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Abstract
We present a comprehensive analysis of the anomalous Goos–Hänchen (GH) displacement that
occurs during the reflection of light beams at an interface between air and an anisotropic medium.
This analysis also applies to the Imbert–Fedorov effect. Our study suggests that the anomalous GH
displacement is primarily caused by polarization-dependent abnormal interference effects between
the direct and cross-reflected light fields. Using the interface between air and a type II Weyl
semimetal as an example, we provide a clear physical explanation for the relationship between
spin-dependent abnormal interference effects and anomalous GH displacement. We demonstrate
that spin-dependent constructive interference leads to a reduction in the GH displacement of the
total reflected light field, while spin-dependent destructive interference results in an increase in the
GH displacement of the total reflected light field.

1. Introduction

In the 17th century, Newton speculated that the center of a reflected light beam would experience a small
spatial displacement, known as the Goos–Hänchen (GH) displacement, relative to its geometrically predicted
position in the plane of incidence [1]. The quantitative measurement of GH displacement under total
internal reflection was achieved by Goos and Hänchen in 1947 [2]. Subsequently, Artman, in 1948,
attributed the GH displacement to the dispersion of reflection or transmission coefficients [3]. Typically, the
GH displacement occurs at subwavelength scales [4]. In recent years, its importance has grown due to its
sensitivity to changes in optical interface parameters [5–8]. It affects the modes of optical waveguides and
microcavities [9–13], and offers potential for the design of new optical sensors [14, 15]. Consequently,
understanding the mechanisms underlying GH displacement generation [16–28] and developing techniques
for manipulating GH displacement [29–36] have become significant research pursuits. Some representative
work on GH shift is as follows: (1) Li has proposed a unified theory describing the GH and the
Imbert–Fedorov (IF) displacement by representing the vector angular spectrum of the three-dimensional
beam in terms of two forms of angular spectrum composed of two orthogonal polarization components
[17]. Using this unified theory, it can be clearly revealed that the eigenstates of GH displacement are two
orthogonal linear polarizations, and the eigenstates of IF displacement are two orthogonal circular
polarizations. (2) Aiello has proposed a method based on the functional shape of the light beams and
functional shifts to unambiguously separate GH and IF shifts determined by beam shape distribution. It is
proved that this separation is possible due to some general characteristics of the displacement distribution
function for structured light beams [22]. Using this theory, the analytical expressions of the GH displacement
and IF displacement (both spatial and angular) reflected by the vortex beam through the air-isotropic
medium interface are perfectly derived. (3) Zhen et al have perfectly solved the mathematical description of
GH displacement for Airy light beams on graphene and it showed that the GH shift can be modulated by the
incident angle, the incident wavelength, the Fermi energy of graphene, the decay factors of Airy beams[32].
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More recently, there has been increasing interest in studying GH displacement at anisotropic interfaces,
including chiral metamaterials [37, 38], graphene-on-substrate systems [39–41], and semimetal
metamaterials [42–44]. Previous studies have extensively examined the variations of anisotropic interface
parameters on GH displacement and explored methods for manipulating it. In particular, the GH
displacement at the interface of anisotropic materials can exhibit a series of abnormal phenomena due to the
existence of cross Fresnel coefficient. However, the understanding of the physical mechanism behind the
abnormal GH displacement has been stagnant. It is already known that interference effects play a crucial role
in the generation of the GH displacement. In the case of an anisotropic interface, both directly reflected light
field and cross-reflected light field contribute to the total reflected light field. The interference between these
two reflected light fields leads to various intriguing optical phenomena associated with the GH displacement.
However, the influence of the interference between the direct and cross-reflected light fields on the
anomalous changes in GH displacement, as well as the quantification of the interference strength, have
received limited attention in the literature.

