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Richtmyer–Meshkov instability (RMI) at a light–heavy single-mode interface over a wide
range of post-shock Atwood numbers A1 is studied systematically through elaborate
experiments. The interface generation and A1 variation are achieved by the soap-film
technology and gas-layer scheme, respectively. Qualitatively, the nonlinear interface
evolution features, including spike, bubble and roll-up structures, are more significant in
RMI with higher A1. Quantitatively, both the impulsive model and an analytical linear
model perform well in predicting the linear growth rate under a wide range of A1
conditions. For the weakly nonlinear stage, the significant spike acceleration occurring
when A1 is high, which is observed experimentally for the first time, results in the evolution
law of RMI with high A1 being different from the counterpart with low or intermediate A1.
None of the considered nonlinear models is found to be applicable for RMI under all A1
conditions, and the predictive capabilities of these models are analysed and summarized.
Based on the present experimental results, an empirical nonlinear model is proposed for
RMI over a wide range of A1. Further, modal analysis shows that in RMI with high (low
or intermediate) A1, high-order harmonics evolve rapidly (slowly) and cannot (can) be
ignored. Accordingly, for RMI with high (low or intermediate) A1, the modal model
proposed by Zhang & Sohn (Phys. Fluids, vol. 9, 1997, pp. 1106–1124) is less (more)
accurate than the one proposed by Vandenboomgaerde et al. (Phys. Fluids, vol. 14, 2002,
pp. 1111–1122), since the former ignores perturbation solutions higher than fourth order
(the latter retains only terms with the highest power in time).
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1. Introduction

Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969) occurs when
a perturbed interface separating two substances of different densities is accelerated by
a shock wave. It has gained extensive attention for decades due to its crucial role in
many important scientific and engineering fields, such as inertial confinement fusion
(ICF) (Nuckolls et al. 1972; Lindl et al. 2014; Betti & Hurricane 2016), supernova
explosion (Arnett et al. 1989; Kuranz et al. 2018), scramjet (Billig 1993; Yang, Kubota
& Zukoski 1993), shock-flame interaction (Khokhlov et al. 1999a; Khokhlov, Oran &
Thomas 1999b), and so on. Comprehensive insights and specific details regarding RMI
and its applications can be found in several recent systematic reviews (Zhou 2017a,b; Zhou
et al. 2019, 2021). For ICF, RMI is one of the tremendous obstacles to its realization, and
the effect of RMI is highly related to the target design (Kritcher et al. 2022). There are
several types of target in ICF, such as the typical target with one ablative layer made
of one main material, and the innovative target with multiple ablative layers formed
of different main materials (Lindl 1995; Qiao & Lan 2021; Kritcher et al. 2022). In
addition, the main materials for the ablative layer are diverse, including CH plastic and
high-density carbon, etc. (Lindl et al. 2014). In other words, the Atwood number (defined
as A = (ρj − ρi)/(ρj + ρi), with ρi and ρj being the densities of substances upstream and
downstream of the interface, respectively) of the interface separating deuterium-tritium ice
and ablator or different ablative layers can be significantly different for different targets.
Therefore, it is necessary and desirable to study the evolution of RMI under various A
conditions. Pre- and post-shock A (A0 and A1) are equivalent in incompressible RMI, but
inequivalent in compressible RMI. Since we consider the compressible RMI in this work,
A generally refers specifically to A1 containing information on the compressibility of the
flow field.

For RMI with small scaled initial amplitude ka0 (where k and a0 are perturbation
wavenumber and initial amplitude, respectively), the perturbation amplitude a first varies
at an increasing rate due to the start-up process (Richtmyer 1960; Lombardini & Pullin
2009), and then enters a linear growth period until nonlinearity becomes pronounced.
Theoretically, Richtmyer (1960) first investigated RMI on a light–heavy interface and
deduced a compressible linear theory for forecasting the amplitude growth rate ȧ in the
linear regime. On the basis of the compressible linear theory, a semi-empirical model,
i.e. the impulsive model, was proposed for predicting the linear asymptotic amplitude
growth rate ȧ1. Notably, the impulsive model loses accuracy with the increase of the flow
compressibility (Mikaelian 1994; Yang, Zhang & Sharp 1994). An exact compressible
linear theory that, in principle, is capable of solving for ȧ within the linear regime
under arbitrary flow compressibility conditions was deduced by Wouchuk & Nishihara
(1996). Based on the compressible linear theory, Wouchuk & Nishihara (1997) proposed
an analytical solution (the WN model) to predict ȧ1, and obtained a simplified model in
the weak shock limit (the WN-WL model). Subsequently, the WN model was modified
further by Wouchuk (2001). RMI was first studied experimentally by Meshkov (1969)
using interfaces formed by nitrocellulose membranes. Different gas combinations on
both sides of the interface were considered to achieve a wide variation of A1. It was
found that the experimental ȧ1 (denoted ȧe

1) is qualitatively consistent with the impulsive
model prediction (denoted ȧi

1): both are positively related to A1. However, quantitatively,
all ȧe

1 are significantly lower than the corresponding ȧi
1, possibly due to the effects

of high amplitude and membrane. Jones & Jacobs (1997) investigated experimentally
the shock-induced evolution of a continuous N2–SF6 interface with A0 = 0.67.
Although the agreement between ȧe

1 and ȧi
1 is better relative to that in previous work
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(Meshkov 1969), ȧe
1 is still lower than ȧi

1 due to the diffusion layer. By dropping a
two-liquid system mounted on a sled onto a coil spring to produce a nearly impulsive
upward acceleration, Niederhaus & Jacobs (2003) studied experimentally incompressible
RMI with low negative A1 (= −0.1587). Very clear views of the developing interface were
realized using planar laser-induced fluorescence imaging. Due to the extended duration
of the acceleration pulse, the theoretical ȧ1 was determined by integrating numerically
the first-order time derivative of the impulsive model. A remarkably good agreement
between the theoretical and experimental results was reached for a dimensionless time
up to 0.3. Using the soap-film technique to generate an interface free of solid membrane
and diffusion layer, Liu et al. (2018) studied elaborately the evolution of a shocked
air–SF6 single-mode interface, and provided the first direct experimental validation of the
impulsive model. However, A1 in the work of Liu et al. (2018) is within a narrow range
(0.54 ≤ A1 ≤ 0.61), and it is desirable to examine the impulsive model over a wider range
of A1.

