
b2
Al g— Ac = 0. (3.11)
[g x GJ

+

2

We note that M = A4 ( g- —j, and the chemical boundary condition about concentration is given

as follows
c(a,e) = G(O). (3.12)

It should be mentioned that the conventional enforced chemical boundary condition is the specifica-
tion of the chemical potential which is usually used for water absorption or dehydration [1, 23]. However,
the chemical boundary condition about concentration is also frequently used in the analysis of batteries
or solute transportation [24, 25], where the diffusion induced stresses are more concerned about. Here,
we are focused on the analytical solution of plane strain problem about mass diffusion induced stresses,
this may throw light on the stress analysis during battery charging and discharging process, so the bound-
ary condition about concentration is used.

The solution of steady-state equation (3.11) with boundary condition (3.12) can be easily obtained as

(r,0) = a, + Z( ) [a,, cos (m8) + b, sin (m6)] (3.13)
and the coefficients are
2n
1
=— | G(8)ds,
=] 0O
2n
=1 [G(8)cos(m0)ds, (3.14)
n 0
2n
=1 [G(8)sin(me)de.
T 0

Using Eq. (3.13) in Eq. (3.6), the chemical displacement potential is obtained as
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(14a =B -y & 1 oy |
Ve e Zm(;) [a, cos (mB) + b, sin (m0)] |. (3.15)
- m=1
Then the stresses in (3.7)—(3.9) are expressed as
_ m-2
| £ %ao +‘l‘ MJAI)(_) [a,, cos(mB) + b, sin (mB)]
o, == m=t a , (3.16)
—y 1

_ZZ(m -2) (i)m [a,, cos(mB) + b, sin (m0)]

m=l

1 limm—l)rwz[ ;
g, -~ L a,, cos(m) + b,, sin (m0)]
Gy = _1EB 27 4 mel (Z) , (3.17)
- +‘l‘2(m +2) (5) [a,, cos(mB) + b, sin (m0)]
m=1 a
1N m(m=1)(r\"? i
—=» ——%|  [b,cos(mB) - a, sin (m0)]
G're :E_B 4~ +1 (a) (3.18)

m (f)m [5,, cos(m0) — a,, sin (m0)]

m
1-v 1 i
+ —
4
Granted that the cylindrical surface of the circular cylinder is free of stresses, however a non-zero sur-
face stresses (G,,,0,q) is given by the stresses expressions of (3.16)—(3.18)

(C)pey = EB { IZ [a cos(m) + b, sm(me)]} (3.19)
' _EB 1 = m _ .
(C,0),0 = - V{2 ;m " 1[bm cos(m0) — a,, sin (me)]} (3.20)

To comply with the stress boundary condition, the complementary stress should be introduced to can-
celling the surface stresses of Egs. (3.19) and (3.20). Therefore, forces equal to (3.19) and (3.20) but in
opposite directions are taken as surface loads to seek the solution of the complementary stress, and the
general stress function expressed in polar coordinates is used. Noting that the first term of the stress in
brackets of Eq. (3.19) is symmetrical to the origin of coordinates, and the other terms as well as the expres-
sion of Eq. (3.20) is the stress proportional to sin (mG) or cos (mG) acting on the outer surface of the cyl-
inder. Accordingly, the Airy stress function can be assumed as

o= k0r2 + k1r3 cos 0+ p1r3 sin©

> (3.21)
+Z (k™ + 1r™) cos (mB) + Z(Pm 2 4 q,r")sin (m0).
m=2
The corresponding stress components are
o 18(1) 12 Gl ¢ _ =2k, + 2kyrcos0 + 2prsin 0
r ar ¥ 00’
= [(m+1)(m=2) k" + m(m=1) 1" |cos (mH) (3.22)

M- 3

[(m +1)(m=2) pr" +m(m— l)qmrm_z]sin (mB),

2

3
Il
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2
Ggo = F = 2k, + 6k;rcos0+ 6prsin 0
r

+ > [(m+1)(m+2) k" + m(m=1) 17" |cos (mH) (3.23)

M- 3

+ [(m +1)(m+2)pr" +m(m— l)qmrm_z]sin (m®),

3
|

G, = _i(la_d)) = -2prcos0+2krsind
or\rab

[m (m+1)p,r" +(m-1) qmrm_ﬂ cos(mb) (3.24)

+

M+ 1M

[m (m+1)k,r" +(m— l)lmrmfz]sin (m®).

