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Background & Aims: Liver paracrine signaling from liver sinusoid endothelial cells to hepatocytes in response to mechanical
stimuli is crucial in highly coordinated liver regeneration. Interstitial flow through the fenestrated endothelium inside the
space of Disse potentiates the role of direct exposure of hepatocytes to fluid flow in the immediate regenerative responses
after partial hepatectomy, but the underlying mechanisms remain unclear.
Methods: Mouse liver perfusion was used to identify the effects of interstitial flow on hepatocyte proliferation ex vivo. Iso-
lated hepatocytes were further exposed to varied shear stresses directly in vitro. Knockdown and/or inhibition of mecha-
nosensitive proteins were used to unravel the signaling pathways responsible for cell proliferation.
Results: An increased interstitial flow was visualized and hepatocytes’ regenerative response was demonstrated experi-
mentally by ex vivo perfusion of mouse livers. In vitro measurements also showed that fluid flow initiated hepatocyte pro-
liferation in a duration- and amplitude-dependent manner. Mechanistically, flow enhanced b1 integrin expression and
nuclear translocation of YAP (yes-associated protein), via the Hippo pathway, to stimulate hepatocytes to re-enter the cell
cycle.
Conclusions: Hepatocyte proliferation was initiated after direct exposure to interstitial flow ex vivo or shear stress in vitro,
which provides new insights into the contributions of mechanical forces to liver regeneration.
Impact and implications: By using both ex vivo liver perfusion and in vitro flow exposure tests, we identified the roles of
interstitial flow in the space of Disse in stimulating hepatocytes to re-enter the cell cycle. We found an increase in shear flow-
induced hepatocyte proliferation via b1 integrin-YAP mechanotransductive pathways. This serves as a useful model to
potentiate hepatocyte expansion in vitro using mechanical forces.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The liver has an outstanding capacity to regenerate after injury
and is able to restore its original weight within 5 to 7 days after
two-thirds partial hepatectomy (PHx) in rats.1 The portal vein
flow is increased about threefold immediately after two-thirds
PHx, followed by a series of rapid responses, i.e., the activity of
urokinase-type plasminogen activator is increased within 1 min,
nuclear translocation of b-catenin and Notch intracellular
domain takes place within 30 min to initiate regenerative re-
sponses, and hepatocyte growth factor (HGF) and epidermal
growth factor receptors are activated 1 h later.2 The regenerative
process is delayed when the portal blood flow is decreased by
constructing a bypass vessel between the portal vein and inferior
vena cava after PHx.3 Specifically, the hemodynamic changes in
the branched blood vessels after PHx are closely related to the
subsequent regeneration rate,4 indicating that there is a
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correlation between liver tissue regeneration and localized blood
flow. Moreover, blood flow is heterogeneously distributed in the
remnant branched blood vessels after PHx, resembling the dif-
ferential distribution of hepatocyte proliferation.5 These me-
chanical cues suggest that blood flow-induced mechanical
alterations may act as a key trigger for liver regeneration.

As the first cell type exposed to sinusoidal blood flow, liver
sinusoidal endothelial cells (LSECs) are subjected to mechanical
stretch or shear and secrete HGF or downregulate transforming
growth factor b1 (TGF-b1) expression to promote hepatocyte
proliferation.3,6 On the other hand, the interstitial flow in the
space of Disse could also be critical since the sinusoidal endo-
thelium is highly permeable, with distributed clusters of fenes-
trae (diameter ranging from 150 to 200 nm) on LSECs and gaps
between LSECs.7,8 While the effects of interstitial flow on liver
regeneration after PHx are often neglected because of the tech-
nical difficulty in studying them, it is plausible that hepatocytes
underneath the endothelium can also respond to hemodynamic
changes in the sinusoids by sensing interstitial flow alterations
directly. In fact, hepatocytes are known to be mechanosensitive
in many liver-specific functions, which are promoted by low
shear stress but impaired by high shear stress.9 Thus, it is
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reasonably hypothesized that the interstitial flow might partic-
ipate in initiating liver regeneration starting from hepatocyte
proliferation.

