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Abstract: Lithium-sulfur (Li-S) batteries have emerged as one of the most hopeful alternatives for
energy storage systems. However, the commercialization of Li-S batteries is still confronted with enor-
mous hurdles. The poor conductivity of sulfur cathodes induces sluggish redox kinetics. The shuttling
of polysulfides incurs the heavy failure of electroactive substances. Tremendous efforts in experiments
to seek efficient catalysts have achieved significant success. Unfortunately, the understanding of the
underlying catalytic mechanisms is not very detailed due to the complicated multistep conversion
reactions in Li-S batteries. In this review, we aim to give valuable insights into the connection between
the catalyst activities and the structures based on theoretical calculations, which will lead the catalyst
design towards high-performance Li-S batteries. This review first introduces the current advances
and issues of Li-S batteries. Then we discuss the electronic structure calculations of catalysts. Besides,
the relevant calculations of binding energies and Gibbs free energies are presented. Moreover, we
discuss lithium-ion diffusion energy barriers and Li2S decomposition energy barriers. Finally, a Con-
clusions and Outlook section is provided in this review. It is found that calculations facilitate the
understanding of the catalytic conversion mechanisms of sulfur species, accelerating the development
of advanced catalysts for Li-S batteries.

Keywords: calculations; catalysis; Lithium-sulfur batteries; polysulfides; conversion kinetics

1. Introduction

Energy is of increasingly important concern for global sustainable development since
non-renewable fossil fuels are being rapidly depleted. Developing clean and renewable
energies, such as wind and solar, is essential to reducing greenhouse gas emissions. Inter-
mittence and fluctuation are crucial challenges when converting these energies to electricity.
It is a priority to develop advanced energy storage technologies to utilize wind or solar
electricity effectively. Rechargeable batteries provide the invaluable advantage of highly
flexible energy storage on various levels [1,2]. Various rechargeable batteries have been
developed, including lead–acid, nickel–metal hydride, and lithium-ion batteries [3–5].
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However, they are plagued by low energy density, which fails to meet the enormous energy
storage demands of various application scenarios, like electric vehicles and grids.

Lithium-sulfur (Li-S) batteries have emerged among various advanced battery systems
as one of the most promising candidates [6–8]. Due to the electrochemical reaction of
lithium metal with sulfur by redox processes (2Li + S = Li2S), Li-S batteries display a
considerably huge energy density of 2600 Wh·kg−1, greatly exceeding the current lithium-
ion battery systems. Furthermore, they possess the considerable merits of abundant
resources, environmental friendliness, and safety. Despite tremendous efforts in exploiting
reliable Li-S batteries, their commercialization still has hurdles [9]. The poor conductivity
of sulfur cathodes inevitably leads to sluggish electrochemical reaction kinetics with high
battery polarization. Moreover, polysulfide intermediates can be dissolved and then diffuse
to the electrolyte, resulting in the erosion of lithium anodes. The polysulfide shuttling
leads to the heavy failure of electroactive species and poor cycling stability of Li-S batteries.
Therefore, it is crucial to synchronously alleviate the polysulfide shuttling and facilitate the
electrochemical reaction kinetics, achieving the entire capability of Li-S batteries.

Designing reliable sulfur cathodes is an effective approach to improving the perfor-
mance of Li-S batteries. Developing advanced sulfur host and separator-modified materials
has been demonstrated as a practical approach to promoting cathode conductivity and
accelerating sulfur electrochemical kinetics [10–12]. Carbons, metals, single atoms, and
compounds have been employed as sulfur hosts, which significantly increase the capacity
and cycling stability of Li-S batteries resulting from the strong anchoring and catalytic
effects on sulfur species [13–16]. However, it is challenging to discover and screen these
host materials by trial and error. Seeking regular theoretical methods for predicting and
validating the essential properties of sulfur host materials can facilitate an understanding
of electrocatalytic effects during the conversion process in Li-S batteries [17,18]. Theoretical
calculations have proven to be a powerful method to examine the electrocatalytic mecha-
nisms in Li-S batteries [19–22]. Unlike experimental approaches, theoretical calculations
can predict the interaction of host materials with sulfur species on the atomic/molecular
scale. This considerably facilitates the exploitation of advanced sulfur cathode materials
for practical applications.

Theoretical calculations show tremendous advantages in assisting the design and
screening of efficient catalyst materials for Li-S batteries. In particular, density functional
theory (DFT) calculations have been extensively employed in Li-S batteries. DFT calcula-
tions can predict the physical/chemical properties of materials simply using the intrinsic
properties of atoms instead of adding any empirical parameters. Currently, DFT is one of
the most powerful techniques to simulate the electronic structures of catalyst materials and
investigate the interaction between sulfur species and catalyst materials. Based on the DFT
calculations, the behavior of catalyst materials can be well explained at the molecular level.
The calculated results can further guide the tailoring and optimization of catalyst materials
for Li-S batteries. In addition, the Gibbs free energy of the sulfur reduction reaction can
be properly obtained with DFT calculations, which can act as an important indicator to
evaluate and compare the activities of different catalyst materials. Moreover, the calculation
of lithium-ion diffusion barriers and Li2S decomposition barriers can provide deep insights
into the charge transfer mechanisms in Li-S batteries. All the calculations associated with
experimental works accelerate the development of advanced catalyst materials for Li-S
batteries.

This review focuses on the theoretical calculations for Li-S batteries, which will help
reveal the electrocatalytic mechanisms of the multistep reactions. The first section briefly
describes the current advances and issues of Li-S batteries. The electronic structures of
catalyst materials are discussed in Section 2 to elucidate their electrocatalytic effects on Li-S
batteries. Two important concepts, i.e., binding energy and Gibbs free energy, are presented
in Sections 3 and 4, respectively. Sections 5 and 6 discuss lithium-ion diffusion energy
barriers and Li2S decomposition energy barriers. Finally, the Conclusions and Outlook of
the review are provided. In this review, we aim to devote our efforts to providing a deep
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insight into the correlation of the catalyst activities with the structures and the catalytic
conversion mechanisms of Li-S batteries with the help of theoretical calculations. The
present results will further guide the design and screening of efficient and stable catalyst
materials for high-performance Li-S batteries.

2. Electronic Structures

The electronic structure of sulfur host materials essentially determines the electro-
catalytic activity in Li-S battery conversion reactions. The electronic structure of sulfur
host materials can be finetuned with various experimental approaches, such as doping,
heterostructures, and defect engineering [23–25]. Therefore, it is essential to study the
electronic structures of sulfur host materials computationally. This can support the plan-
ning of experiments and guide the interpretation of experimental results. DFT calculations
are the typical method to study the electronic structures of sulfur hosts, including band
structure, density of states, and the charge distribution between sulfur species and sulfur
host molecules [26–28].

2.1. Band Structures

Electronic band structures reveal the electronic levels in crystal structures, which can
be used to explain the electronic conductivity of crystals [29,30]. Since sulfur cathodes are
electronic conductors, high conductivity benefits the electron transport and the conversion
of sulfur species. Therefore, band structure calculations can guide the prediction and
screening of efficient sulfur cathode materials. In particular, by calculating the band
structures of electrode materials, the width of the band gap can be determined, revealing
their conductivity. Materials possessing a negligible energy band gap show metallic
properties. However, insulators originating from wide band gaps result in their low
conductivity. Due to the relatively narrow band gaps of less than 3 eV, semiconductors
display moderate conductivity and can further be enhanced by structure modulation.