The structure of this study is as follows. Firstly, we provide a comprehensive description of the GH
displacement that occurs when arbitrarily polarized beams are reflected at the interface between air and an
anisotropic medium. Subsequently, we elucidate the physical significance of the interference term between
the direct reflected light field and the cross-reflected light field, introducing the concept of
polarization-dependent abnormal interference effect in GH displacement. Moreover, we introduce a novel
physical quantity, the abnormal interference factor, which quantifies the intensity of the interference effect.
Taking type II Weyl semi-metal (WSM) as an example, a series of anomalies of GH displacement at the
anisotropic interface are explained by analyzing the abnormal interference effect of spin correlation. Our
findings demonstrate that the spin-dependent abnormal interference effect can serve as a characterization
tool for determining the degree of tilt of the Weyl nodes in type II WSMs. Furthermore, we present a clear
examination of the spin effect on the interference intensity between the direct reflected light field and the
cross-reflected light field, as well as the self-intensity of each reflected light field. The superposition of these
effects gives rise to anomalous GH displacement.

2. Theory andmodel

The plane of incidence is located in the x–z plane of the laboratory coordinate system (x, y, z). The unit
vectors x̂a, ŷa and ẑa represent the basis of the Cartesian coordinate system for the ath beam, where the
superscript a= i and r represent the incident and reflected beams respectively. The angular spectrum of the
electric field for the polarized beam may be written as follows:∣∣∣Ẽi(kix,kiy)〉= C

(
aP
∣∣Pi〉+ aS

∣∣Si〉) ũi(kix,kiy) , (1)

where complex amplitudes aP = cosα and aS= sinαexp(i∆ϕ) are the Jones representation of the state of

polarization of the incident beam, and complex scalar function ũi(kix,k
i
y) = exp[− (kix)

2
+(kiy)

2

4 w2
0] determines

the distribution of the incident beam in Fourier space. The phase difference between the P and S components
is given by∆ϕ , while α and w0 denote the amplitude ratio angle [45] and beam waist size of the incident
beam, respectively.

∣∣Pi〉= (1,0)† and
∣∣Si〉= (0,1)† represent the matrix description of the incident beam

base vector along x̂r and ŷr directions respectively, where † represents the transposed conjugate of the matrix.
Equation (1) is essentially the angular spectrum form of an arbitrarily polarized incident beam, and can also
be understood as a mathematical description of an arbitrarily polarized beam in momentum space.

Thus, the angular spectrum representation of the transverse electric field of the reflected beam can be
obtained: ∣∣∣Ẽr〉= M̂r

l→oŜ
rF̂ rM̂i

o→l

(
aP
∣∣Pi〉+ aS

∣∣Si〉) ũi(kix,kiy) (2)

with M̂i
o→l =

(
1

kiy
k cotθi

− kiy
k cotθi 1

)
; M̂r

l→o =

(
1 − kry

kr cotθr
kry
kr cotθr 1

)
;

F̂ r =

 rPP(1+
1
rPP

∂rPP
∂θi

kix
ki ) rPS(1+

1
rPS

∂rPS
∂θi

kix
ki )

rSP(1+
1
rSP

∂rSP
∂θi

kix
ki ) rSP(1+

1
rSP

∂rSP
∂θi

kix
ki )


where M̂r

l→o and M̂r
l→o are the transformation matrix from the incident central coordinate system to the

incident local coordinate system and the transformation matrix from the reflected local coordinate system to
the reflected central coordinate system respectively. The derivation of the M̂r

l→o and M̂r
l→o expressions has
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been given in detail in the pioneering work of Bliokh, Li and Aiello et al on GH displacement [4, 17, 46, 47].
F̂ r is the Fresnel coefficient matrix. It is worth noting that the matrix element of F̂ r can be regarded as a
Taylor expansion in the form of the angular spectrum of Fresnel coefficients, and it is clear that this matrix is
sufficiently accurate under paraxial conditions. Ŝr is the scattering operator with mirror symmetry, which
satisfies the following operation rules: Ŝr|Ẽr(kix,kiy〉= |Ẽr(kix 7→ −krx,k

i
y 7→ kry〉. Using the inverse Fourier

transform of equation (2), the electric field of the reflected beam in coordinate space can be written as:

|Er〉=
∑S

j=P

S∑
i=P

+∞ˆ

-∞

+∞ˆ

-∞

rijajũ
r
L exp

(
iφ r

ij

)
dkrxdk

r
y |ir〉, i ∈ {P,S} ; j ∈ {P,S} . (3)

with φ r
ij = krx(x

r − x̃rij)+ kry(y
r − ỹrij)+kr[1− (krx)