Mechanotransductive pathways are key to sense and respond
to mechanically induced cues. For example, yes-associated pro-
tein (YAP) is known to promote immortalized epithelial cell
proliferation in response to mechanical stimuli, including low
cell density, large cell geometry, or stiff substrate.10 Phosphory-
lated inactive YAP is retained in the cytosol by binding to 14-3-3,
catenin or angiomotin, until upstream stimuli interrupt this
binding and release YAP to translocate into the nucleus.11 One of
the key upstream molecules is membranous integrin, together
with its cytoplasmic partners such as focal adhesion kinase
(FAK), talin, vinculin and paxillin. Meanwhile, activation of the
integrin-FAK signaling pathway promotes hepatocellular carci-
noma (HCC) proliferation but negatively regulates liver-specific
functions in response to increased matrix stiffness.12,13 On the
other hand, b1 integrin and YAP signaling are required for liver
regeneration. YAP knockout in hepatocytes significantly attenu-
ates CAR (constitutive androstane receptor)- or SHP2 (tyrosine-
protein phosphatase nonreceptor type 11)-mediated prolifera-
tion of mouse hepatocytes after PHx,14,15 while YAP hyper-
activation leads to liver overgrowth.16 Hepatocyte-specific
knockout or knockdown of b1 integrin impairs liver regenera-
tion by inhibiting the signaling of related growth factors.17 These
observations suggest that mechanosensitive integrin and YAP are
essential for hepatocyte proliferation, but their roles in shear-
initiated hepatocyte proliferation are still unknown. Hence, we
aimed to determine the role of interstitial flow in the initiation of
hepatic regeneration as well as elucidate the underlying
mechanotransductive mechanisms.
Materials and methods
Cell culture
6- to 8-week-old C57BL/6N male mice (Vital River Laboratories,
Beijing, China) were used for hepatocyte isolation, as previously
described.8 All animal protocols were approved by the Institu-
tional Animal and Medicine Ethical Committee at the Institute of
Mechanics of the Chinese Academy of Sciences. Please refer to
the supplementary information for more details.

Ex vivo liver perfusion
Liver perfusion was performed by a modified procedure
described previously.6 Briefly, the mouse was anesthetized by
pentobarbital sodium injection before the portal vein was can-
nulated with a 24 G intravenous catheter connected to a perfu-
sion system. The perfused Krebs–Henseleit saline solution was
oxygenated, preheated to 37 �C, filtered by a bubble trap and
finally pumped by a peristaltic pump to the liver. 2 h later, the
partial liver was excised for gene and protein analyses, and the
others were fixed for immunofluorescence, immunohistochem-
istry, and H&E staining assays. Fractions of active caspase-3+ and
TUNEL+ hepatocytes were counted to evaluate perfusion-induced
apoptosis when the intraperitoneal injection of D-galactos-
amine/lipopolysaccharide and the DNase treatment were used as
respective positive controls. For fluorescent particle diffusion
tests, 0.2 mg/ml of FITC-labeled dextran (10 kDa; Sigma-Aldrich,
MO) in phosphate-buffered saline (Hyclone, UT) was forced into
the portal vein at 4 or 8 ml/min and recorded at 496/516 nm
(excitation/emission) continuously by confocal laser-scanning
microscopy (Zeiss LSM880, Germany). Dextran accumulation,
JHEP Reports 2023
defined by fluorescence intensity, was measured using imageJ
software (National Institutes of Health, MD).

Microfluidic device fabrication
The microfluidic device was constructed using soft lithography
as described previously,7 serving as a hepatic sinusoid chip for
in vitro tests in this work. Briefly, a silicon-wafer SU-8 template
(Capital Bio Corporation, China) was used as a negative mold to
generate a polydimethylsiloxane (PDMS; Dow Corning, MI) layer
containing a channel with dimensions of 100 lm × 1 mm
× 10 mm (height × width × length). The PDMS layer was bonded
firmly to the glass coverslip after both PDMS and glass were
treated using Plasma Sputtering Pump (Yilibotong, China) for
1 min. The integrated device was UV-sterilized for 30 min, and
the channel was coated with 100 lg/ml of collagen I at 37 �C
overnight before use. Cell suspension was then injected into the
channel at a concentration of 1.0 × 107 cells/ml and dead cells
were washed away 4 h later.