DFT calculations have been used to explain the conductivity increase in catalysts
by building heterostructures for Li-S batteries [31–35]. Tang and co-workers constructed
Co3O4/ZnO heterojunctions embedded in N-doped carbon nanocages as sulfur hosts
(CZO/HNC) [31]. DFT calculations confirmed that Co3O4/ZnO exhibited an optimized
band structure with better conductivity. As shown in Figure 1a–c, ZnO and Co3O4 possess
broad band gaps of 3.39 and 1.56 eV, respectively, implying semiconducting properties. In
contrast, the Co3O4/ZnO heterojunctions revealed a negligible energy band gap, suggesting
high conductivity. This result was validated by four-probe resistivity experiments, in which
Co3O4/ZnO heterojunctions displayed the highest conductivity of 6.6 × 10−3 S m−1. This
heterostructure facilitated ion diffusion and promoted the polysulfide conversion with
stable Li-S batteries, which was validated by the experimental results. Cyclic voltammetry
(CV) of a symmetric cell (Figure 1d) indicated that CZO/HNC exhibited a stronger current
response in contrast to Co3O4/HNC and ZnO/HNC. As a result, sulfur cathodes with
CZO/HNC presented the optimized rate capability in comparison with the other two
counterparts (Figure 1e).

Recently, another paper on CoSe2@TiSe2-C heterostructures has also reported the band
structures to predict the conductivity (Figure 1f–h) [32]. CoSe2@TiSe2-C possessed a minor
energy band gap of 0.017 eV, which indicated a metallic nature. Relatively broad band
gaps were observed in CoSe2 (0.589 eV) and TiSe2-C (0.024 eV). The highly conductive
CoSe2@TiSe2-C was able to facilitate the conversion kinetics from polysulfides to Li2S and
promote Li2S dissociation. When acting as the interlayer in Li-S batteries, CoSe2@TiSe2-C
allowed the sulfur cathode to deliver the highest capacity (Figure 1i).
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cense [31]. Copyright 2023, the authors, published by Wiley-VCH. Band structures of (f) CoSe2, (g) 
TiSe2-C, and (h) CoSe2@TiSe2-C. (i) Voltage profiles of different cathodes. (f–i) Reproduced with 
permission [32]. Copyright 2023, Wiley-VCH. 
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Figure 1. Band structures of (a) ZnO, (b) Co3O4, and (c) Co3O4/ZnO. (d) CV profiles of symmetric
cells. (e) Rate capability of different cathodes. (a–e) Reproduced under the terms of the CC-BY
license [31]. Copyright 2023, the authors, published by Wiley-VCH. Band structures of (f) CoSe2,
(g) TiSe2-C, and (h) CoSe2@TiSe2-C. (i) Voltage profiles of different cathodes. (f–i) Reproduced with
permission [32]. Copyright 2023, Wiley-VCH.

2.2. Densities of States

Densities of states (DOS) are generally the state number at specific energy levels that
electrons can occupy, i.e., the electron state number per unit energy per unit volume. The
DOS can be an essential indicator to understand the physical properties of materials since
they provide a simple approach to characterizing complex electronic structures. DOS
calculations can ascertain the overall state distribution as a function of spacing and energy
between energy bands in semiconductors. DOS are typically analyzed from two aspects:
the local DOS (LDOS) and the partial (or projected) DOS (PDOS). The LDOS signify that
specific atoms of the system contribute electronic states to various parts of the energy
spectra. The PDOS indicate the projection of atomic orbitals (s, p, or d) on the densities of
states, which provides contributions based on the angular momentum.

The DOS calculations play a critical role in predicting and analyzing the electrochem-
istry of Li-S batteries. The DOS analyses can readily identify the width of the band gap of
electrode materials, which evaluates the conductivity of electrode materials. For instance,
electrode materials with band gaps of more than 3 eV between the top of the valence band
and the bottom of the conduction band are considered to have insulating properties. A
band gap between 1 and 3 eV calculated from DOS indicates that electrode materials are
semiconductors. Electrode materials with metallic conductivity present narrow band gaps
of less than 1 eV. Therefore, a smaller band gap means a better conductivity for electrode
materials. Since the electrochemical conversion of sulfur cathodes is rather sluggish due to
the insulating nature of sulfur, catalyst materials with good conductivity are a prerequisite
for rapid charge transfer and catalytic conversion of sulfur cathodes [16]. As a result, the
electrochemical conversion of elemental sulfur to the discharging product Li2S is signif-
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icantly accelerated owing to the enhanced conductivity of the electrode materials [17].
The detrimental shuttle effect of polysulfides can be further suppressed. Therefore, Li-S
batteries are expected to achieve high sulfur utilization and excellent cycling performance.

Moreover, as the strong interaction between catalysts and sulfur species can affect the
DOS of catalyst molecules, the detailed DOS analyses interpret the orbital overlapping
or hybridization between sulfur species and catalyst molecules, implying the catalytic
mechanisms of Li-S batteries. In addition, DOS calculations can also determine the d-
band center (εd) of catalysts in Li-S batteries, which is a critical descriptor to analyze the
catalytic activities [25,36]. According to the d-band theory, catalysts with a higher value
of εd calculated from DOS suggest a stronger catalytic activity, which better promotes the
conversion kinetics for Li-S batteries.

2.2.1. Conductivity Analyses

Like band structures, DOS can also reveal the conductivity of materials by determining
the band gap [37–40]. Tuning the d-band electronic structures of MoS2 by introducing
dopants, Liu et al. designed two catalysts, Mn-doped MoS2 (Mn-MoS2) and V-doped MoS2
(V-MoS2), to boost the conversion process of sulfur species [41]. As shown in Figure 2a–c,
the PDOS of MoS2 exhibited the semiconducting property. With Mn doping, Mn-MoS2
showed a significant decrease in the band gap and an upshifted Fermi level. A new energy
level appeared close to the bottom of the conduction band and went across the Fermi level,
suggesting the n-type doping. With V doping, the V-MoS2 Fermi level downshifted to the
valence band, implying the p-type doping and enhanced conductivity. DOS calculations
revealed that cation doping effectively improved the electrocatalytic activities of inactive
MoS2 towards Li-S batteries. This prediction was consistent with the determined reaction
resistances in charging and discharging (Figure 2d). Sulfur cathodes with V-MoS2 on
the polypropylene separator (V-MoS2@PP) show a smaller resistance, implying smaller
interfacial reaction barriers during the sulfur conversion process. Therefore, V-MoS2@PP
enabled sulfur cathodes to achieve the best rate capability (Figure 2e).

With LDOS and PDOS analyses, Chen et al. validated the synergistic adsorption–
electrocatalysis of the SnS2-MXene Mott–Schottky heterostructures due to the interfacial
built-in electric field (BIEF) [42]. The LDOS of SnS2 present a band gap of about 2 eV
between the conduction band and the valence band, indicating a semiconducting property
of SnS2. By contrast, the band gap disappeared when SnS2 contacted MXene, implying
the metallic property of the SnS2-MXene heterostructure. Meanwhile, the LDOS indicated
that the Ti atom in MXene mainly contributed to the electronic state of the conduction
band close to the Fermi level. On the other hand, the S 3p orbitals of SnS2 exhibited a
band gap, meaning that the S orbital did not contribute to the SnS2 conductivity. When
forming a BIEF, the state distribution of the S 3p orbitals became broader and delocalized.
The band gap disappeared, and the Fermi level passed across the S 3p orbitals, improving
conductivity. Similarly, the valence band of Sn 4d orbitals from SnS2-MXene upshifted
significantly compared to SnS2, causing a narrower band gap. As a result, SnS2-MXene
with metallic conductivity displayed favorable conductivity with rapid charge transfer for
the Li-S electrochemistry.