2+(kry)
2

2(kr)2
]zr,

x̃rij =−i
1

2k

∂
[
ln
(
rij
)2]

∂θi
, j=PP,PS,SP,SS

ỹrij=PP 7→SS =± i
aS7→P

aP7→S

1

k
(1 +

rij=SS 7→PP

rij=PP 7→SS
)cotθi, ỹ

r
ij=PP take‘+ ’, ỹrij=SS take‘− ’;

ỹrij=PS 7→SP =∓ i
aP7→S

aS7→P

1

k
(1−

rij=SP 7→PS

rij=PS 7→SP
)cotθi, ỹ

r
ij=PS take‘− ’, ỹrij=SP take ’+ ’.

The result after the integral operation of equation (3) is:

|Er〉=
∣∣∣ErP(D)〉+ ∣∣∣ErP(C)〉+ ∣∣∣ErS(D)〉+ ∣∣∣ErS(C)〉 , (4)

with ∣∣∣ErP(D)〉= rPPaPu
r (xr − x̃rPP,y

r − ỹrPP,z
r) |Pr〉 ,

∣∣∣ErP(C)〉= rPSaSu
r (xr − x̃rPS,y

r − ỹrPS,z
r) |Pr〉 ,∣∣∣ErS(D)〉= rSPaPu

r (xr − x̃rSP,y
r − ỹrSP,z

r) |Sr〉 ,
∣∣∣ErS(C)〉= rSSaSu

r (xr − x̃rSS,y
r − ỹrSS,z

r) |Sr〉

where |ErP(D)〉 and |ErS(D)〉 respectively represent reflected light fields caused by isotropic Fresnel coefficients
in the directions P and S, while |ErP(C)〉 and |ErS(C)〉 respectively represent reflected light fields caused by
anisotropic Fresnel coefficients in the directions P and S. The second and fourth terms in the right side of
equation (4) are due to the non-zero anti-diagonal matrix element of Fresnel’s equation, which is the
fundamental reason why the GH displacement of the interface of anisotropic medium is different from that
of the interface of isotropic medium. ur(xr − x̃rij,y

r − yrij,z
r) can be understood as a function shift. The

centroid of the reflected beam can be expressed as:

∆r
GH =

〈Er|xr |Er〉
〈Er|Er〉

. (5)

By combining equations (4) and (5), it is not difficult to obtain detailed expressions that can reveal the
influence of the interference effect of the |ErP/S(D)〉 and |ErP/S(C)〉 light fields, and the self-intensity of the
|ErP/S(D)〉 and |ErP/S(C)〉 light fields on GH displacement

∆r
GH =∆r

GH−D +∆r
GH−C +∆r

GH−DC, (6)

with

∆r
GH−D =

∑S
j=P

〈
Erj(D)

∣∣∣xr ∣∣∣Erj(D)〉∑S
j=P

〈
Erj(D)

∣∣∣Erj(D)〉+ 2Re
[∑S

j=P

〈
Erj(D)

∣∣∣Erj(C)〉]+∑S
j=P

〈
Erj(C)

∣∣∣Erj(C)〉

∆r
GH−C =

∑S
j=P

〈
Erj(C)

∣∣∣xr ∣∣∣Erj(C)〉∑S
j=P

〈
Erj(D)

∣∣∣Erj(D)〉+ 2Re
[∑S

j=P

〈
Erj(D)

∣∣∣Erj(C)〉]+∑S
j=P

〈
Erj(C)

∣∣∣Erj(C)〉 ,
∆r

GH−DC =

∑S
j=P

〈
Erj(D)

∣∣∣xr ∣∣∣Erj(C)〉]∑S
j=P

〈
Erj(D)

∣∣∣Erj(D)〉+ 2Re[
∑S

j=P

〈
Erj(D)