Statistical analysis
The p values were calculated using the two-tailed t-test for any
two groups if passing the normality test (Shapiro-Will) or using
the Mann-Whitney U test if not. For multiple group comparisons,
we implemented the two-way ANOVA test followed by Holm-
Sidak test, the one-way ANOVA test followed by Holm-Sidak
test (if passing the normality test), or the Kruskal-Wallis one-
way analysis of variance on ranks followed by Dunn’s test (if not
passing the normality test). Statistical significance was set at p
<0.05. n values in those figure captions denoted the number of
independent repetitions. Specifically in animal tests, n indicated
the number of mice included per condition.

Other relevant materials and methods are provided in the
supplementary information and CTAT methods table.
Results
Hepatic flow alteration triggered hepatocyte proliferation
ex vivo
Emerging evidence indicates the potential role of blood flow in
liver regeneration after PHx. To evaluate if hepatocyte prolifer-
ation could be regulated by flow-induced mechanical alterations,
mouse livers were perfused with Krebs–Henseleit buffer in the
absence of growth factors at a flow rate of 4 or 8 ml/min for 2 h
to mimic physiological and hepatectomized conditions,6,18

respectively. H&E staining indicated that the anatomical struc-
ture was kept intact without significantly necrotic tissues (upper
panel in Fig. 1A). Quantitative analysis of active caspase-3+ cells%
and TUNEL+ cells% indicated that few apoptotic hepatocytes were
induced by liver perfusion (Fig. 1A–C). Taking cyclin D1 as a
typical marker to identify proliferative cells,19,20 a higher flow
rate of 8 ml/min led to more cyclin D1+ cells which were colo-
calized with albumin-expressing hepatocytes (Fig. 1D). In addi-
tion, expressions of those genes associated with the cell cycle,
such as Ccna2, Ccnb1, Ccnd1, Ccne1, Cdk1 and Mki67 (encoding
cyclin A2, cyclin B1, cyclin D1, cyclin E1, cyclin-dependent kinase
1 [Cdk1] and Ki-67, respectively) were also higher at 8 ml/min
than those at 4 ml/min (Fig. 1E). To quantify protein level
changes, a capillary-based immunoassay was used to test the
expression of cyclin D1 and its catalytic partner, Cdk4, both of
which are known to form an essential heterodimeric complex
that drives cell cycle entry and progression.21 Protein expression
of cyclin D1 and Cdk4 supported their relevant mRNA data, also
2vol. 5 j 100905
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Fig. 1. Ex vivo liver perfusion was correlated with hepatocyte proliferation. (A–C) Representative images of H&E, active caspase-3, and TUNEL staining (A), and
relevant quantitative analysis of active caspase-3+ cells% (n = 3) (B), and TUNEL+ cells% (n = 3) (C). D-galactosamine/lipopolysaccharide-damaged liver served as
positive control for H&E and active caspase-3 tests. DNase-treated tissue served as a positive control for TUNEL staining. (D) Immunofluorescence co-staining of
cyclin D1 and albumin (n = 3) in livers perfused ex vivo at a flow rate of 4 ml/min or 8 ml/min. (E) Expression of cell cycle relevant genes analyzed by RT-PCR at
8 ml/min compared with those at 4 ml/min (n = 6). (F–H) Protein level expression was determined by capillary-based immunoassay (F) with relevant quantitative
analysis of cyclin D1 (n = 6) (G) and Cdk4 (n = 6) (H). Data were presented as mean ± SE. p <0.05*, 0.001***. Statistical analysis was performed by two-tailed t test
for Ccne1 in E, and by Mann-Whitney U test for other markers in E, G, H.
being enhanced at 8 ml/min (Fig. 1F–H). Collectively, these re-
sults suggested that increased perfusion aroused hepatocytes in
the quiescent G0 state to re-enter the cell cycle in the absence of
the potential contributions of blood constituents.