Guo et al. verified that introducing single iron atoms into carbon nanoboxes (Fe@C)
enhanced electron transport [43]. From the DOS of Fe-N4 and N-doped carbon (C-N) shown
in Figure 2f,g, Fe-N4 showed more peaks close to the Fermi level than C-N, suggesting
that the doped Fe improved the conductivity of C-N. The PDOS of Fe 3d orbitals showed
that Fe 3d contributed to the sharp peaks. Thus, Fe 3d was responsible for tailoring the
polysulfide anchoring and electron transfer. Benefiting from the structural advantages, the
fabricated Fe@C-wrapped carbon nanotube (Fe@C-CNT) interlayer delivered the highest
capacity of approximately 1200 mAh g−1 with the lowest polarization voltage of 160.5 mV
(Figure 2h).
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In addition, Wang et al. indicated that the W doping increased the DOS near the
Fermi level, resulting in a metallic nature with favorable electron transfer properties for
W-doped Co3O4 [44]. These merits facilitated charge transfer in the redox conversion of
polysulfides. Ma et al. designed TiO2 anatase/rutile homojunction (A/R-TiO2) with the
effective catalytic conversion of polysulfides [45]. Based on the DOS calculations, A/R-TiO2
possessed excellent conductivity. In contrast to the band gaps from the DOS of A-TiO2 and
R-TiO2, A/R-TiO2 exhibited a continuous distribution of electronic states around the Fermi
level, causing the metallic nature with improved conductivity.

2.2.2. Interaction between Catalysts and Polysulfides

The interaction between catalysts and polysulfides can be obtained by analyzing the
DOS of isolated and adsorbed polysulfides. To determine the conversion mechanisms
from Li2S2 to Li2S in two metal–organic frameworks (ZnCo-MOF and Zn-MOF), Zhu et al.
analyzed the orbital overlapping of the catalysts and the S atom of the LiS radical interme-
diate [46]. The Co d orbitals considerably overlapped with the S p orbitals, forming strong
hybrid orbitals between ZnCo-MOF and LiS. By comparison, the S and Zn of Zn-MOF-LiS
showed weak orbital hybridization. The DOS calculations revealed a stronger interaction
between Co and LiS. Wang et al. confirmed the enhanced polysulfide immobilization by
Fe single atoms [47]. A comparatively isolated pattern was revealed from the PDOS of S p
orbitals of bare Li2S6 (Figure 3a). However, after adsorption, Li2S6-FeN4 and Li2S6-FeN2
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displayed continuous S p-DOS patterns with a significant distribution near the Fermi level,
suggesting the hybridization of S p and the metal d orbitals. This result validated the
favorable electronic structure of Fe-N2 for enhanced sulfur redox kinetics. The authors
fabricated the single-atom Fe on N-doped carbon (FeN2-NC) to catalyze sulfur cathodes.
From the CV shown in Figure 3b, sulfur cathodes with FeN2-NC (S-FeN2-NC) present
the strongest peak currents with the smallest voltage difference, suggesting mitigated
polarization and enhanced reaction kinetics.
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Recently, Yang et al. studied the bidirectional electrocatalytic effect of Ni-N4 and
Fe-N4 dual sites co-anchored in carbon nanocages (Ni-Fe-NC). The TDOS calculations
in Figure 3c indicate that the Fe-N4 center showed a stronger electron density near the
Fermi level than the Ni-N4 center after the Li2S4 adsorption, implying that Fe-N4 rapidly
catalyzed the polysulfide conversion [48]. The Li2S deposition measurements shown in
Figure 3d testified to the calculations, in which Fe-NC presented the faster Li2S nucleation
time with a higher deposition capacity of about 195 mAh g−1 compared with Ni-NC
(147 mAh g−1). Dai et al. studied the DOS of Li2Sn (1 ≤ n ≤ 8) isolated and adsorbed on
NiCo2S4−x. As shown in Figure 3e, compared to the isolated Li2Sn, the adsorbed Li2Sn
displayed gradually decreased DOS with the decrease in n of Li2Sn [40]. The calculations
proved the improved anchoring ability of polysulfides by S-vacancy NiCo2S4−x, resulting
in enhanced sulfur utilization.

2.2.3. d-Band Center Calculations

Summarizing the computational hydrogen electrode (CHE) method, Yi et al. estab-
lished a theoretical model to uncover the catalytic conversion mechanisms from Li2S2 to
Li2S [49]. These predicted mechanisms were determined by modeling Fe, Co, Ni, and V
single-atom catalysts (SACs). The PDOS in Figure 4a demonstrates the d-band center (εd)
from the investigated SACs before the adsorption. The PDOS of Co, Fe, and V atoms con-
tained two εd of spin-up (ε↑), and spin-down (ε↓) due to the spin polarization, of which the
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higher εd was considered since the d electrons at the higher energy level were more active
to interact with coordinated atoms, like S. The εd of Fe@N4 (−0.15 eV) and Fe@N3 (0.16 eV)
were nearest to the Fermi level among all SACs. The nearly half-occupied d orbitals of
the Fe atom allowed moderate adsorption with *LiS, *Li3S2, and Li2S2. The highest εd of
1.76 eV from V@N4 suggested that almost the whole d orbitals of V atoms were unoccupied.
This indicates that V@N4 has the strongest adsorption with the sulfur species having the
lone electron pairs. By contrast, Ni@N4 and Ni@N2 showed more negative εd, meaning the
d orbital was nearly entirely occupied. Therefore, the energy level of the d-orbital electrons
failed to match the lone electron pairs from sulfur, leading to the weak interaction of sulfur
species with the SACs.
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Zhu et al. developed a catalyst composed of bimetallic MOF nanoboxes (ZnCo-MOF
NBs) to catalyze sulfur cathodes [46]. To unravel the catalytic conversion of sulfur species at
the atomic level, the authors calculated the PDOS of two ZnCo-MOF and Zn-MOF catalysts.
As shown in Figure 4b, the Co d states of ZnCo-MOF were significantly close to the Fermi
level in contrast to the Zn d states, indicating that the Co d orbitals were dominantly active.
The Co active center of ZnCo-MOF was thus responsible for the polysulfide adsorption and
catalytic conversion. By comparison, the Zn d states of Zn-MOF were basically located in the
same position as that of Zn in ZnCo-MOF. Figure 4c presents the calculated εd of Co and Zn
from the two MOF catalysts. The higher Co εd suggests higher catalytic activities than the
Zn sites, according to the d-band theory. Due to the enhanced catalytic effects from ZnCo-
MOF, sulfur cathodes with ZnCo-MOF (ZnCo-MOF/S) displayed improved interfacial
kinetics from the electrochemical impedance spectroscopy (EIS) spectra (Figure 4d). ZnCo-
MOF/S, therefore, achieved a reversible capacity of 688 mAh g−1 after 300 cycles at 0.5 C
(Figure 4e).
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With DOS calculations, the Chen group predicted the εd of a series of catalysts for
sulfur cathodes, which provided a theoretical understanding of the electrochemical con-
version mechanisms of sulfur species [47,50–52]. By analyzing the DOS of Co3O4 and
Fe-doped Co3O4 (Fe-Co3O4), the Chen group observed that Fe-Co3O4 possessed a higher
εd (−1.9569 eV) than that of Co3O4 (εd = −2.0100 eV) [50]. The higher εd increased the
energy of the antibonding orbitals, thus strengthening the chemical interaction of Fe-Co3O4
with polysulfides. This positive effect considerably benefited the polysulfide anchoring and
catalytic conversion in Li-S batteries. In addition, they developed a quasi Zr-based MOF
(Q-Zr-BTB) to catalyze Li-S batteries [51]. The deficient Zr-O coordination in Q-Zr-BTB
lifted the Zr εd close to the Fermi level, facilitating the binding of the Zr with polysulfides.
Consequently, Q-Zr-BTB enhanced the redox kinetics of sulfur cathodes. Furthermore,
they predicted that single-atom Co-B2N2 sites exhibited a higher εd than Co-N4, offering
a stronger interaction of Co with sulfur species [52]. The fabricated sulfur hosts com-
posed of Co-B2N2 sites anchored on carbon nanotubes effectively catalyzed the polysulfide
conversion.

2.3. Charge Distribution

Understanding the interaction between molecules is beneficial to obtaining insights
into the nature of intermolecular bonding. This understanding effectively guides the
design of catalyst materials. Charge distribution calculations are powerful approaches to
evaluating intermolecular interactions, which can uncover atoms’ electronic structures and
chemical environments. With Bader charge analysis and differences in charge density, the
charge transfer and the numerical values for the bond strength of interacting atoms or
molecules can be evaluated.