In the early stages of RMI, since the perturbed waves are close to interface and
ka is small, compressibility dominates the perturbation evolution while nonlinearity is
less important. As perturbed waves move away from the interface and ka increases,
compressibility becomes weaker and nonlinearity begins to dominate the perturbation
growth (Zhang & Sohn 1997). In other words, RMI has different dominant mechanisms at
different evolution stages, making its overall evolution behaviour from linear to nonlinear
stages difficult to describe rigorously. Fortunately, RMI can be approximated as a linear
compressible physical process in the early stages and as a nonlinear incompressible one in
the late stages (Zhang & Sohn 1997). Referring to this idea, several empirical nonlinear
models were proposed (Zhang & Sohn 1997; Sadot et al. 1998; Mikaelian 2003; Dimonte
& Ramaprabhu 2010; Zhang & Guo 2016, 2022), and they are briefly reviewed as follows.

Zhang & Sohn (1997) first derived the perturbation series of the amplitude growth
rates of spike, bubble and entire interface (ȧs, ȧb and ȧ). Then, by applying the Padé
approximation to extend the valid range of the perturbation series, an approximate
nonlinear solution was derived. Finally, through matching the linear and nonlinear
solutions, a nonlinear model known as the ZS model was obtained. Sadot et al. (1998)
proposed a nonlinear model (the SEA model) by matching the impulsive model prediction,
perturbation expansion solution and potential flow solution. Note that different coefficients
C (see table 3) were employed for RMI with A1 ≥ 0.5 and A1 < 0.5 to account for the
effect of A1 on asymptotic ȧs (spike) and ȧb (bubble). By analysing the extension of
Layzer-type theory (Layzer 1955) to arbitrary A1 (Goncharov 2002) and assuming that the
linear to nonlinear growth transition occurs when ka = 1/3, Mikaelian (2003) proposed
a nonlinear model for bubble evolution (the MIK model). Theoretically, the extension of
the MIK model to spike (Goncharov 2002; Jacobs & Krivets 2005) is strictly inapplicable
to RMI with finite A1 (Mikaelian 2008). Nonetheless, it is still interesting to evaluate
the capability of the MIK model to predict spike evolution because of its simplicity
compared with other models (Dimonte & Ramaprabhu 2010). Through focusing on the
asymptotic evolution law and the effects of A1 and ka0 on spike acceleration, Dimonte &
Ramaprabhu (2010) proposed a nonlinear model (the DR model) applicable to high A1
and ka0 conditions based on numerous simulations and previous models (Zhang & Sohn
1997; Sadot et al. 1998; Mikaelian 2003). Zhang & Guo (2016) first derived the late-time
finger (bubble and spike) growth rate for a system with any density ratio based on the
finger curvature characteristics predicted by the Layzer-type models. Then, by matching
the early- and late-time solutions, a nonlinear model known as the ZG model was obtained.
On the basis of the ZG model, recently Zhang & Guo (2022) proposed a new nonlinear
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model (the ZG-New model) by considering additionally the weakly nonlinear and
pre-asymptotic behaviours.