Hepatocytes were exposed directly to interstitial flow in the
space of Disse
Although extensive studies have attributed hepatocyte prolifer-
ation to those mitogenic factors released by non-parenchymal
cells,2 the liver sinusoids are highly fenestrated, which allows
blood flow to drive interstitial flow in the space of Disse. Based
on the previous observations that mechanical forces play a role
in liver regeneration,3 herein, we hypothesized that PHx-induced
interstitial flow changes in the space of Disse might contribute to
initiating liver regeneration, starting from hepatocyte prolifera-
tion via mechanosensitive pathways. To visualize the interstitial
JHEP Reports 2023
flow, blood vessels (red) in the freshly isolated mouse liver were
stained with tomato lectin and hepatocytes (cyan) were depicted
by their autofluorescence (Fig. 2A). The lobule structure was
clearly presented where the enlarged area illustrated the well-
distributed hepatic plates and sinusoids. Subsequently, 0.2 mg/
ml FITC-labeled dextran (10 kDa) solution was introduced into
the liver via the portal vein at 4 ml/min and monitored at
different time points (Fig. 2B and Movie S1). The labeled dextran
first appeared in the liver sinusoids and then diffused into the
hepatocyte plate region about 2 min after perfusion. To exclude
the deviation resulting from anatomical microstructures, the
identical position was chosen for visualizing dextran diffusion at
a high perfusion rate of 8 ml/min (Movie S1) after washing
dextran away. Serial-shot images revealed that the diffusion
process was accelerated as indicated by fast dextran appearance
outside of sinusoids (�1 min after perfusion) and brightened in
3vol. 5 j 100905
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the hepatocyte plate region at the same time point, demon-
strating the high permeability of the sinusoidal lumen in
contrast to the well-established barrier function of large ves-
sels.22 Indeed, the dextran tended to diffuse from microvessels
(shown by dotted lines) towards hepatocytes (left panel in
Fig. 2C). Together with the gradually reduced fluorescence in-
tensity from inside to outside the liver sinusoid, as revealed by
the heatmap using ImageJ software (right panel in Fig. 2C), this
perfused fluid was inferred to be capable of physically contacting
hepatocytes through the endothelium. In addition, quantitative
analysis exhibited significantly higher and faster dextran accu-
mulation outside of liver sinusoids after perfusion at 8 ml/min
compared with 4 ml/min (Fig. 2D). The ratio of dextran accu-
mulation from outside to inside the liver sinusoids decreased
with time and finally reached a plateau (Fig. 2E). Here, the higher
perfusion rate was associated with a more rapid descending
phase, consistent with the high permeability interstitial flow at
the high perfusion rate. By contrast, the steady state remained
the same at both perfusion rates, indicating that the permeability
coefficient determined by sinusoidal microstructure was not
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altered significantly during this perfusion process. Meanwhile,
the diameter of liver sinusoids yielded no significant changes
before and after 5 min of perfusion at both 4 and 8 ml/min
(Fig. 2F and G), implying no differential expansion of the sinu-
soidal lumen at the two perfusion rates. Collectively, these re-
sults suggested that hepatocytes could be exposed to interstitial
flow and the flow rate inside the space of Disse was increased
with increasing perfusion rate. Hence, our cell proliferation data
(Fig. 1) together with dextran perfusion observations (Fig. 2),
indicate that hepatocyte proliferation could be initiated by
perfusion-induced mechanical alterations, such as the enhanced
interstitial flow in the liver.

Supplementary video related to this article can be found at
https://doi.org/10.1016/j.jhepr.2023.100905

Shear stress initiated hepatocyte proliferation in vitro
Inspired by the above ex vivo liver perfusion readouts, we next
tested whether flow-induced shear stress could favor hepato-
cytes to re-enter the cell cycle in vitro. Here hepatocytes were
introduced into a hepatic sinusoid chip (Fig. 3A) and exposed to
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flow shear first at a given shear stress of 0.05 dyn/cm2 with
systematically varied durations (1, 2, 3, 6, 12, and 24 h) (Fig. 3B).
Cyclin D1 gene expression increased with time to peak at 6 h and
then declined, demonstrating the vital role of shear duration in
controlling the cell cycle. To evaluate how shear amplitude
affected cell proliferation, hepatocytes were exposed to varied
shear stresses (0, 0.005, 0.05, 0.5, and 5 dyn/cm2) for a given
duration of 6 h (Fig. 3C). Again, cyclin D1 gene expression
increased with shear stress to peak at 0.05 dyn/cm2 and then
decreased, implying the key role of shear amplitude in modu-
lating the cell cycle. To further validate this finding, hepatocyte
proliferation was characterized by cyclin D1 and EdU staining (an
S phase marker) after exposure to various shear stresses for 6 h
(Fig. 3D). Quantitative analysis demonstrated that maximum
positive cell ratio was observed at 0.05 dyn/cm2 (Fig. 3E and F).
Consistently, protein levels of cyclin D1 and Cdk4 exhibited
similar expression profiles (Fig. 3G–I). Thus, these results sug-
gested that flow-induced shear stress was able to initiate hepa-
tocyte proliferation in vitro, which was regulated cooperatively
JHEP Reports 2023
by shear duration and shear amplitude with an optimized
parameter set at 0.05 dyn/cm2 for 6 h.