In Li-S batteries, the adsorption and catalysis processes of sulfur species on catalysts
involve complicated electron transfers, which are challenging to investigate with experimen-
tal approaches. By contrast, charge distribution analyses can clearly present the electron
transfer and charge density at the interface of catalysts and sulfur species at the molecular
level. Therefore, the chemical bonding interaction between catalyst molecules and sulfur
species can be identified, contributing to the understanding of catalytic mechanisms in
Li-S batteries.

Modulating the electronic state of metal phosphides, Zhou et al. incorporated N- and
P-doped porous carbons into Ni and Co phosphides nanoparticles (NiCoP-NPPC) as cata-
lysts for Li-S batteries [53]. The tailoring improved the reaction kinetics of sulfur cathodes
and achieved a dendrite-free lithium anode. The authors analyzed the interaction between
sulfur and transition metals using charge density difference analyses. Figure 5a illustrates
that NiCoP-NPPC hybrids with strong Li2S6 binding energies possessed a localized charge.
In contrast to NPPC and CoP-NPPC, NiCoP-NPPC exhibited a higher electron density.
Meanwhile, the accumulated and depleted charge might accelerate the charge transport
from NPPC to NiCoP. The calculation results indicated a distinct interfacial charge interac-
tion, improving the anchoring and considerably facilitating the electrochemical kinetics
of sulfur cathodes. Consequently, sulfur cathodes with CoP-NPPC obtained a high initial
capacity of 1184 mAh g−1 at 0.5 C (Figure 5b).

By calculating the interfacial charge distribution, Lu et al. confirmed the presence of
the built-in electric field (BIEF) in the NbB2-MXene heterostructure [54]. Figure 5c shows the
accumulated electrons (yellow) at NbB2 sites and the gathered holes (blue) at the MXene
sites of NbB2-MXene heterostructures. Due to the electron flow from MXene to NbB2,
the NbB2-MXene heterostructure ended up with moderate anchoring with polysulfides,
accelerating the diffusion of lithium ions and polysulfides. The redistributed charge and
the defective boundaries in the heterostructure resulted in more exposed active sites,
thus enlarging the anchoring sites and catalytic active sites. These structural advantages
enhanced the electrochemical kinetics of the polysulfide conversion. When being used as
the sulfur host, NbB2-MXene allowed sulfur cathodes to present a boosted rate performance,
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with a capacity of 679 mAh g−1 even at 2 C (Figure 5d). Moreover, the composite cathodes
maintained a high capacity of 866 mAh g−1 at 0.2 C after 100 cycles (Figure 5e).
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The charge density difference analyses can further support the DOS results of the
bonding states. Yi et al.’s DOS calculation proved the Fe-S bonding of the adsorbed
∗LiS and ∗Li3S2 on the Fe single atoms (* is the active site of catalysts) [49]. The authors
observed the clear accumulated charge between Fe and S atoms from the charge density
difference. By inducing strain relaxation, Sun et al. tuned the structures of bimetallic MoNi4
nanoalloys [55]. The strained MoNi4 (s-MoNi4) balanced the anchoring and catalytic effects
on Li-S batteries. The introduction of the lattice strain altered the bond length of Ni-Mo,
broadening the d band and downshifting the d-band center toward the Fermi level. Using
the Bader charges, the authors studied the charge transfer interaction of Li2S with s-MoNi4
and pure MoNi4. After adsorbing Li2S, s-MoNi4 accepted the charge of 0.8227 e, whereas
MoNi4 accepted 0.9127 e. This result indicated that a slight charge transfer occurred
between s-MoNi4 and Li2S, meaning a weaker charge interaction and thus facilitating the
desorption of polysulfides.

Wan et al. analyzed the electronic distribution of the ultra-thin NiSe2-CoSe2 het-
erostructured nanosheets using charge density difference calculations [38]. In contrast to
NiSe2 and CoSe2, NiSe2-CoSe2 displayed a localized enhancement of the positive/negative
electron clouds (Figure 5f). It can be concluded that more electron transfers occurred
between the interfacial domains of NiSe2-CoSe2 heterostructures, which significantly an-
chored and catalyzed sulfur species. With simulated deformation charge density calcu-
lations, Dong et al. validated that the dual Fe-Co single-atom pairs exhibited stronger
adsorption towards Li2S6 than Fe or Co single atoms [56]. The dual Fe-Co sites with
combined effects induced the charge redistribution of atom pairs, promoting polysulfide
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reduction and Li2S decomposition. Wang et al. indicated an enhanced interaction between
polysulfides and Ni3B nanoparticles on B-doped graphene (Ni3B/BG) [57]. The Bader
charge calculations revealed more charge transfer from Li2S4 and Li2S to Ni3B/BG (0.813
and 0.592 e) than that to BG (0.592 and 0.092 e), which effectively accelerated their conver-
sion kinetics. Furthermore, highly accumulated charge density was detected at the interface
of Ni3B and BG. The charge redistribution allowed a smooth charge transport channel,
boosting sulfur species’ redox kinetics.

3. Binding Energy between Sulfur Species and Catalysts

Since the adsorption of polysulfides is critical to suppressing the polysulfide shut-
tling, the investigation of the interactions of catalysts with sulfur species is beneficial to
unraveling the adsorption mechanisms. Therefore, the binding energy can be a good indi-
cator. Since different crystal surfaces of catalysts may possess different binding energies,
the selection of representative surfaces for binding energy calculations is critical. X-ray
diffraction characterization can provide reasonable surfaces of catalysts for calculations. In
addition, choosing surfaces with different atom ratios is another approach because it can
fairly evaluate the contribution of different surface atoms to anchoring sulfur species [58].
Binding energy calculations are now a typical approach to predicting or validating the
adsorption ability of catalysts towards sulfur species [59]. The binding energy (Eb) between
sulfur species and catalysts is defined as follows:

Eb = Et − Es − Ec, (1)

where Et, Es, and Ec represent the energies of sulfur species adsorbed on catalysts, sulfur
species, and catalysts, respectively. A smaller negative Eb value means a stronger binding
ability. In some reports, −Eb is defined to indicate the binding energy, i.e., a higher positive
Eb value means a stronger binding ability.

Due to the intrinsic property of catalyst materials, their binding energies towards
sulfur species vary. Generally, carbon-based catalysts show a relatively weak binding
energy, while metal compounds and single atoms possess stronger adsorption towards
sulfur species. For instance, Pu et al. compared the binding energies of Fe3P and pure
carbon towards various sulfur species [60]. Fe3P displayed relatively high binding energies
in a range of 0.55 to 2.95 eV towards sulfur species, which were stronger than those of pure
carbon (0.43–0.65 eV). Due to the electronegativity difference, the sulfur from polysulfides
readily interacted with the iron from Fe3P. The proper anchoring was beneficial to anchoring
sulfur species and accelerating their catalytic conversion. Wang et al. calculated the binding
energies of CoP towards sulfur species [61]. The results show that CoP (211) had an
excellent adsorption capacity of 2–8 eV towards sulfur species. The similar binding energy
of CoP towards sulfur species was also confirmed by Zhang et al. [62]. Structure regulation,
like doping, can improve the binding energy of carbon-based catalyst materials [63,64].
Yang et al. validated that introducing pyridinic-N to porous carbon fibers resulted in a
strong adsorption energy of −2.20 eV towards Li2S4 [65].