Various experimental studies have been performed to explore the nonlinear evolution
law of RMI and to examine nonlinear models. In the experiments on incompressible RMI
with A1 = −0.1587 conducted by Niederhaus & Jacobs (2003), it was observed that the
ZS (SEA) model predicts the early-time amplitude evolution well, while it underestimates
(overestimates) the experimental results at later stages. The failure of the SEA model at late
times was ascribed to the fact that coefficient C = 1/2π is strictly true only when A1 = 0.
Using well-defined interfaces created by a membrane deposited on a stereolithographed
grid support, Mariani et al. (2008) conducted shock-tube experiments on RMI with A1
ranging from 0.644 to 0.721. It was observed that the predictions of the ZS and SEA
models deviate from the experimental data from the early stages, which was ascribed to a
part of the kinetic energy of the fluid at the interface being diverted to the motion of the
membrane remnants. Subsequently, Vandenboomgaerde et al. (2014) studied RMI with
A0 = 0.679 employing an interface formation method similar to that in previous work
(Mariani et al. 2008). A stronger incident shock was applied to reduce the deleterious
effects of the membrane remnants. It was found that in the experiment with small ka0
(= 0.24), the SEA (MIK) model slightly overestimates (underestimates) the amplitude
evolution in the late stages, while the DR model offers a reasonable prediction. The RMI
on a continuous air–SF6 interface with A1 ≈ 0.62 was investigated by Collins & Jacobs
(2002). It was found that the prediction of the ZS model deviates from the experimental
results in the late stages, as it does not capture the late-time 1/t behaviour of ȧ. In contrast,
the SEA model, which captures the late-time 1/t behaviour of ȧ, predicts the amplitude
evolution well. Subsequently, Jacobs & Krivets (2005) performed experiments on the
late-time development of RMI with A1 = 0.635 and 0.692. Stronger shocks and initial
perturbations with shorter wavelengths, in comparison to those in previous studies (Jones
& Jacobs 1997; Collins & Jacobs 2002), were adopted to obtain images at significantly
later dimensionless times. Jacobs & Krivets (2005) observed predictive capabilities of
the ZS and SEA models similar to those in previous work (Collins & Jacobs 2002), and
found that the MIK model starts underestimating the amplitude evolution from the early
times, although it does capture the late-time 1/t behaviour of ȧ. Recently, Mansoor et al.
(2020) studied the late-time growth of RMI on a continuous quasi-single-mode interface
with A0 ≈ 0.67. For experiments with small ka0 (= 0.30), the ZG and DR models predict
reasonably the amplitude growth, while the ZS, MIK and SEA models fail to predict the
experimental results well. Note that the diffusion layer of the continuous interface and the
remnants of the solid membrane interface may influence the nonlinear interface evolution,
thus affecting the model validation. Liu et al. (2018) investigated elaborately RMI on an
air–SF6 soap-film interface, and found that the ZG model predicts the amplitude growth
well, while the ZS, MIK, SEA and DR models fail to predict the experimental results
well in general or at specific stages. In addition, based on the accurate interface profiles
extracted from high-quality schlieren pictures, modal analysis was performed. It was found
that the modal model proposed by Zhang & Sohn (1997) (the ZSM model) predicts
the modal evolution better than the model proposed by Vandenboomgaerde, Gauthier &
Mügler (2002) (the VM model). It is noteworthy that A1 in previous experimental works
discussing nonlinear evolution of RMI (Collins & Jacobs 2002; Niederhaus & Jacobs
2003; Jacobs & Krivets 2005; Mariani et al. 2008; Vandenboomgaerde et al. 2014; Liu
et al. 2018; Mansoor et al. 2020) is within a narrow range, and it is desirable to examine
existing nonlinear models over a wider range of A1.
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Numerically, the evolution law of RMI has been investigated extensively (Zhou 2017a,b;
Zhou et al. 2019, 2021). Lombardini et al. (2011) studied the dependence of RMI under
reshock conditions on A using the large-eddy simulation technique. A wide range of A0 in
both positive and negative signs was considered: ±0.21, ±0.67 and ±0.87. The magnitude
of |A| was found to strongly influence the turbulent kinetic energy, turbulent dissipation
and post-reshock growth rate of the mixing width. Furthermore, an empirical formula
and a semi-analytical model based on a diffuse-interface approach were proposed to
describe the dependence of the post-reshock growth rate on the post-reshock A. However,
Lombardini et al. (2011) placed more emphasis on the post-reshock flow, whereas the
pre-reshock classical RMI phenomenon was not highlighted. In addition to the work of
Lombardini et al. (2011), several numerical and vortex-method-based theoretical studies
of the dependence of RMI in planar and cylindrical geometries on A1 were performed
(Nishihara et al. 2010). Matsuoka & Nishihara (2006a,b) found that the growth rates
of the bubble and spike in both planar and cylindrical geometries are closely related to
A1. Besides, the dependence of the motions, strengths and roll-up of the vortex sheet
representing the interface on A1 was discussed in detail. Existing numerical works have
offered valuable insights into the evolution law of RMI under various A1 conditions,
and should be verified further through experiments. Therefore, conducting an elaborate
experimental study on RMI over a wide range of A1 conditions is desirable.

How does RMI evolve under different A1 conditions? Can existing linear and nonlinear
models describe RMI correctly over a wide range of A1? These issues remain unclear,
which motivates the present study. The soap-film technique (Liu et al. 2018; Liang et al.
2019) enables the formation of well-defined desirable interfaces, while the gas-layer
scheme (Liang & Luo 2021; Chen et al. 2023) allows for a wide variation of A1,
providing us with a rare opportunity to study RMI over a wide range of A1 finely through
experiments. In this work, by using the soap-film technique to generate initial interfaces
and the gas-layer scheme to alter A1, first the evolution law of RMI under a wide range of
A1 conditions is obtained experimentally. Then the semi-empirical and analytical linear
models and some nonlinear models are examined, and the predictive capabilities of
nonlinear models are analysed and summarized. Finally, modal analysis is performed to
explore the effect of A1 on modal evolution, and also to examine modal models.

2. Experimental method

The experiments are conducted in a horizontal shock tube whose reliability and
reproducibility have been verified extensively in prior investigations (Liu et al. 2018; Liang
et al. 2019; Luo et al. 2019). The shock tube consists of a driver section, a driven section, a
transitional section, a stable section and a test section, as depicted in figure 1. To generate a
shock wave, initially a thin polyester film is placed between the driver and driven sections
to separate the gases in them. Afterwards, nitrogen contained in a high-pressure gas
cylinder is charged into the driver section. Once the pressure difference between the gases
in the driver and driven sections exceeds the pressure-bearing capacity of the polyester
film, the film ruptures and a shock wave is launched into the driven section. The shock
wave propagates from the circular driven section to the rectangular stable section through
a transitional section, and recovers to a stable one before entering the test section. In this
work, the generation method of the shock wave and the thickness of the polyester film
(0.03 mm) are kept consistent across all experiments, which ensures that the intensity of
the shock entering the test section remains similar across different experiments.
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Figure 1. Sketch of the shock tube and high-speed schlieren system.
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Figure 2. Schematic of interface formation devices and gas-layer scheme.