∣∣∣Erj(C)〉] +∑S
j=P

〈
Erj(C)

∣∣∣Erj(C)〉 .
3
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Here, terms
∑S

j=P 〈E
r
j(D)|E

r
j(D)〉 and

∑S
j=P 〈E

r
j(C)|E

r
j(C)〉 represent the self-intensity of the direct reflected

light field and cross-reflected light field respectively, while terms 2Re[
∑S

j=P 〈E
r
j(D)|E

r
j(C)〉] represent the

interference between the direct reflected light field and cross-reflected light field, and the intensity of the
interference is related to the spin of the incident light, which is called anomalous interference. It is worth
noting that the abnormal interference term itself also generates abnormal GH displacement, which is
reflected in the

∑S
j=P 〈E

r
j(D)|xr|E

r
j(C)〉] terms in the molecule of equation (6). The influence of the abnormal

interference effect between the direct reflected light field and cross-reflected light field on the generating
mechanism of the abnormal GH displacement is the focus of this work. After a simple derivation, terms
∆r

GH−D,∆
r
GH−C, and∆r

GH−DC in equation (6) can be written respectively

∆r
GH−D = − Im(x̃rD)

N0

(
1+Nx/s

) , (7)

∆r
GH,C =− Im(x̃rC)

N0

(
1+Nx/s

) , (8)

∆r
GH−DC =− Im(x̃rDC)

N0

(
1+Nx/s

) , (9)

with

x̃rD = − 1

2k

(
|rPPaP|2

∂rPP
rPP∂θi

+ |rSSaS|2
∂rSS
rSS∂θi

)
x̃rC =− 1

2k

{
|rPSaS|2

∂rPS
∂rPS∂θi

+ |rSPaP|2
∂rSP
rSP∂θi

}
x̃rDC =− 1

4k

[
ρ

(
rPS

∗ ∂rPP
∂θi

+ rSP
∗ ∂rSS
∂θi

+ rPP
∗ ∂rPS
∂θi

+rSS
∗ ∂rSP
∂θi

)

+ iσ

(
rPP

∗ ∂rPS
∂θi

+rSS
∗ ∂rSP
∂θi

− rPS
∗ ∂rPP
∂θi

− rSP
∗ ∂rSS
∂θi

)]
N0 = |rPPaP|2 + |rPSaS|2+|rSPaP|2 + |rSSaS|2

Nx/s = [ρRe(rPPrPS
∗ + rSPrSS

∗)+σIm(rPPrPS
∗ + rSPrSS

∗)]/(|rPPaP|2 + |rPSaS|2+|rSPaP|2 + |rSSaS|2),

where σ=2Im(a∗PaS) is the degree of spin of the incident light beams; ρ=2Re(a∗PaS) is the degree of linear
polarization inclined at 45◦ angle of the incident light beams [4]. Obviously,∆r

GH−D,∆
r
GH,C, and∆r

GH−DC

are closely related to the polarization of the incident light field. It is worth noting that for weakly anisotropic
media, equations (7)–(9) hold only when the incident beam waist radius is much larger than the total GH
displacement. In addition, when an anisotropic medium is replaced by an isotropic medium, equations (8)
and (9) are zero. Interestingly, since the eigenbasis of Fresnel’s equation for polarized beams at the interface
of anisotropic media is not linearly polarized basis, GH displacement exhibits a complex relationship related
to polarization. Specifically, GH displacement is related to both polarization parameters ρ of linearly
polarized light and σ of circularly polarized light. The abnormal GH displacement reflected at the
anisotropic interface is mainly from the abnormal interference effect, which is reflected in the normalization
factor Nx/s of equations (7)–(9), as well as the molecular part of the equation (9). It is not difficult to find
that this interference is closely related to the state of polarization of the incident light. It should be
emphasized here that Nx/s can essentially be regarded as a physical quantity that measures the strength of the
polarization-dependent abnormal interference effect. So in this work, the deeper physical meaning of Nx/s is
thoroughly revealed. Since Nx/s reflects the relative magnitude of abnormal interference intensity between
direct reflected light field and cross-reflected light field compared with the total reflected light field intensity,
it is called an abnormal interference factor. To the best of our knowledge, the concept of
polarization-dependent abnormal interference is introduced to analyze the physical mechanism of the
abnormal GH displacement at the anisotropic medium interface, which is proposed for the first time. The
effect of spin-dependent abnormal interference on the abnormal GH displacement is the main conclusion of
our work.