Metal sulfide catalysts display favorable adsorption and catalytic activities towards
sulfur species [66,67]. Liu et al. revealed that the cation doping of MoS2 significantly
promoted the anchoring and the catalytic effects on polysulfides compared to the inactive
MoS2 [41]. V-doped MoS2 possessed stronger adsorption of polysulfides and allowed sulfur
cathodes to have a high initial capacity of 1607 mAh g−1 at 0.2 C. Dai et al. validated that
the Co-doped NiS2 (Co-NiS2) nanoparticles showed a stronger adsorption towards sulfur
species than NiS2 [39]. Figure 6a displays the optimum structures of the anchored sulfur
species on the NiS2 and Co-NiS2 (002) surfaces. Polysulfide’s calculated adsorption energies
on NiS2 were in the range of −0.96 to −2.61 eV. After the Co doping, the calculated values
decreased to in the range of −1.36 to −4.16 eV. The calculated results were also validated
by the Li2S6 adsorption measurements with the UV-Vis spectra. Li2S6 solutions with the
Co-NiS2 component were nearly transparent after 6 h of adsorption (Figure 6b). Meanwhile,
the UV-Vis spectra indicated a decreased intensity resulting from the introduction of Co-
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NiS2, which is consistent with the adsorption experiments. The enhanced adsorption
capability of Co-NiS2 towards polysulfides benefited the inhibition of the shuttle effects.
Accordingly, sulfur cathodes with Co-NiS2 catalysts exhibited a highly reversible capacity
of 944 mAh g−1 at 0.2 C after 500 cycles (Figure 6c).
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A single component generally exhibits relatively weak adsorption towards sulfur
species. Combining two or more components to construct heterostructures can overcome
this shortage [66,68,69]. For example, Zeng et al. designed the ternary heterostructure
Na0.67Ni0.25Mn0.75O2 (NNMO)-MnS2-Ni3S4 with three active centers to obtain cascade
catalysis for polysulfides [70]. Based on the binding energy calculations, NNMO delivered
higher binding energies for all sulfur species than MnS2 and Ni3S4. The binding energies
of long-chain polysulfides on MnS2 were stronger than those on Ni3S4, while short-chain
polysulfides were favorably anchored on Ni3S4 compared to MnS2. Finally, sulfur cathodes
with the ternary heterostructure exhibited excellent rate performance. Wang et al. calculated
the binding energy of Co3O4/ZnO heterostructures towards sulfur species [31]. The results
suggested that Co3O4/ZnO displayed the strongest adsorption compared to the individual
Co3O4 or ZnO. A similar conclusion has also been made by Wan et al., who confirmed that
the NiSe2-CoSe2 heterostructure displayed enhanced adsorption of sulfur species compared
to NiSe2 and CoSe2 [38].

Other metal compounds, like oxides and nitrides [71–73], have also shown strong
adsorption towards sulfur species, which can effectively mitigate the shuttle effects. For
example, Wang et al. designed a core-shelled heterostructure containing Ni3B nanopar-
ticles dispersed on B-doped graphene (Ni3B/BG) to boost the reaction kinetics of Li-S
batteries [57]. DFT calculations have determined the adsorption properties of polysulfides.
Figure 7a shows various sulfur species’ adsorption energies with optimum structures on
Ni3B/BG and BG. Due to the binary interaction, the S atoms of polysulfides were sig-
nificantly bound with B and Ni. That was in accordance with the XPS results and the
adsorption experiment. Ni3B revealed a stronger anchoring ability to polysulfides com-
pared to BG. Polysulfides adsorbed on Ni3B lengthened the bond. This chemical interaction
further caused the change in the other bond length. The simultaneous elongation of the
S-S and Li-S bonds facilitated the conversion of polysulfides and the Li2S deposition pro-
cess. Ni3B/BG exhibited superior adsorption towards polysulfides and desirable catalytic
effects, enabling sulfur cathodes to have excellent cycling stability. Sulfur cathodes with
Ni3B/BG@PP-modified separators maintained a high reversible capacity of 908 mAh g−1
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at 0.5 C after 200 cycles (Figure 7b). In addition, Ni3B/BG@PP allowed sulfur cathodes to
obtain a high capacity of 650 mAh g−1 even at 10 C (Figure 7c).
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4. Gibbs Free Energy

Gibbs free energy, denoted as G, is defined as follows:

G = H − TS, (2)

where H, T, and S are the enthalpy, temperature, and entropy, respectively. The change
in Gibbs free energy (∆G) can indicate the chemical reaction direction under constant
pressure and temperature. For example, when ∆G shows a positive value, the reaction
cannot be spontaneous. Negative values correspond to spontaneous reactions. Since a
catalytic reaction involves the adsorption and desorption of reactants on the catalyst’s
surface, the ∆G calculations can evaluate the activities of catalysts and the rate-determining
step. By calculating the correlation between overpotential and ∆G in the oxygen reduction
reaction, Nørskov et al. successfully explained the activities of metal catalysts [74]. ∆G can
be an effective descriptor for seeking idealized catalyst materials [64]. Similarly, the ∆G
calculations have been applied to investigate the electrochemistry of Li-S batteries. For
example, ∆G can reveal which reaction step is spontaneous and which reaction step is
rate-determining in Li-S batteries [75].

Ji and co-workers initially employed the ∆G calculation to explain the catalytic ac-
tivities of single-atom Co for sulfur cathodes [76]. Typically, the electrocatalytic sulfur
reduction reaction from S8 to Li2S during discharging can be considered as follows:

*S8 + 2Li+ + 2e− → *Li2S8, (3)
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3*Li2S8 + 2Li+ + 2e− → 4*Li2S6, (4)

2*Li2S6 + 2Li+ + 2e− → 3*Li2S4, (5)

*Li2S4 + 2Li+ + 2e− → 2*Li2S2, (6)

*Li2S2 + 2Li+ + 2e− → 2*Li2S, (7)

where * is the active site of catalysts. The calculated ∆G for the corresponding reaction
process can be written as follows:

∆G1 = G(*Li2S8) − G(*S8) − 2G(Li), (8)

∆G2 = 4G(*Li2S6) − 3G(*Li2S8) − 2G(Li), (9)

∆G3 = 3G(*Li2S4) − 2G(*Li2S6) − 2G(Li), (10)

∆G4 = 2G(*Li2S2) − G(*Li2S4) − 2G(Li), (11)

∆G5 = 2G(*LI2S) − G(*LI2S2) − 2G(LI). (12)

In Equations (3)–(7), G(Li+) + G(e−) are written in the form of G(Li), which is considered
in the computational hydrogen electrode approach [74]. Therefore, during the sulfur reduc-
tion reaction (SRR) process, the rate-determining step can be determined by the calculated
∆G. Du et al. calculated the ∆G for two SRR catalysts: N-doped graphene (N/G) and single-
atom Co in N-doped graphene (Co-N/G). They validated that the S8 reduction to Li2S8 was
an exothermic spontaneous reaction in which ∆G < 0. The following reduction processes to
discharge products are endothermic or almost thermoneutral. The rate-determining step
was the conversion from Li2S2 to Li2S, which presented the highest ∆G. Co-N/G indicated
a lower ∆G than N/G for the Li2S2 reduction, implying a more favorable reaction pathway.
Based on the ∆G calculations, various catalyst materials have been predicted, such as single
atoms [77], metal oxides [78–80], sulfides [81], nitrides [82,83], and heterostructures [84,85],
which present accelerated conversion kinetics for Li-S batteries.

Because of the maximized atomic utilization and excellent catalytic activities, single
atoms present accelerated conversion kinetics for sulfur cathodes. Single atoms with Fe [48],
Co [86], Ni [87], Cu [88], and W [44] as active sites have been confirmed to be promising
electrocatalysts, which considerably restrain the polysulfide shuttling. The coordination
environment of single atoms plays a key role in catalytic activities. Zhang et al. noticed
the catalytic activities of edge-distributed single-atom sites. To achieve edge-distributed
single-atom Fe, they incorporated Fe single atoms in N-doped porous carbon (Fe-NPC)
into CNTs [89]. This composition promoted polysulfide anchoring and conversion. The ∆G
calculations supported the favorable catalytic activities resulting from the Fe-N4 moieties
with edge distribution. In the rate-determining step, Fe-N4 with edge distribution decreased
the Li2S deposition barrier (0.72 eV) compared to the in-plane Fe-N4 (0.87 eV), revealing
faster redox kinetics. Meanwhile, the energy barrier of the Li2S4 reduction on Fe-N4 with
edge distribution also decreased to 0.53 eV in contrast to that on the in-plane Fe-N4 surface
(0.60 eV), implying promoted polysulfide conversion and hence a mitigated shuttle effect.