The soap-film technique, which has been utilized widely in our previous works (Liu et al.
2018; Liang et al. 2019; Luo et al. 2019), is used to generate the initial interface. To allow
for a wider variation of A1, it is necessary to fill different gases in the two spaces separated
by the soap film. Therefore, except for the experiment with an air–SF6 interface, a gas-layer
scheme that has been validated in previous works (Liang & Luo 2021; Chen et al. 2023) is
adopted. Before each experimental run using the gas-layer scheme, as shown in figure 2,
flat and single-mode soap films are first formed on the left- and right-hand sides of device
b, respectively, while a single-mode soap film is formed on the left-hand side of device c,
closed with a polyester film on the right-hand side. Subsequently, gases with relatively low
and high densities are charged into devices b and c, respectively, through inflow holes, and
air is released through outflow holes. Finally, devices a, b and c are carefully connected
and inserted into the test section of the shock tube. Note that two single-mode soap films
merge into one when devices b and c are connected. Since the gas in device b (gas b) is
lighter compared to that in device c (gas c), a light–heavy single-mode interface is formed.
More details regarding the soap-film technique can be found in previous works (Liu et al.
2018; Liang et al. 2019).

The flow field evolution is captured by a high-speed schlieren system as depicted in
figure 1. The system contains a xenon light source (CEAULIGHT CEL-HXF300), two
optical lenses, a slit, two concave mirrors with a focal length of 2000 mm, two plane
mirrors with a diameter of 400 mm, a blade, and a high-speed video camera (FASTCAM
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SA5, Photron Limited) equipped with a macro lens (TOKINA M100 PRO D 100 mm/F2.8
MACRO). The frame rate of the high-speed video camera is set to 50 000 frames per
second, with an exposure time of 1 μs. The spatial resolution of schlieren images is
about 0.40 mm pixel−1. The ambient pressure and temperature are 101.3 ± 0.1 kPa and
295.0 ± 0.5 K, respectively.

Some important parameters for seven experimental runs labelled by A1 are shown
in table 1, and there are several issues that need further clarification. First, since the
intensity of the incident shock changes as it interacts with the flat interface, there are
small differences in the Mach number of the incident shock impacting the single-mode
interface (M) between runs. Second, the initial distance between flat and single-mode
interfaces is 105.00 mm, which ensures that the flat interface would not heavily affect
the single-mode interface evolution within the effective experimental time (Chen et al.
2023). Third, gas components, A0 and A1 are obtained by matching the velocities of
shocks and interface obtained from experiments and predicted by one-dimensional gas
dynamics theory. Fourth, to validate the linear models and also the nonlinear models, the
perturbation wavelength (λ) and ka0 are chosen as 40.00 mm and 0.285, respectively. This
ka0 is not too small while still satisfying the small-amplitude criterion (ka � 1), which
ensures that the interface has a sufficiently long linear growth period and can also evolve
into the weakly nonlinear stage within the effective experimental time.

3. Results and discussion

3.1. Flow features and interface morphology
Experimental schlieren images of the evolutions of shocked light–heavy single-mode
interfaces with different A1 are shown in figure 3. Since the flat interface does not heavily
affect the evolution of the shocked single-mode interface (SI) and provides no additional
information, it is removed in all the schlieren images through image processing. Run 0.68
is taken as an example to illustrate the detailed process. The temporal origin (t = 0 μs)
is defined as the moment when the incident shock (IS) reaches the mean position of the
initial interface (II). It should be noted that the initial interface looks quite thick due to
the sinusoidal filaments embedded on the interface formation devices for constraining
the soap film. The filaments are also removed from the images after the shock impact
through image processing for clarity. When IS encounters II, a transmitted shock (TS)
and a reflected shock (RS) are generated (54 μs). Note that for runs in which gas b is a
mixture of helium and air, RS is barely visible since the difference in gas density between
its two sides is small. As SI evolves, its asymmetry increases gradually, followed by the
formation of distinct spike and bubble structures (674 μs), indicating the generation of
high-order harmonics. Subsequently, roll-up structures are formed on SI (1114 μs).

The nonlinear evolution features of SI, including spike, bubble and roll-up structures,
develop faster in RMI with higher A1. Specifically, before moving out of the experimental
observation area, SI in run 0.30 remains a quasi-single-mode profile (1123 μs), while SI
in run 0.86 becomes highly asymmetrical and has roll-up structures (1103 μs). Notably,
Matsuoka & Nishihara (2006a) observed that the roll-up structures of RMI in cylindrical
geometry appear rapidly even under low A1 conditions, which appears to be inconsistent
with the present results. However, this discrepancy is due to the difference in time
normalization between RMI in planar and cylindrical geometries. In the studies conducted
by Matsuoka & Nishihara (2006b) and Nishihara et al. (2010) on RMI in planar geometry,
using the same time normalization as that in the current work (see § 3.3 for details), the
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Figure 3. Schlieren photographs of the evolutions of shocked interfaces with different A1. Here, IS, TS and RS
denote incident, transmitted and reflected shocks, respectively; II and SI denote initial and shocked single-mode
interfaces, respectively. Numbers in photographs represent time in μs.

roll-up structures have not yet emerged when the dimensionless time reaches 2 under low
A1 conditions. This observation aligns with the phenomenon witnessed in our experiments.