Physiologically, after PHx, remaining hepatocytes are required
not only to maintain sufficient proliferation but also to meet
hepatic metabolic demands. In this work, a hepatocyte-specific
phenotype was further evaluated after in vitro shear stress
exposure. Typical functional genes including Alb, Cyp3a11,
Cyp1a2, Por, Glul, and Hnf4a were increased, or maintained at
least, when applying shear stress (Fig. S1A). Albumin production
in the collected supernatant was also elevated by shear stress
exposure (Fig. S1B). In concordance with this data on gene
expression, the capabilities for cellular detoxication and meta-
bolism were validated by immunostaining CYP1A2 and CYP3A11
(Fig. S1C); the metabolic activity of CYP3A11 was induced after
the exposure, especially by dexamethasone induction (Fig. S1D).
In addition, glycogen accumulation and bile canaliculi network
formation were observed in both 0.05 dyn/cm2 for 6 h (ss-0.05)
and static groups (Fig. S1E and F). Hepatocytes were also exposed
at various concentrations of alcohol to test their resistance
5vol. 5 j 100905
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capability to liver injury. Results indicated that shear stress
significantly improved cell survival rate under each alcohol
concentration compared with static control, implying a protec-
tive role of flow shear in alcohol-induced apoptosis (Fig. S1G). In
summary, shear stress exposure was able to maintain hepatic
functions when initiating hepatocyte proliferation.

To find out how hepatocytes responded to shear stress and
initiated proliferation, RNA-seq was performed for hepatocytes
in the ss-0.05 and static control groups. KEGG analysis showed
that 40% of items were involved in cell growth and death among
the top 10 enriched cellular processes for differentially expressed
genes between the two groups (Fig. 4A). Gene ontology classi-
fication indicated that there were more upregulated genes than
downregulated ones in most biological processes (Fig. 4B). Spe-
cifically, cell-proliferation-relevant genes were differentially
expressed (Fig. 4C). Further analysis implied that typical liver
progenitor/cholangiocyte markers of Krt19, Epcam, Sox4 and
Cd44 were upregulated in the ss-0.05 group (Fig. 4D), accom-
panied by increased expression of the typical proliferation
markers Ccnd1, Top2a and Aurkb (Fig. 4E). This was also
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confirmed by qPCR analysis of enhanced cell cycle-dominant
genes, namely Ccna2, Ccne1, Cdk1 and Mki67 (Fig. 4F). Collec-
tively, these data suggested that shear stress favored hepatocytes
to acquire a progenitor phenotype and express cell cycle-
regulating markers to initiate their proliferation.

YAP activation was required for shear-initiated hepatocyte
proliferation
To explore the underlying mechanism of shear-initiated prolif-
eration, the upregulated genes involved in cell proliferation
shown in Fig. 4C were further analyzed by KEGG. Top 10 lists
showed that Hippo was the second most enriched signaling
pathway (Fig. 5A). Hippo/YAP signature genes were differentially
regulated between ss-0.05 and static groups (Fig. 5B), as ex-
pected. Meanwhile, significantly higher expression of classic YAP
target genes was observed in the ss-0.05 group (Fig. 5C).
Expression of YAP and its target genes, determined by qPCR,
supported RNA-seq data (Fig. 5D). Consistently, protein level
expression of p-YAP/YAP was downregulated, confirming YAP
activation under shear stress (Fig. 5E).
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To elucidate whether YAP was required for shear-initiated
hepatocyte proliferation, the hepatocytes were transfected with
siRNA targeting YAP (siYap). Gene expression of both YAP and its
target genes Ccn2, Ccn1 and Ankrd1were significantly reduced by
siRNA transfection (Fig. 5F and Fig. S2A). Immunostaining (left)
and quantitative analysis (right) revealed that the cyclin D1+

ratio declined after YAP knockdown (Fig. 5G). Moreover,
JHEP Reports 2023
expression of cell cycle-related genes (Ccna2, Ccnd1, Cdk1 and
Mki67) was also downregulated in the siYap group (Fig. S2B).
Consistently, when hepatocytes were treated with 20 lM dasa-
tinib or 20 lM verteporfin for 12 h to inhibit YAP activation,23,24

both the expression of YAP target genes and cell cycle-related
genes, as well as the cyclin D1+ ratio, were reduced (Fig. S3
and Fig. 5H). By contrast, the addition of leptomycin B, a
7vol. 5 j 100905
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potent inhibitor of the nuclear export of proteins,25 significantly
elevated cyclin D1+ ratio (Fig. 5I). These results suggested that
YAP activation was required for shear-initiated hepatocyte pro-
liferation in vitro.