2

3
I

At the cylinder surface, they come to

(6,),_, = 2k +2kjacos® + 2pasin®

[ m+1)(m=2)k,a" +m(m—1)l,a""* |cos (m6) (3.25)

MSﬁMz

[(m +1)(m=2)p,a”" +m(m— l)qmam_z]sin (m®),

2

3
I

(0,6),_, = —2pacos® + 2kasin @

i[m (m+1)p,a" +(m-1) qmam_ﬂ cos (m0)

2

(3.26)

+i[ m+1)k,a" +(m l)lmamfz]sin(mﬂ).

m=2

The stresses expressions of (3.25) and (3.26) should be equal but reverse to the stresses of (3.19) and
(3.20) respectively. Comparing each term of these expressions after sorting, the coefficients in Eq. (3.21)
are obtained as

k():% klzﬂ plzﬂ’
4(1-v) 8(1-v)a 8(1-v)a
i 2
A I |
1=v|2a" (m+1)"(m" —m+2)
=-EBl____ om a, . (3.27)
1=v|[2d"" (m+1)(m" —m+2)
[ 2
1=v|2a" (m+1)"(m" —m+2)

EB m
m=2 2 bm '
1=v|2a""(m+1)(m" —m+2)

Using the coefficients of Eq. (3.27) in the stresses expressions (3.22)—(3.24), the complementary
stresses are obtained as following

dm = —
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la0 + 2 cos @ +ﬂsin6
2 4a 4a

i{ +1)m 2)a, (_)m}cos(me)

> m+1 m —-m+2)\a

” _ B + { —l)a (f)m 2}cos(me)

1-v 2m+l(m —-m+2)\a

[ (m” +1)(m=2)b, (z)m}m(me)

2m+1(m —-—m+2)\a
b rm2 .
- 0
+m {2 m+1) (m —m+2)( ) }sm(m)

cosQ+ = 3br
4a 4a

+ i{z (m+2)(n” + a, (f)m}COS(mG)

3 (m+1 (m* —m+2)\a
EB e rm2
- _EP < 0
G0 =y ,;2m+1(m —m+2)() }Cos(m)

+i{ (m+2) (m +1)b,, (E)m}sin(me)

| 2 m+1 m -m+2)\a

Q
|

(3.28)

-

%ao + =L Sar —Lsin0

(3.29)

-

r
,,, 31 2( m+1 (m —m+2)(

n" 2}sin(me)

—b‘—rcose + 4 Gino
4a da

i{ bm(m’ +1) (K)m}cos(me)

2(m+1) (m -m+2)\a

1) (E)m 2}05(”19) . (3.30)

2 m+1 (m —m+2)\a

+ i { a m(m +1) (f)m} sin (m0)

oo m+1 m —-m+2)\a

{ m+1 (m _1’1)1+2)(£)m_2}sin(m9)

The actual in-plane stress components are now completely determined as the sum of particular solu-
tion expressions (3.16)—(3.18) and the complementary stress (3.28)—(3.30) respectively. Then the axial
stress component can be found by Eq. (3.10).

M

4. APPLICATION
Assuming that the radius of the cylinder is @ = 1, the concentration on the upper half of its circumfer-
ence is kept at ¢, = 2.3x10* mol/m’ and concentration on the lower half is kept at zero, and no traction
on the circumference surface. The material parameters are set as v=0.3, F =1.9X 10" Pa,
B=1.167x 10°° m?/mol. Then the concentration boundary conditions are described by
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¢ if 0<O<m,
,6)=G(0) = 4.1
<(1,6) (®) {0 if m<06<2m “.D
Substituted G (0) into Eq. (3.14), the coefficients are determined
a =ifc do =% 4.2)
0 2TE ) 0 ) s
g
a, =1 [cycos(m6)d6 =0, (4.3)
T
Y
lJ‘co sin (mB)d 6 = <0 [1 — cos (mm)]. (4.4)
Ty mmn
Then,
c(r0) =2+ O3 L[ cos(mn)](r) sin (m6) 4.5)
2 me=m a

The complete stress expressions are as follows

o, - EB {C_o i (m=2)(m-1)’ {(2)’" _ (K)mz}p — cos(mm)] sin(mﬁ)}, (4.6)

1—v |ni34(m+1)(m* —m+2) a

Gy =E_B{c;0 i{ (m+2)(m— 1)2 (K)m _ (m—2)(m— 1)2 (f)m_z} [1- cos(mm)] sin(me)}, “4.7)

I-v|n5ldm+)m —m+2)\al  dm+1)(m* —m+2)\a

G, = EP {C_OZ.O: m(m—1) {(i)m - (f)m_z}[l — cos (mm)] cos(me)}, (4.8)

1-v |ni34(m+1)(m* —m+2) a

Oy = —% - %%;m (;)m [1 - cos(mm)]sin (m0)

VEBC() 1 2m’ +1) A .
1—VTEm {m(m+1) (m —m+2)( ) [1 = cos(mm)]sin (m0).