3.2. Linear evolution of perturbation amplitude
Temporal variations of perturbation amplitude a in dimensional form for different runs
are shown in figure 4(a), in which t∗ is the moment when the linear growth of a starts,
and a∗ is the corresponding a at t = t∗. Note that a is determined via measuring the
distance between the peak and trough of SI along the streamwise direction (2a), as
shown in figure 3. In all runs, a would initially undergo a linear growth period, and ȧe

1
is determined by linearly fitting the early-time experimental data. According to previous
works (Mikaelian 1994; Yang et al. 1994; Velikovich & Dimonte 1996), the impulsive
model is valid theoretically for predicting ȧ1 only when ka0 is small and compressibility
is weak. In the experiments conducted in this work, ka0 satisfies the small-amplitude
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Figure 4. Temporal variations of perturbation amplitude for runs with different A1: (a) dimensional form,
(b) dimensionless form.

criterion and M is low. Therefore, our experiments are suitable for validating the impulsive
model, which can be written as

ȧi
1 = Cka0A1ut = ka1A1ut, (3.1)

where C (= 1 − ut/ve
is) is the shock compression factor, with ut and ve

is being the
theoretical velocity of SI and the experimental velocity of IS, respectively, and a1 is
the post-shock amplitude. In addition to the semi-empirical impulsive model, it is also
desirable to examine the analytical linear models (Wouchuk & Nishihara 1996, 1997;
Wouchuk 2001). According to Wouchuk & Nishihara (1997), the difference between
the predictions of the WN and WN-WL models is negligible when β < 0.5 (where
β = 1 − pin/ pbe, in which pin and pbe are the pressures in front of and behind IS,
respectively). Since β in current experiments are smaller than 0.4, only the WN-WL model
is considered. The WN-WL model can be expressed as

ȧww
1 = ka0

ut ρc

ρb

(
1 − ve

ts

ve
is

)
+ (ut

b − ut)

(
1 + vt

rs

ve
is

)

1 + ρc

ρb

, (3.2)

where ρb and ρc are the post-shock densities of gases b and c, respectively; ve
ts is the

velocity of TS extracted from experiments; and vt
rs and ut

b are the velocities of RS and gas b
behind IS predicted by one-dimensional gas dynamics theory, respectively. To demonstrate
more visually the dependence of ȧ1 on A1 described by the WN-WL model, the model can
be rewritten as

ȧww
1 = ka0

[
1 + A1

2
ut

(
1 − ve

ts

ve
is

)
+ 1 − A1

2
(ut

b − ut)

(
1 + vt

rs

ve
is

)]
. (3.3)

Values of ȧe
1, ȧi

1 and ȧww
1 are provided in table 2 for comparison. It can be found that the

impulsive model predicts excellently ȧe
1 under a wide range of A1 conditions, while the

WN-WL model provides reasonable predictions for all experimental results. The result of
the comparison indicates that both models describe correctly the dependence of the linear
amplitude evolution on A1.
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Model Expression

ZS ȧzs
b/s = ȧzs ∓ A1kȧe

1
2t

1 + 2k2ȧe
1a1t + 4k2ȧe

1
2t2

[
a2

1k2 + 1
3 (1 − A2

1)
] ,

in which ȧzs = ȧe
1

1 + k2ȧe
1a1t + max

[
0, k2a2

1 − A2
1 + 1

2

]
k2ȧe

1
2t2

.

MIK ȧmik
b/s = ȧe

1 when ka < 1/3,

ȧmik
b/s = ȧe

1

1 + 3ȧe
1

(
1 ± A1

3 ± A1

)
kt

when ka ≥ 1/3.

SEA ȧsea
b/s = ȧe

1
1 + kȧe

1t

1 + (1 ± A1)kȧe
1t +

(
1 ± A1

1 + A1

) (
k2ȧe

1
2t2

2πC

) ,

in which C = 1
3π

when A1 ≥ 0.5 and C = 1
2π

when A1 → 0.

DR ȧdr
b/s = ȧe

1
1 + (1 ∓ A1)kȧe

1t
1 + Cb/skȧe

1t + (1 ∓ A1)Fb/s(kȧe
1t)2 ,

in which Cb/s = 4.5 ± A1 + (2 ∓ A1)ka1

4
and Fb/s = 1 ± A1.

ZG ȧzg
b/s = ȧe

1
1 + θb/skȧe

1t
,

in which θb/s = 3
4

(1 ± A1)(3 ± A1)

3 ± A1 + √
2(1 ± A1)

4(3 ± A1) + √
2(9 ± A1)(1 ± A1)

1/2

(3 ± A1)2 + 2
√

2(3 ∓ A1)(1 ± A1)1/2
.

ZG-New ȧzgn
b/s = ȧe

1 e−k[ab/s(t)−a1]θb/s

⎧⎪⎪⎨
⎪⎪⎩

1
3(θb/s ∓ A1)2

(
1 + 2ka1

θb/s ∓ A1

)
+ λb/s

1
3(θb/s ∓ A1)2

(
1 + 2ka1

θb/s ∓ A1

)
+ λb/s e−3k[ab/s(t)−a1]

⎫⎪⎪⎬
⎪⎪⎭

1/3λb/s

,

in which λb/s =
[

1
θb/s ∓ A1

− 1
3(θb/s ∓ A1)2

]
+

[
1

(θb/s ∓ A1)2 − 2
3(θb/s ∓ A1)3

]
ka1.

Table 3. Detailed expressions of considered nonlinear models.

3.3. Weakly nonlinear evolution of perturbation amplitude
Temporal variations of perturbation amplitude a in dimensionless form for runs with
different A1 are shown in figure 4(b). Here, t and a are normalized as τ = kȧe

1(t − t∗)
and α = k(a − a∗), respectively, where τ values corresponding to the last data point (τl)
in different runs are in the range 0.7–2.3. Therefore, SI in all runs can be considered to be
within the weakly nonlinear evolution stage at τ = τl. The scaling collapses the results of
all runs except run 0.86, indicating that the weakly nonlinear evolution law of RMI with
A1 close to 1 is significantly different from that of RMI with relatively low A1. Then a
comparative analysis of experimental results and predictions by typical nonlinear models is
performed. Nonlinear models including the ZS, MIK, SEA, DR, ZG and ZG-New models
are considered, and their detailed expressions are listed in table 3. From the comparison
of the experimental and theoretical results, we notice that the predictive capabilities of
considered nonlinear models for runs 0.30, 0.44 and 0.52 (runs 0.61, 0.68 and 0.72) are
similar. Therefore, for clarity, three typical experiments (runs 0.30, 0.68 and 0.86), referred
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Figure 5. Comparisons between experimental and theoretical results for (a,c,e) dimensionless a and
(b,d, f ) dimensionless ab/s, for (a,b) run 0.30, (c,d) run 0.68, and (e, f ) run 0.86.

to below as RMI with low, intermediate and high A1, respectively, are chosen for further
discussion.