Recently, Ren et al. designed a single-atom Fe catalyst containing an S-doped periph-
ery (Fe-NSC), which presented enhanced polysulfide adsorption and facilitated sulfur
conversion [16]. Compared with the pristine Fe-N4 moieties, the Fe-NSC configuration
had more accumulated charge density. The calculations indicated that the Fe-NSC-based
catalysts decreased the ∆G of the Li2S deposition. This result showed a more favorable
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pathway for sulfur reduction at the Fe-NSC sites, thus achieving excellent cycling life
of sulfur cathodes. By regulating the coordination numbers of active sites, the intrinsic
catalytic activities of single atoms can be significantly enhanced. Xiao et al. prepared novel
single-atom catalysts composed of Fe-N5 moieties embedded in the N-doped carbon matrix
(Fe-N5/NC) [90]. The resultant Fe-N5/NC exhibited strong adsorption to polysulfides and
considerable catalytic effects on the redox conversion of Li-S batteries. Sulfur cathodes with
the Fe-N5/NC catalysts displayed a high initial capacity at 0.1 C (1519 mAh g−1). The ∆G
calculations implied that the biggest barrier was the Li2S2 reduction.

Co single atoms have been determined to catalyze the redox conversion of sulfur
cathodes [91,92]. Wang et al. engineered planar Co-N4 in N-doped graphene mesh. The
fabricated single-atom catalysts (SA-Co/NGM) obtained high atom utilization when cat-
alyzing the polysulfide conversion [93]. The authors calculated the ∆G of S8 to Li2S on
N-doped carbon (NC) and CoN4 to reveal the improved conversion kinetics. Figure 8a
shows the optimum structures of the sulfur species with the corresponding ∆G. The initial
conversion from solid S8 to Li2S8 was the spontaneous exothermic reaction with a negative
∆G. The following reduction steps from Li2S8 to Li2S indicated a positive ∆G, meaning
the endothermic reactions. The reduction from Li2S2 to Li2S with the highest ∆G was the
rate-determining step, in which CoN4 indicated a smaller ∆G (0.66 eV) in contrast to NC
(1.16 eV). The calculation suggested that the Li2S deposition process was thermodynami-
cally more favorable on the CoN4 substrate. The facilitated redox kinetics of sulfur cathodes
resulting from Co-N4 was experimentally validated with CV based on Li2S6 symmetric
cells and Li2S deposition. Figure 8b shows that SA-Co/NGM presents two pairs of clear
redox peaks with stronger currents than NGM, meaning the accelerated conversion kinetics
of sulfur species. Meanwhile, SA-Co/NGM shows a more rapid nucleation time and a
larger deposition capacity than NGM (Figure 8c,d).
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Heterostructures integrate the advantages of the individual component to achieve
increased catalytic effects on sulfur cathodes. For instance, Meng and co-workers developed
a CoS2/ZnS heterostructure that can bidirectionally catalyze sulfur cathodes [33]. As shown
in Figure 9a, the rate-determining step was considered to be the Li2S2 reduction to Li2S
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during discharging due to the highest ∆G. CoS2/ZnS displayed a lower ∆G (0.66 eV)
than CoS2 and ZnS, which indicated the thermodynamically favorable Li2S deposition by
CoS2/ZnS. Accordingly, the facilitated process was confirmed with CV and Tafel analyses.
Sulfur cathodes with CoS2/ZnS-modified PP separators (CoS2/ZnS@PP) displayed a lower
voltage difference between the cathodic Peak B and anodic Peak C than that with CoS2@PP
(Figure 9b). This result indicated that CoS2/ZnS decreased the polarization effect of sulfur
cathodes. Furthermore, the Tafel slope calculated from Peak B in Figure 9c suggested that
CoS2/ZnS mitigated the overpotential of the Li2S deposition process due to the smaller Tafel
slope. Benefiting from the merits of heterostructure, CoS2/ZnS@PP achieved prolonged
cycling stability for 200 cycles (Figure 9d).

Zhu et al. synthesized heterogeneous MnO-Mo2C nanoparticles on porous carbon
(MnO-Mo2C/C) to host sulfur [94]. MnO-Mo2C decreased the energy barrier of Li2S
deposition to 3.38 eV compared to the single MnO (4.63 eV). Similar conclusions were made
by Huang et al., who fabricated La2O3-MXene heterostructures to promote the conversion
kinetics of sulfur cathodes [95].
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5. Lithium-Ion Diffusion Energy Barriers

Lithium-ion diffusion can be used to evaluate the activities of catalysts for Li-S batteries.
CV measurements are typically used to determine the lithium-ion diffusion coefficient [96].
In addition, the diffusion energy barriers of lithium ions on the surfaces of catalysts
are good indicators to predict the electrochemical kinetics of Li-S batteries. Cui and co-
workers investigated the lithium-ion diffusion on graphene and various sulfides using the
climbing-image nudged elastic band method [97]. The calculation showed that the diffusion
barriers of sulfides were smaller than those of graphene, which was in accordance with the
experimental analyses. A smaller barrier increases the diffusion rate, which benefits the
reaction kinetics between lithium and sulfur.

Lithium-ion diffusion can be significantly enhanced by controlling the electronic
structures of catalysts. For example, Zhang and co-workers calculated the diffusion barriers
of lithium ions on MoS2, Mn-doped MoS2, and V-doped MoS2 [41]. Compared with
MoS2, the doped MoS2 showed smaller diffusion barriers (MoS2, Mn-doped MoS2, and
V-doped MoS2 were 0.08, 0.05, and 0.05 eV), suggesting accelerated lithium-ion migration
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after the introduction of doped elements. This was advantageous to promoting the rate
performance of sulfur cathodes. Sun et al. fabricated P-vacancy CoP (CoP-Vp) to promote
the polysulfide conversion [98]. Figure 10a shows the lithium-ion diffusion pathways and
the corresponding free energy. The lithium-ion diffusion on CoP and CoP-Vp followed
a polyline process with double peaks. Two transition states existed between the initial
and final stable states. The lower energy barrier of CoP-Vp (0.27 eV) indicated superior
lithium-ion diffusion properties, thus improving the rapid conversions of polysulfides.
Sulfur cathodes with CoP-Vp showed favorable rate capability at 3 C with a capacity of
738 mAh g−1.