3. Numerical results and analysis

The topological Fermi arc on the type II WSM (MoTe2) was first experimentally observed in 2016,
confirming the existence of the type II Weyl fermion that destroys Lorentz invariance in real materials [48].
The discovery of the type II WSM not only establishes the link between particle physics and condensed
matter but also may lead to new applications in the field of optoelectronics [49, 50]. To find more novel
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Figure 1. Structure diagram of the reflected light from the type II WSM film. Where∆r
GH =−∆GH/cosθi. θi is the incident

angle.

anomalous effects in spin photonics, the combination between the Type II WSM and beam displacement has
become the focus of attention in recent years [51–57]. In this section, we take the Type II WSM film as an
example and focus on analyzing the influence of abnormal interference between the reflected light field and
the cross-reflected light field on GH displacement for the anisotropic medium interface. The analytical
expression of Fresnel’s equation for polarized light oblique impinging at the air-WSM interface can be
expressed as follows (see appendix A for detailed derivation):

rPP =

(
n2 cosθi − n1 cosθt +Z0σ

S
xx cosθi cosθt

)(
n1 cosθi + n2 cosθt +Z0σ

S
yy

)
−Z2

0σ
S
xyσ

S
yx cosθi cosθt

∆
,

(10)

rSS =

(
n1 cosθt + n2 cosθi +Z0σ

S
xx cosθi cosθt

)(
n1 cosθi − n2 cosθt −Z0σ

S
yy

)
+Z2

0σ
S
xyσ

S
yx cosθi cosθt

∆
,

(11)

rPS =−rSP =
2n1Z0σ

S
xy cosθi cosθt

∆
, (12)

with

∆= (n2 cosθi + n1 cosθt +Z0σ
S
xx cosθi cosθt)(n1 cosθi + n2 cosθt +Z0σ

S
yy)−Z2

0σ
S
xyσ

S
yx cosθi cosθt,

cosθt = (1− n1
2sin2θi/n2

2)1/2

where Z0 is the wave impedance in vacuum, σS
ij (ij = xx,xy,yx,yy) is the transverse optical conductivity, the

refractive index of air, and the substrate material of type II WSM is n1 and n2 respectively. We assume that an
arbitrarily polarized Gaussian beam impinges on the surface of an ultra-thin type II WSM film with no Fermi
arc state at the incident angle θi, as shown in figure 1. The angular GH displacement is ignored in figure 1.

According to the analysis in the previous section, the abnormal interference phenomenon of direct
reflected light field and cross-reflected light field can be reflected by the size of the abnormal interference
factor Nx/s. In the following numerical simulation, the wavelength λ was selected as 632.8 nm (The
expression of the type II WSM film transverse optical conductivity corresponding to the wavelength is given
in appendix B). It can be seen from figures 2(a)–(c) that large abnormal interference factors Nx/s occur in a
small angular wide range of polarization angles α close to zero. In order to further determine the angular

5
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Figure 2. Two-dimensional image of the abnormal interference factor Nx/s varying with the polarization state of incident light.

(a) αt = 1.25; θi = θ
pB
i = 75.8o (b) αt = 2.25; θi = θ

pB
i = 75.7o (c) αt = 3.25; θi = θ

pB
i = 75.6o.