The temporal variations of a and ab/s (where subscripts b and s represent bubble and
spike, respectively) in dimensionless form obtained from experiments and predicted by
nonlinear models for runs 0.30, 0.68 and 0.86 are shown in figure 5. For run 0.30, the
MIK (ZG) model excellently (reasonably) predicts the experimental results, while the
other models slightly overestimate a and ab/s. For run 0.68, the ZG model provides the
best prediction of the experimental results, while the MIK model slightly underestimates
a and as at late stages. The ZS, SEA, DR and ZG-New models well predict ab while
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obviously overestimating a and as. In run 0.86, ȧs, which decreases continuously in RMI
with low or intermediate A1, increases gradually, verifying the numerical observation that
the spike acceleration is significant when A1 is high (Dimonte & Ramaprabhu 2010). The
SEA model (MIK and ZG models) obviously overestimates (underestimate) a and as while
still predicting (forecasting) ab well. In contrast, the ZS, DR and ZG-New models also
predict a and as well. Notably, the significant spike acceleration phenomenon is observed
experimentally for the first time.

Before analysing the predictive capabilities of nonlinear models, it is important to
mention that even if the experimental and theoretical results agree well, it may be
accidental. For example, as observed by Dimonte & Ramaprabhu (2010), the MIK model,
which is theoretically inapplicable when ka1 > 1/3, reasonably predicts the numerical
results with ka1 ≈ 1. All considered models can reasonably predict the bubble evolution
under a wide range of A1 conditions, probably because the bubble is more stable than spike,
and its asymptotic curvature is insensitive to A1 (Zhang & Guo 2022). In the following,
we will focus on the predictive capabilities of models for the evolutions of a and as.

ZS model: asymptotic ȧ predicted by the ZS model satisfies the 1/t2 law when A1 <√
1/2 + (ka1)2 ≈ 0.75 and the 1/t law when A1 >

√
1/2 + (ka1)2 ≈ 0.75. Note that the

late-time 1/t law of ȧ is expected from the potential flow model and has been validated
in previous numerical and experimental works (Dimonte & Ramaprabhu 2010; Mansoor
et al. 2020). Thus the ZS model fails to predict a and as well for runs 0.30 and 0.68, while
reasonably predicting the results of run 0.86.

SEA model: the overestimation of the SEA model for a and as under various A1
conditions should be ascribed to its overestimation of the spike acceleration (Dimonte
& Ramaprabhu 2010).

MIK model: the extension of the MIK model to spike is realized using Goncharov’s
method (Goncharov 2002), and Goncharov’s method is based on the assumption that the
asymptotic curvatures of spike and bubble are equal. Besides, the MIK model includes
no term describing spike acceleration. When A1 is low, the assumption of Goncharov’s
method is reasonable (Zhang & Guo 2022), and the spike acceleration should be absent or
very weak. Therefore, the MIK model predicts the weakly nonlinear evolution of RMI with
low A1 well. Since the asymptotic curvature of spike is sensitive to A1 (Mikaelian 2008;
Zhang & Guo 2022), the assumption of Goncharov’s method is no longer reasonable when
A1 is intermediate or high. In other words, the MIK model is theoretically inapplicable to
predict the spike evolution of RMI with intermediate or high A1. Therefore, the relatively
good prediction of RMI with intermediate A1 by the MIK model may be accidental. The
spike acceleration is significant when A1 is high, therefore the MIK model obviously
underestimates a and as for run 0.86.

DR model: the purpose of Dimonte & Ramaprabhu (2010) was to develop an
empirical nonlinear model applicable to RMI with high A1 and ka0 conditions. Therefore,
although numerical simulations with low and intermediate A1 were also considered when
constructing the DR model, more emphasis was placed on achieving a good match between
model predictions and numerical results of RMI with high A1. Accordingly, the poor
predictive capability of the DR model for runs 0.30 and 0.68, and its good predictive
capability for run 0.86, are reasonable and expected.

ZG and ZG-New models: the similarities and differences between these two models
can be summarized in three parts. First, compared to the ZG model, the ZG-New model
considers two additional physical processes, i.e. the weakly nonlinear process and the
pre-asymptotic process. Therefore, whether for RMI with low, intermediate or high A1,
the ZG-New model is theoretically more accurate than the ZG model. Second, in the early
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A1 Amplitude ZS SEA MIK DR ZG ZG-New

Low Overall interface ✗ ✗ � ✗ ✗
Bubble ✗ ✗ � ✗ � ✗
Spike ✗ ✗ � ✗ ✗

Intermediate Overall interface ✗ ✗ ✗ ✗
Bubble � � � � � �
Spike ✗ ✗ ✗ ✗

High Overall interface � ✗ ✗ � ✗ �
Bubble � � � � � �
Spike � ✗ ✗ � ✗ �

Table 4. Summary of the predictive capabilities of considered nonlinear models for the amplitude evolutions
of the overall interface, bubble and spike under different A1 conditions. Here, � indicates that the model
is applicable both theoretically and practically, indicates that the model is theoretically inapplicable but
accidentally applicable in practice, and ✗ indicates that the model is practically inapplicable.