b1 integrin sensed shear stress and maintained YAP-
dependent hepatocyte proliferation
We further explored how hepatocytes sensed shear stress on the
cell membrane and mediated intracellular mechanotransduction,
since YAP can only impel cell cycle progression by binding DNA
in the nucleus. We first tested the integrin sensitivity of hepa-
tocytes in response to shear stress and data indicated that gene
and protein expressions of b1 integrin were all upregulated
(Fig. 6A–C). Subsequently, transfecting the cells with siRNA tar-
geting b1 integrin (siItgb1) significantly reduced b1 integrin gene
expression, cyclin D1+ ratio, and expression of Ccna2, Ccnd1, and
Mki67 (Fig. 6D and E, and Fig. S4A). On the contrary, treating cells
with pyrintegrin, an agonist to promote b1 integrin expression,
increased cyclin D1+ ratio (Fig. S4B). Furthermore, YAP target
genes were downregulated by integrin knockdown (Fig. 6F). To
determine the interplay between YAP and integrin partners, we
treated hepatocytes with dasatinib, which did not affect b1
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integrin expression (Fig. S4C), implying that b1 integrin served as
an upstream regulator of YAP signaling. These results indicated
that YAP activation and the initiation of hepatocyte proliferation
in response to shear stress were associated with b1 integrin
signaling.

FAK was involved in the mechanotransduction of YAP via the
Hippo pathway
Mechanical signals sensed by integrins are transmitted towards
the intracellular region via its major downstream effectors, FAK
and integrin-linked kinase,26 which may serve as the connecting
player(s) between b1 integrin and YAP. Herein, protein expres-
sion of p-FAK/FAK was notably induced by shear stress (Fig. 7A).
In addition, FAK knockdown with siRNA transfection (siFak)
reduced Fak gene expression, cyclin D1+ ratio, and expression of
Ccna2, Ccnd1, and Mki67 (Fig. 7B and C, and Fig. S5). YAP target
genes (Ccn2, Ccn1 and Ankrd1) were also downregulated by FAK
siRNA transfection (Fig. 7D). To evaluate whether FAK signaling
regulated YAP-dependent hepatocyte proliferation via the clas-
sical Hippo pathway, the core component of Hippo, LATS, was
tested along this signaling cascade.27 Results indicated that p-
LATS/LATS expression declined in response to shear stress and
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was rescued by FAK siRNA transfection (Fig. 7E), indicating its
role as a negative regulator of shear-initiated hepatocyte prolif-
eration. These results indicated that FAK was involved in the
cytoplasmic transmission of signals from b1 integrin to YAP
through the Hippo signaling pathway (Fig. 7F).
Discussion
Hepatocyte proliferation is vital in vivo for liver regeneration
after PHx and critical in vitro for liver repair after injury. A single
hepatocyte can expand through a maximum number of 34 di-
visions after PHx but loses its proliferative ability in in vitro
culture, resulting in a shortage of hepatocytes for trans-
plantation, bioartificial liver construction, and clinical research.28

Inspired by the instant dramatic hemodynamic alterations dur-
ing PHx-induced liver regeneration, we tested if interstitial flow-
driven shear stress in the space of Disse could initiate hepatocyte
proliferation. Interestingly, primary mouse hepatocytes were
able to re-enter the cell cycle, which was induced not only by
ex vivo liver perfusion but also the application of in vitro shear
stress in the absence of growth factors. Expression of genes
JHEP Reports 2023
related to liver progenitors/cholangiocytes were upregulated
accordingly, consistent with previous findings that regenerative
hepatocytes after PHx were reprogrammed into an early
postnatal-like state before proceeding toward the proliferative
trajectory.29 Thus, this work provided new insights into initiating
primary hepatocyte proliferation in vitro and could presumably
contribute to cell expansion in cooperation with other culture
methods like liver organoid construction.