Incorporating doped Fe to Co3O4 nanosheets, Liu et al. suggested that Fe-doped
Co3O4 (Fe-Co3O4) resulted in numerous active sites which lowered the barrier of the
polysulfide conversion [50]. Figure 10b illustrates the diffusion pathways of lithium ions on
Co3O4 and Fe-Co3O4. The diffusion followed the arc curves, in which the initial state (IS)
converted to the transition state (TS) and turned to the final state (FS). Fe-Co3O4 decreased
the diffusion barrier from 2.01 to 1.34 eV, enabling rapid lithium-ion transport for the
electrochemical reactions of sulfur cathodes. This merit enabled the sulfur cathode to
have a favorable rate capability. Figure 10c shows that sulfur cathodes with Fe-Co3O4
maintained the two discharge plateaus well, even at 5 C. The considerable decrease in
polarization by Fe-Co3O4 resulted in higher capacities in various current densities.
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The surface structures of catalysts significantly influence the diffusion characteristics
of lithium ions. Yang et al. employed Ni precursors and CO2 conversion to fabricate
entangled CNTs on porous carbon nanofiber (PCF) [65]. This method converted the central
graphitic-N in the graphene plane to the edge-site pyridinic-N and pyrrolic-N, which
boosted the adsorption towards sulfur species. The resulting CO2-derived CNTs on PCF
(CCNT/PCF) exhibited better catalytic activities than the non-porous carbon nanofiber
(NPCF). Figure 10d,e show the lithium-ion diffusion pathways on the graphitic-N- and
pyridinic-N-doped carbon, respectively. The lithium-ion diffusion barrier along pyridinic-
N was calculated to be 0.24 eV (Figure 10f), which was lower than that along graphitic-N
(0.34 eV). This result indicated that pyridinic-N facilitated the lithium-ion diffusion kinetics
and improved Li-S batteries’ performance. The Li-ion diffusion was further experimentally
determined using EIS analyses. As shown in Figure 10g, by fitting the linear relationship
between ω−1/2 and Z′, CCNT/PCF exhibited a smaller slope than NPCF, meaning a
faster lithium-ion diffusion behavior. Therefore, CCNT/PCF achieved significantly larger
capacities than NPCF at various current densities (Figure 10h).

Sun et al. confirmed that incorporating high oxygen contents into the CoP surface
accelerated the electrochemical kinetics of polysulfides [99]. The authors calculated the
diffusion of lithium ions on CoP with low and high oxygen contents. Lithium ions diffused
on CoP with a high oxygen content underwent a decreased barrier of 0.47 eV, meaning a
rapid lithium-ion diffusion and accelerated electrochemical conversion of polysulfides. A
strain relaxation method has also been reported to tailor the anchoring and catalysis of
MoNi4 nanoalloys for Li-S batteries [55]. The calculation results implied that the MoNi4
nanoalloys with superficial 1.59% strain had lower lithium-ion diffusion barriers (2.878 eV)
in contrast to MoNi4 (3.143 eV), accelerating the catalytic conversion of sulfur species.

Lithium-ion diffusion barriers can also be used to evaluate the Li deposition/stripping
kinetics in Li-S batteries. Lee and co-workers reported that In2Se3 can effectively catalyze
Li-S batteries and improve the reversibility of lithium deposition [100]. Acting as a dual-
functional additive, In2Se3 was found to simultaneously boost the performance of cathodes
and anodes for Li-S batteries. The dissolved In3+ and Se2+ reacted with polysulfides to form
LiInS2 and LiInSe2, which were incorporated into the SEI and improved the plating and
stripping of lithium. This can be concluded by the lithium-ion diffusion calculations. The
previous report showed that the optimum pathway of lithium-ion diffusion on Li2S was
along the (100) direction with a low barrier of 0.348 eV. In contrast, the lithium-ion diffusion
barriers of LiInS2 and LiInSe2 considerably decreased to 0.286 and 0.269 eV, respectively.
The smaller lithium-ion diffusion barriers confirmed more uniform lithium-ion migration
through the SEI and rapid kinetics for lithium deposition.

6. Li2S Decomposition Energy Barriers

Because of the insulating nature of Li2S, its dissociation process during charging
should overcome huge energy barriers [101]. Therefore, accelerating the catalytic Li2S
oxidation benefits sulfur cathodes’ stable capacity and long cycle life. In this case, Zhou
et al. proposed the decomposition process of Li2S [97]. An intact Li2S molecule can be
decomposed into an individual lithium ion and a LiS cluster as follows:

Li2S→ LiS + Li+ + e− . (13)

The decomposition process involves the dissociation of Li from the Li2S molecule,
associated with the Li-S bond cleavage. The calculated decomposition barrier of Li2S
can be used to evaluate the activities of catalysts towards Li2S oxidation. By analyzing
the decomposition energy profiles of Li2S on various sulfides, the authors indicated that
decomposition energy barriers were essentially dependent on the binding ability of the
isolated lithium ions with the sulfur of sulfides. Due to the strong binding ability, sulfides
caused smaller decomposition barriers than carbon since the binding of lithium ions with
carbon was much weaker. This conclusion can explain why sulfides can be good catalysts
for Li-S batteries.
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Oxides have been investigated to catalyze the electrochemical conversion of Li-S
batteries [80]. TiO2 has been confirmed to have favorable chemical adsorption for anchoring
polysulfides. However, it is plagued by intrinsically low conductivity, impeding the
conversion kinetics of sulfur cathodes. Wei and co-workers developed a high-performance
TiO2 catalyst composed of a rich O-vacancy TiO2 anatase/rutile homojunction on carbon
nanosheets (A/R-TiO2) [45]. The heterointerface of A/R-TiO2 provided effective anchoring
and smooth conversion of polysulfides. It also significantly reduced the Li2S decomposition
energy barrier. Figure 11a–c show the calculated Li2S decomposition energy barriers of
A/R-TiO2, R-TiO2, and A-TiO2. A/R-TiO2 revealed a lower decomposition barrier of 0.09 eV
compared to R-TiO2 (0.55 eV) and A-TiO2 (1.01 eV), suggesting the accelerated delithiation
kinetics of Li2S. Jiang et al. determined the crystal facet effects of Fe2O3 on the catalytic
conversion of Li-S batteries [102]. The authors developed reduced graphene oxide to load
high-index faceted Fe2O3 nanocrystals, which bifunctionally catalyzed sulfur cathodes.
The (1238) and (1344) facets of Fe2O3 considerably decreased the Li2S decomposition
energy barriers in contrast to the Fe2O3 (0112) facet. This conclusion indicated that high-
index facets possessed higher catalytic activities to split the S-Li bond, promoting the
Li2S dissociation kinetics. As a result, sulfur cathodes with A/R-TiO2 achieved favorable
capacities at various current densities (Figure 11d).
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Quantum dots and single-atom catalysts have been employed in sulfur cathodes to
maximize the active sites for anchoring and catalysis. Their tiny dimensions and uni-
form dispersibility allowed them to reduce the reaction energy barrier. For example,
Huang et al. synthesized bidirectional catalysts to improve sulfur cathodes and lithium
anodes [103]. The authors employed 3D inverse opal-structured N-doped carbon as the
substrate to load Co-Fe selenide quantum dots (3DIO FCSe-QDs@NC). The calculation
results in Figure 11e–g show that the decomposition barrier of Li2S on FCSe was 1.44 eV,
which was smaller than that on the bare NC (2.01 eV). This result indicated an optimal dis-
sociation process of the Li2S under the control of the FCSe-QDs catalytic sites. This resulted
in the remarkable enhancement of the decomposition process, which was further validated
by linear sweep voltammetry (LSV) tests. Figure 11h shows that 3DIO FCSe-QDs@NC
displays the smallest onset voltage with the largest current response, meaning the lowest
energy barrier for Li2S decomposition. The corresponding Tafel plots in Figure 11i also
support the conclusion. 3DIO FCSe-QDs@NC showed the smallest Tafel slope among the
three catalysts.

Yang et al. designed dual Ni-N4 and Fe-N4 sites co-anchored on carbon nanocages to
catalyze sulfur cathodes [48]. The high εd of the Fe-N4 sites demonstrated an accelerated
sulfur reduction reaction. Meanwhile, Li2S on the Ni-N4 sites revealed a metallic nature,
leading to strong S 2p DOS near the Femi level and thus allowing small Li2S dissociation
barriers. The calculation confirmed that the decomposition energy barrier of Li2S on Ni-
N4 centers (1.20 eV) was smaller in contrast to that on Fe-N4 (1.35 eV). This behavior
originated from the moderate anchoring ability of Li2S on Ni-N4 (−1.63 eV) compared with
that on Fe-N4 (−2.65 eV). The moderate adsorption of Li2S typically resulted in favorable
decomposition. Song et al. developed dual Zn-Co metal–N/O sites with combined effects
on rapid catalytic kinetics for sulfur cathodes [104]. DFT calculations suggested that the
Li2S decomposition barriers of this dual-core single-atom catalyst were lower than those of
the single-core counterpart.