stages, the ZG and ZG-New models recover to the small-time behaviours predicted by
the linear and ZS models, respectively. In other words, the ZG-New model (ZG model)
considers (does not consider) the spike acceleration. Third, in the asymptotic stages, both
models recover to the late-time solution proposed based on several properties observed
from a potential flow system with infinite density ratio (A1 = ±1). Therefore, both models
should be more accurate for RMI with high A1 than for RMI with low or intermediate A1.
The ZG-New model overestimates the results of RMI with low or intermediate A1, which
should be attributed to the limitation of the late-time solution. The ZG model ignores
the weakly nonlinear and pre-asymptotic processes, and its late-time solution may be not
very accurate when A1 is low or intermediate. Therefore, the relatively good prediction
of RMI with low or intermediate A1 by the ZG model should be accidental. When A1 is
high, the spike acceleration is significant and the late-time solution on which the ZG and
ZG-New models are based is theoretically more reasonable. Therefore, the ZG-New model
predicts the results of run 0.86 well, while the ZG model, which ignores spike acceleration,
underestimates a and as in this case.

The predictive capabilities of considered nonlinear models for the amplitude evolutions
of the overall interface, bubble and spike under different A1 conditions are summarized
in table 4. None of the considered models is applicable to RMI under all A1 conditions.
Since the interface evolution studied in the present work is limited to weakly nonlinear
stage, the failure of models should be attributed mainly to the insufficient description
of the dependence of the spike acceleration on A1. A rigorous description of the spike
acceleration under various A1 conditions is rather difficult, therefore we attempt to propose
an empirical model applicable to RMI over a wide range of A1 based on the present
experimental results. The DR model not only considers the spike acceleration occurring in
the early stages and captures the late-time 1/t behaviour of ȧ, but also describes the effect
of ka0 on nonlinear evolution law. Therefore, we will construct a new empirical model (the
mDR model) by modifying the DR model. The mDR model obtained after many attempts
can be written as

ȧmdr
b/s = ȧe

1
1 + E(1 ∓ A1)kȧe

1t
1 + Cb/skȧe

1t + E(1 ∓ A1)Fb/s(kȧe
1t)2 , (3.4)

in which E = (3 − 2A1)/(9 − 9A1). The introduction of the coefficient E, which is smaller
than 1 when A1 is low or intermediate, solves the problem that the DR model overestimates
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Figure 6. (a) Comparison of dimensionless contours of SI at τ ≈ 0.7 obtained from different runs. Modal
information of the contour of SI at τ ≈ 0.7: (b) run 0.30, (c) run 0.68, and (d) run 0.86.

spike acceleration under low and intermediate A1 conditions. When A1 → 0.86, E → 1,
i.e. the mDR model recovers to the DR model, which ensures that the mDR model can
also predict well RMI with high A1. Besides, the mDR model can also recover to the DR
model in the asymptotic stages. Note that although the mDR model is invalid when A1
approaches 1 due to the limitation of E, it is capable of predicting the amplitude evolution
of RMI with A1 ranging from 0.30 to 0.86 as shown in figure 5.

3.4. Modal evolution in the weakly nonlinear stage
Modal analysis is performed to explore the modal evolution under various A1 conditions.
Similarly, three typical experiments (runs 0.30, 0.68 and 0.86) are considered for clarity.
The fast Fourier transform (FFT) is applied to obtain the modal information of the
interface. Because the FFT is applicable only when the interface profile can be described
by a single-valued function (Wang et al. 2022), only the modal evolution prior to the
formation of roll-up structures is investigated. In addition, since the modal analysis is
limited to the weakly nonlinear stage, the magnitudes of the fourth-order and other
higher-order harmonics are very small relative to that of the first harmonic, therefore only
the first three harmonics (m1, m2 and m3) are considered (Liu et al. 2018).
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Figure 7. Modal evolutions obtained from experiments and predicted by modal models: (a) run 0.30, (b) run
0.68, and (c) run 0.86.

3.4.1. Effect of modal evolution on interface morphology
The dimensionless contours of shocked interface SI at τ ≈ 0.7 obtained from runs
with different A1 are provided in figure 6(a). Here, x = 0 and y = 0 correspond to
the x-coordinate of the bubble tip and the y-coordinate of the middle position between
bubble and spike tips, respectively. It can be noticed that SI in run 0.30 remains almost
symmetrical, and the asymmetry of SI is higher in RMI with higher A1.

Modal information of the SI contours shown in figure 6(a) is obtained by FFT and
presented in figures 6(b–d). For run 0.30, the dimensionless amplitudes of m2 and m3
(α2 and α3) are still significantly smaller than that of m1 (α1) at τ ≈ 0.7, therefore SI
maintains an almost symmetrical shape. For run 0.68, α2 increases to a considerable level
when τ ≈ 0.7. Considering only the right half of SI, i.e. SI with x/λ ranging from 0 to 0.5,
m1 and m2 have the same phase at positions close to the spike tip (0.375 < x/λ < 0.5) and
in the range 0.125 < x/λ < 0.25. In contrast, m1 and m2 have opposite phases at positions
close to the bubble tip (0 < x/λ < 0.125) and in range 0.25 < x/λ < 0.375. Therefore, m2
tends to flatten the bubble (Guo et al. 2020) and sharpen the spike, resulting in a significant
asymmetry of the SI in run 0.68. For run 0.86, α3 also increases to a considerable level
when τ ≈ 0.7. Here, m2 and m3 have opposite phases at positions close to the bubble tip
(0 < x/λ < 0.083) and have the same phase at positions close to the spike tip (0.417 <

x/λ < 0.5). In other words, m2 and m3 have opposite contributions to the flatness of the
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bubble, while together promoting the sharpening of the spike. Therefore, the spike profile
in run 0.86 is obviously different from that in run 0.68, while the difference in bubble
profile between these two runs is less pronounced.