4.9)

5. RESULTS AND DISCUSSION

Based on the obtained analytical expressions, the distributions of concentration and stresses on the
cross section of the cylinder were obtained. Figure 2 showed the distribution of concentration on the cross
section of the cylinder. The boundary conditions of concentration were satisfied and the concentration in
the cylinder was distributed gradiently from upper half to lower half. The concentration gradients near the
outer circumference at the angles of 0 and 180 degrees were larger. The concentration was also bilateral
symmetrically distributed, and the concentration at the centre of the cross section was the average of the
concentration on the boundary.

The radial stress distribution of the cylinder on cross section was showed in Fig. 3. The radial stress at
the outer circumference was zero for the outer surface of the cylinder is traction free. Unlike the axisym-
metric cases where the radial stress in the cylinder went to zero at the steady state, the radial stress still
existed in this case because of the deformation mismatch induced by the difference of concentration. The
radial stress appeared to be larger at the points where the gradient of concentration was larger. And the
radial stress was antisymmetric distributed on the upper and lower half of the cross section. That is, the
radial stress in the upper and lower half was equal in magnitude but opposite in direction.

Figure 4 showed the distribution of hoop stress on the cross section. It was also antisymmetric distrib-
uted, and the values of the hoop stress on the regions which near the angles of 0 and 180 degrees at the
outer circumference of the cross section were lager, but tensile on the region in upper half, compressive
on the region in lower half. This stress distribution was to meet the needs of circumferential deformation
compatibility. For the upper half region of the cross section, the circumferential deformation was
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2.300E+04

2.013E+04
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2875

0.000

270

Fig. 2. The distribution of concentration on the cross section.

90 Gy GPa
0.3260

0.2445
0.1630
0.08150
0
—0.08150
—0.1630
—-0.2445
—-0.3260

1.0

270

Fig. 3. Radial stress distribution on the cross section.

restricted where the concentration was large and the circumferential deformation was promoted where
concentration is small, so the hoop stress is tensile on the regions near the angles of 0 and 180 degrees at
the outer circumference. While for the lower half region of the cross section, the stress distribution was
opposite to that of upper half was for the same reason.

The distribution of shear stress on the cross section of cylinder was showed in Fig. 5. The shear stress
was zero at the boundary of the cross section to meet the boundary conditions. And it was antisymmetric
distributed about the vertical axis of the cross section, because the directions of shear stress in the two sides
of the vertical axis were opposite. For the left half region of the cross section, the shear stress is positive
near the angle of 180 degree along the radius, while negative on other parts of the region. The increase of
concentration would cause the expansion of volume, however, the concentration in consideration was
gradiently distributed, the cross section would change from circular to elliptical, resulted in the generation
of shear stress.

From Fig. 6, we noted that the axial stress in the cross section was compressive and it was also gradi-
ently distributed. The value of the compressive axial stress was positively correlated with the concentra-
tion. It was because the deformation in axial direction was confined, the diffusion induced axial expansion
deformation were neutralized by the deformation caused by compressive axial stress.

6. CONCLUSIONS

In this work, based on a diffusion and mechanical coupled continuum model, a plane strain problem
in the polar coordinates considering steady state mass diffusion was analysed. The analytical expressions
for concentration and stresses were obtained by using a displacement potential function and the Airy stress
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90 Gop, GPa
1.880
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0.4700
0
-0.4700
-0.9400
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270

Fig. 4. Hoop stress distribution on the cross section.
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0.8800
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0.4400
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0
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—0.4400
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—0.8800

10 270

Fig. 5. Shear stress distribution on the cross section.

function. A numerical example of a traction free cylinder with half of its flank under constant concentra-
tion was given, its steady state stresses and concentration distributions on the cross section were obtained.
The results showed that the gradiently distributed concentration would lead to the generation of stress and
the value of stress increased with the gradient of concentration.

90 G,y GPa
0.08000

—0.5775
—-1.235
-1.893
-2.550
-3.208
—3.865
—4.523
-5.180

270

Fig. 6. Axial stress distribution on the cross section.
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