Emerging evidence suggests that mechanical forces play an
important role in the regenerative process.2 For example, LSECs
that line hepatic sinusoids first sense blood flow changes, which
are followed by increased sinusoidal diameter, enlarged cellular
fenestrae and widened intercellular junctions after PHx.30

Uniaxial stretched LSECs are able to secrete more HGF to pro-
mote hepatocyte proliferation.6 In response to shear stress,
LSECs release nitric oxide to reinforce hepatocytes’ sensitivity
to HGF.31 Hepatic stellate cells (HSCs), which reside within the
space of Disse, are associated with synaptic-type connections to
both hepatocytes and LSECs.32 They are also exposed to inter-
stitial flow, like hepatocytes, and subjected to mechanical ten-
sion produced by the extracellular matrix.33 Reduction in
9vol. 5 j 100905
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interstitial flow in the liver tissue of aged mice yields less HGF,
whereas both shear stress and mechanical stretch in vitro pro-
mote HGF release from HSCs.34 Undoubtedly, these paracrine
biochemical factors secreted from non-parenchymal cells are
able to significantly promote liver regeneration. Taking the
rapid regenerative response after PHx within seconds into
consideration, several fast-phase changes on hepatocytes
themselves may also participate in initiating liver regeneration
and lead hepatocytes to enter the cell cycle, like membrane
potential alterations of hepatocytes (within minutes).35 Mean-
while, since hepatocytes are known as mechanosensitive cells,
another possibility is that hepatocyte proliferation is triggered
by mechanical loading on hepatocytes directly. Combined with
our direct observations of interstitial flow in the space of Disse,
these results proposed that shear stress exposure was able to
stimulate hepatocytes to enter the cell cycle from a quiescent
state and thus initiate the liver regeneration process together
with various biochemical factors.

Cell cycle entry is driven by the formation of cyclin D and
cyclin-dependent kinase complexes.21 In hepatocytes, cyclin D1
is markedly synthesized and accumulated in G1 phase, the first
phase of the cell cycle, and reduced to low levels before entering
S phase.36 It can activate Cdk4 to promote the expression and
activation of other cyclin/cyclin-dependent kinase complexes
that contribute to cell cycle progression through subsequent
phases,19 thus serving as a promising candidate for the initia-
tion of cell proliferation. In our in vitro model, cyclin D1 was
upregulated by shear stress exposure and presented time-
dependent expression where it peaked at 6 h and declined
thereafter. Of note, two-thirds PHx in vivo led to a peak in cyclin
D1 expression at 24-48 h post hepatectomy.37 There are a
couple of potential explanations for this time-window shifting
of cyclin D1 expression. First, PHx not only initiates the liver
regeneration process but also activates those signaling path-
ways related to its termination in case of excessive growth,
including the pathway mediated by TGF-b1 (produced by non-
parenchymal cells) or extracellular matrix (synthesized by
HSCs).38 In contrast, the absence of those paracrine mitogenic
inhibitors like TGF-b1 in our in vitro isolated hepatocyte model
may result in an earlier peak time point. Second, this earlier
time point of 6 h is also likely to be the specific peak in response
to shear stress in vitro rather than the mechano-biochemical
coupling stimuli in vivo. It is assumed that supplementation of
biochemical factors originating from PHx would lead to
consistent responses in hepatocytes in vitro and in vivo, though
this warrants further verification.

Intrahepatic shear stress is hard to measure experimentally
due to the tiny radius of sinusoids and the varying viscosity
within the liver, especially for the interstitial flow within the
narrow space of Disse.31,39 In this in vitro test, hepatocytes were
exposed to varied shear stress from 0.005 to 5 dyn/cm2, based on
summarized parameters from the literature.40 Interestingly,
applying shear stress in vitro yielded a biphasic effect on hepa-
tocyte proliferation, that is, hepatocyte proliferation was favored
at the threshold stress of 0.05 dyn/cm2 while other lower or
higher values all presented confined benefits, consistent with
previous observations that an appropriate perfusion rate pro-
moted cell proliferation to achieve the best output in the
decellularized liver scaffold.41 This finding may also account for
the insufficient cell division following relatively low shear stress
after 30% PHx and also for small-for-size syndrome following
extremely high shear stress after extended hepatectomy or liver
JHEP Reports 2023
transplantation using small-sized grafts.30 In fact, hepatocyte
proliferation is not homogeneous throughout the liver after PHx.
Hepatocytes usually start to proliferate in the periportal region,42

while liver homeostasis is mainly maintained by midlobular
hepatocytes.43 This inhomogeneous proliferation seems posi-
tively correlated to sinusoidal blood flow distribution, since flow
velocity increases gradually from the periportal to pericentral
region, as measured by leukocyte movement in different sinu-
soidal zones with intravital microscopy.44 Interestingly, LSEC
permeability is also increased from the periportal to pericentral
region, as determined by increased porosity of fenestrae.45