3.4.2. Model validation and analysis
Evolutions of α1, α2 and α3 obtained from experiments and predicted by modal models
for runs 0.30, 0.68 and 0.86 are shown in figure 7. For run 0.30, both α2 and α3 grow
very slowly. The ZSM and VM models have limited effective range, and their accuracies
are sensitive to ka (Jacobs & Krivets 2005) since they are both derived by the perturbation
expansion method. Thus the ZSM and VM models predict α1 well (poorly) when α1 < 0.3
(α1 > 0.3). The predictions of the ZSM and VM models for α2 are similar and agree with
the experimental results. In the late stages, the predictions of the ZSM and VM models for
α3 differ slightly, and both deviate slightly from the experimental results.

For run 0.68, α3 still varies very slowly and remains far smaller than α1 from early to late
stages. In contrast, α2 grows to a considerable level in the late stages. The predictions of
the ZSM and VM models for α1 are similar and agree well (poorly) with the experimental
results when α1 < 0.2 (α1 > 0.2). The ZSM model considers only the contributions of the
first fourth-order perturbation solutions, whereas the VM model accounts for perturbation
solutions up to 11th-order, but with an additional simplification: only the terms with the
highest power in t are retained. Therefore, when high-order harmonics can (cannot) be
ignored, the ZSM model should be more (less) accurate than the VM model. In run 0.68,
m3 is negligible and, accordingly, the higher-order harmonics should also be negligible.
Therefore, the ZSM model predicts α2 and α3 in run 0.68 better than the VM model.

In run 0.86, m2 (m3) develops obviously faster than those in runs 0.30 and 0.68, and
becomes considerable in the late stages. The predictions of the ZSM and VM models
for α1 are similar and agree well (poorly) with the experimental results when α1 < 0.1
(α1 > 0.1). It can be noticed that the predictive capabilities of the ZSM and VM models
for α1 are also related to A1. For α2 (α3), the VM model instead of the ZSM model provides
a better prediction in the late stages, validating the above analysis that the VM model
should be more accurate than the ZSM model when high-order harmonics are no longer
negligible.

4. Conclusions

Richtmyer–Meshkov instability (RMI) on a light–heavy single-mode interface over a wide
range of post-shock Atwood numbers (A1) is studied finely and systematically through
experiments. To perform experiments under a wide range of A1 conditions, in addition to
the soap-film technique, which can produce well-defined desirable interfaces, a gas-layer
scheme is adopted such that the spaces on both sides of the soap film can be filled with
different gases.

Qualitatively, the nonlinear evolution features of the shocked interface (SI), including
spike, bubble and roll-up structures, are more significant in RMI with higher A1.
Specifically, before moving out of the experimental observation area, SI in RMI with low
A1 remains a quasi-single-mode profile, while SI in RMI with high A1 becomes highly
asymmetrical and has roll-up structures. Quantitatively, the impulsive model (Richtmyer
1960) and the WN-WL model (Wouchuk & Nishihara 1997) are found to be valid for
predicting the linear growth rate under a wide range of A1 conditions, indicating that both
models describe correctly the dependence of the linear amplitude evolution on A1. For
the weakly nonlinear evolution stage, the significant spike acceleration (occurring when
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A1 is high) results in the evolution law of RMI with high A1 being different from that of
RMI with low or intermediate A1. Notably, the significant spike acceleration phenomenon
is observed experimentally for the first time. None of the considered nonlinear models
(Zhang & Sohn 1997; Sadot et al. 1998; Mikaelian 2003; Dimonte & Ramaprabhu 2010;
Zhang & Guo 2016, 2022) is found to apply to RMI under all A1 conditions, and the
predictive capabilities of these models are analysed and summarized. Based on the present
experimental results, an empirical nonlinear model applicable to RMI over a wide range
of A1 is proposed. Further, modal analysis shows that the second harmonic tends to flatten
the bubble and sharpen the spike, while the third harmonic tends to sharpen both bubble
and spike. In RMI with high (low or intermediate) A1, high-order harmonics evolve
rapidly (slowly) and cannot (can) be ignored. Accordingly, for RMI with high (low or
intermediate) A1, the modal model proposed by Zhang & Sohn (1997) is less (more)
accurate than the model proposed by Vandenboomgaerde et al. (2002), since the former
ignores perturbation solutions higher than fourth order (the latter retains only terms with
the highest power in time).

In inertial confinement fusion (ICF), the development of spike can lead to ablative
material entering the hot spot, which would substantially reduce the energy gain and even
lead to ignition failure (Kritcher et al. 2022). According to the present work, to avoid
the intense spike development occurring when A1 is high, we discreetly suggest choosing
ablative material with relatively low density to reduce the density ratio between ablator and
deuterium-tritium (DT) ice. In addition, it is important to note that in ICF, the interface
separating ablator and DT ice, and the interface separating DT ice and DT gas, are both
heavy–light. Therefore, investigating RMI on a heavy–light interface over a wide range of
A1 is also necessary and interesting, as discussed by Lombardini et al. (2011). A relevant
work is currently ongoing. Fortunately, due to the flexibility of the gas-layer scheme – i.e.
gases on both sides of the soap film can be altered as desired – experiments on RMI with
diverse negative A1 can be conducted without changing the structure of the shock-tube
facility adopted in the present work.
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