Other types of catalysts, such as nitrides [105], MXene [106], and heterostructures [107],
have been reported to regulate Li2S decomposition. Ma et al. constructed a multibranched
vanadium nitride (MB-VN) catalyst towards Li-S batteries with high-/low-temperature
tolerance [83]. MB-VN exhibited a small Li2S decomposition barrier of 0.67 eV, imply-
ing a rapid Li2S dissociation on MB-VN. Zhang et al. reported hierarchically N-doped
porous carbon incorporated F-free Ti3C2Tx for Li-S batteries [106]. Ti coordinated with N
presented combined effects on decreasing the Li2S decomposition barriers, hence accel-
erating the redox kinetics of sulfur cathodes. Tang and co-workers prepared Co-doped
P-vacancy FeP catalysts on MXene, which considerably improved the bidirectional Li2S
reaction processes [75]. The decomposition energy barriers of Li2S (0.69 eV) on the catalyst
were considerably smaller in contrast to those on FeP (1.86 eV). Another MXene-based
catalyst designed by Nguyen et al. has also revealed a mitigated energy barrier for Li2S
decomposition [68].

7. Conclusions and Outlook

Calculations have been an essential approach to unravelling catalyst activities for Li-S
batteries. Together with experiments, calculations can give comprehensive insights into
the conversion mechanisms of Li-S batteries. This review summarizes the calculations on
catalytic Li-S batteries. The electronic structures of catalysts, including band structures,
densities of states, and charge distribution, are highly correlated with the catalytic activities.
Calculating electronic structures can help us understand the intrinsic characteristics of
catalysts at the atomic level. This will benefit catalyst tailoring, such as surface modifi-
cation, doping, heterostructure construction, and defect engineering, aiming to enhance
catalytic activities.

Binding energy calculations are critical to determining the catalysts for Li-S batteries
since the mitigation of polysulfide shuttling is heavily dependent on the binding ability
of catalysts. A catalyst with a weak binding energy towards sulfur species cannot anchor
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them into the cathode region. Therefore, the shuttle effect will persist, leading to the fast
capacity decay of Li-S batteries. However, too strong binding energy is detrimental to the
desorption and migration of sulfur species from the catalyst surface. Until now, there still
has not been a distinct benchmark to determine if the binding energy is too high or too low.
Previous reports suggest that binding energies of catalysts within the range of several eV
or up to 10 eV both exhibit optimal adsorption towards sulfur species. This behavior might
result from the structural nature of catalyst materials.

Note that the binding ability alone cannot fully inhibit the polysulfide shuttling. That
is due to the sluggish redox kinetics of sulfur cathodes. The adsorbed polysulfides on
catalysts will accumulate in the cathode region, inevitably causing their diffusion to the
anode side owing to concentration gradients in the electrolyte. Therefore, catalysts that
possess a strong binding ability to sulfur species and simultaneously can accelerate their
conversion kinetics will successfully diminish the shuttle effect of polysulfides.

Gibbs free energy is another critical indicator to characterize the catalyst activities. The
calculations of Gibbs free energy can determine which reaction step is spontaneous and
which reaction is the rate-determining step during discharging. The calculated result can
provide valuable information on the electrochemical reaction pathways when combined
with the experimental measurements, like in situ characterization. The current calculation of
the Gibbs free energy of Li-S batteries typically considers the interaction between catalysts
and the representative sulfur species, i.e., S8 and Li2Sn (n = 1, 2, 4, 6, 8). It is reasonable to
some extent but not undisputable.

One reason is that the electrolyte (solvent molecules and lithium salts) strongly in-
teracts with sulfur species. The electrolyte effects should be considered when calculating
the Gibbs free energy. Another point is the inclusion of sulfur species in the calculation.
The types of polysulfide intermediates are dependent on the Li-S battery system. The
calculations also should consider other intermediates, like Li2S3 or polysulfide radicals.
When accommodating these points, the calculation results may better reflect the conversion
mechanisms of Li-S batteries.

Lithium-ion diffusion and Li2S decomposition energy barriers significantly affect the
rate capacity of Li-S batteries since they are associated with redox kinetics. Rapid lithium-
ion diffusion alleviates the accumulation of the generated polysulfides at the cathode
surface during cycling, thus diminishing their shuttling in the electrolyte. However, as
lithium-ion diffusion is related to polysulfide diffusion, too fast diffusion of lithium ions is
not always beneficial. It will result in the weak adsorption of polysulfides at the surface of
catalysts. A trade-off between lithium-ion diffusion and polysulfide adsorption should be
considered when designing effective catalysts. Li2S decomposition involves the charging
process in Li-S batteries. Understanding the bidirectional catalytic mechanisms of catalysts
on both discharging and charging is critical for stable Li-S batteries.

The applications of current theoretical calculations on Li-S batteries have achieved
considerable success. DFT calculations present great advantages in computational accu-
racy without the extra increase in computing time. The electronic structures of catalyst
materials and conversion mechanisms of sulfur cathodes are well elucidated and predicted.
However, the calculation results are not always consistent with the experimental measure-
ments. This deviation mainly originates from the number of particles used for calculation.
DFT methods typically choose a finite number of particles to calculate and analyze the
physical or chemical properties of catalyst materials. The number of calculated particles
is far less than that of the actual materials. Therefore, the calculation results generally
reflect the localized and static characteristics of catalysts. To overcome the drawbacks, the
DFT calculation must include many more particles and proper configurations of catalyst
materials. However, the improved calculation accuracy might be achieved at the expense
of computing time. A fundamental trade-off between calculation accuracy and computing
time should be considered.

Based on the calculation studies associated with experimental analyses, the most
promising catalyst materials for Li-S batteries should possess the following advantages:
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(1) Favorable conductivity for rapid charge transport that can be analyzed with electronic
structure calculations and lithium-ion diffusion barriers; (2) moderate anchoring towards
sulfur species, which is validated by the binding energy calculations; and (3) effective
active sites for catalyzing the conversion of sulfur species. The conversion step of sulfur
species with a lower calculated Gibbs free energy indicates the thermodynamically more
favorable pathway. In addition, catalyst materials with high structural stability and low
cost are desirable for large-scale applications. Nowadays, finding catalyst materials for
Li-S batteries that can meet all the criteria is challenging. Still, carbon-based catalysts and
metal sulfides are expected to show considerable potential for enhancing the performance
of Li-S batteries.

As discussed in this review, although tremendous efforts with theoretical calculations
have been made to unravel the catalysis in Li-S batteries, a deep understanding of the
catalytic mechanisms of the multistep conversion reactions is still limited. Therefore, there
is much work to be conducted regarding theoretical calculations which explore efficient
catalysts for Li-S batteries. First, the complicated disproportionation and neutralization of
polysulfides in the electrolyte pose a significant challenge for analyzing the sulfur species
quantitatively. Understanding the specific conversion process of various sulfur species can
provide the foundation for revealing the catalytic mechanisms of Li-S batteries. This is diffi-
cult for experimental approaches, and theoretical calculations may be crucial. In addition,
predicting and screening efficient and stable catalysts for Li-S batteries needs tremendous
effort. Developing advanced calculation approaches can facilitate the discovery of catalyst
materials. Machine learning associated with high-throughput screening strategies is a
promising method for exploring ideal catalysts. The data-driven calculations based on
theoretical models show great potential for efficiently predicting the properties of catalyst
materials, like adsorption configurations and adsorption energies. More importantly, the
advanced calculation methods remove the obstacle facing experimental technologies, which
seek catalyst materials through trial and error.

Calculations have considerably promoted the understanding of the electrocatalytic
reactions of Li-S batteries. Many new and special calculation methods have been developed
and employed to unravel the complicated Li-S electrochemistry. Together with experimental
characterization, these calculations will immensely accelerate the practical applications of
Li-S batteries.
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