Considering that the shear stress is proportional to the flow
velocity of interstitial flow, it seems meaningful that the position
of optimal shear stress for hepatocyte proliferation is located at
midlobular region during liver homeostasis but shifted to the
periportal region during liver regeneration, after blood flow is
increased by PHx.

Hepatocyte proliferation could be accomplished in vitro to a
certain extent, although little is known about the underlying
molecular mechanism. For example, an in vitro 3D spheroid
model of primary human hepatocytes recapitulates the in vivo
regenerative phenotype upon PHx.46 Based on analyzing global
promoter motif activities, Wnt/b-catenin activation and p53
signaling inhibition have been identified as critical factors for
primary human hepatocyte proliferation. In response to me-
chanical modulation, 3D organoid culture triggers two waves of
proliferation induced by matrix stiffness and cell-cell in-
teractions via the MER1/2-ERK1/2 signaling pathway.20 To the
best of our knowledge, primary hepatocyte proliferation initiated
by shear stress in vitro has not been studied yet, although im-
mediate early gene expression is increased in hepatic cell lines
under laminar or interstitial flow.39,47 Furthermore, our results
indicated that shear stress stimulated hepatocytes to re-enter
the cell cycle in a YAP-dependent manner, regulated by b1
integrin through the Hippo signaling pathway.

Intracellular mechanotransductive pathways are crucial to
understand the underlying mechanisms in shear-initiated he-
patocyte proliferation. As to the sensation of extracellular me-
chanical signals, our results indicated that b1 integrin
knockdown or activation significantly weakened or strengthened
shear-initiated hepatocyte proliferation, respectively, indicating
the key role of b1 integrin as a shear sensor on the cell mem-
brane. These observations were also consistent with the findings
that shear-activated integrin-FAK signaling regulates HCC
migration in a time-dependent manner.48 Subsequent signal
transmission from the cell membrane to the intracellular region
is known to be mainly mediated by focal adhesions or cyto-
skeletons once perceived by integrins. Consistently, our data
indicated that FAK knockdown broke up integrin-YAP signaling
transduction and further reduced proliferative responses related
to YAP shuttle. As to the intranuclear responses, activated YAP is
able to translocate into the nucleus and initiate the transcription
of various effector molecules. For example, aerobic glycolysis-
regulated HCC migration relies on stiff matrix-induced YAP nu-
clear translocation.49 Accordingly, our work indicated that YAP-
dependent hepatocyte proliferation was impaired by either YAP
knockdown or inactivation but enhanced by YAP activation,
identifying YAP as a key player in shear-initiated hepatocyte
proliferation. In fact, while the b1 integrin-FAK-YAP pathway has
been extensively explored in HCC, how it works in primary he-
patocytes is poorly understood. Moreover, b1 integrin and YAP
have previously been shown to be essential for liver
10vol. 5 j 100905



regeneration,14,17 but their roles in regulating shear-initiated
hepatocyte proliferation were unknown. Intriguingly, we show
that b1 integrin could activate YAP-dependent hepatocyte pro-
liferation under shear stress, providing potential targets for
establishing primary hepatocyte expansion in vitro.

In this work, mouse livers were perfused ex vivo and hepa-
tocyte proliferation was found to be initiated at a high flow rate.
Inspired by this observation, primary hepatocytes were exposed
JHEP Reports 2023
to shear stress in vitro in a hepatic sinusoid chip. Results indi-
cated that direct exertion of shear stress indeed initiated prolif-
eration, in a shear duration- and amplitude-dependent manner.
The underlying mechanotransductive pathway involved the b1
integrin-FAK-Hippo-YAP signaling axis, driving hepatocytes to
re-enter the cell cycle. These findings provide new insights into
the mechanisms triggering liver regeneration in vivo and
potentiating hepatocyte expansion in vitro.
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