width of the amplitude ratio angle α and the phase difference∆ϕ , the size distribution of the interference
factor is clearly shown at the amplitude ratio angle α from−5◦ to+5◦, and the phase difference∆ϕ from
−90◦ to 90◦, as shown in the subgraphs of figures 2(a)–(c). It is not difficult to find that large anomalous
interference factors Nx/s can appear in a wide range of phase differences∆ϕ and a narrow range of
amplitude ratio angle α. This means that the abnormal interference effects are very sensitive to the change of
amplitude ratio angle α and very insensitive to the change of phase difference∆ϕ . Meanwhile, further
analysis shows that the maximum value of the abnormal interference factor Nx/s corresponding to the degree
of tilt αt = 1.25 is significantly larger than that corresponding to the degree of tilt αt = 2.25. Although the
interference factor for degree of tilt αt = 1.25 is not much different from that with the degree of tilt
αt = 3.25, the larger interference factor for the αt = 1.25 occurs in a larger amplitude ratio angle range than
that with the degree of tilt αt = 3.25. This means that the anomalous GH displacement phenomenon can be
easily displayed when the degree of tilt αt is equal to 1.25, and the incident angle is close to the
pseudo-Brewster angle. It should be pointed out that the variation of abnormal interference factors Nx/s with
optical parameters and interface parameters is analyzed numerically to quantitatively control the strength of
polarization-dependent abnormal interference effects. In other words, the abnormal interference factor Nx/s

is a mathematical description of the strength of polarization-dependent abnormal interference effects.
In order to further reveal the relationship between the abnormal interference factor Nx/s near the

pseudo-Brewster angle and the tilt degrees αt of type II WSM film, figure 3 shows the physical picture of the
abnormal interference factor Nx/s changing with the tilt degrees αt of the type II WSM film and the incident
angle of the incident light when the polarization state of the incident light remains constant. It should be
emphasized that different degrees of tilt αt correspond to different pseudo-Brewster angles θpBi . By
comparing figure 3(a) with figures 3(d), (b) with figure 3(e), and figure 3(c) with figure 3(f), when the
amplitude ratio angle is constant, the polarization-dependent abnormal interference effect corresponding to
the phase difference∆ϕ of 90◦ is stronger than that corresponding to the phase difference∆ϕ of 0◦. It

6
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Figure 3. The abnormal interference factor Nx/s versus the incident angle θi and the title degrees αt of the type II WSM film. (a)
∆ϕ = 90o,α= 0.2o; (b)∆ϕ = 90o,α= 1o; (c)∆ϕ = 90o,α= 5o;(e). (d)∆ϕ = 0o,α= 0.2o; (e)∆ϕ = 0o,α= 1o; (f)
∆ϕ = 90o,α= 5o.

should be noted here that when the phase difference∆ϕ of the incident light is equal to 90◦, then ρ= 0. Nx/s

can be regarded as a spin-dependent abnormal interference factor, which can be used to characterize the
strength of the spin-dependent abnormal interference effect in reflected light. Figure 3(a) clearly shows that
the spin-dependent abnormal interference effect becomes stronger at a tilt factor αt of 1.25 and an amplitude
ratio angle α of 0.2◦, while figure 3(c) clearly shows that the spin-dependent abnormal interference effect
almost disappears at a tilt factor αt of 1.25 and an amplitude ratio angle α of 5◦. In order to further explore
the influence of spin-dependent abnormal interference effect on GH displacement, it is obviously necessary
to select the polarization parameter of incident beam phase difference∆ϕ as 90◦. Therefore, using the
relationship between spin-dependent abnormal interference effect and tilt degrees αt, it is expected to
provide a new technical method to characterize the tilt degrees αt of the type II WSM film. It also opens up a
new way to characterize the physical parameters of an anisotropic medium by spin optical effect.

It can be seen from the theoretical derivation in the previous section that the relationship between GH
displacement at the anisotropic interface and the polarization parameters of the incident beam is very
complex, and the total GH displacement is determined by the three sub-GH displacements
(including∆r

GH−D,∆
r
GH−C and∆r

GH−DC). Therefore, in order to thoroughly reveal the influence of
spin-dependent abnormal interference effect on the total GH displacement, it is necessary to simulate the
physical pictures of the∆r

GH−D,∆
r
GH−C and∆r

GH−DC with the change of the amplitude ratio angle α. Next,
from the perspective of the spin-dependent abnormal interference effect between direct reflected light field
and cross-reflected light field, we focus on analyzing the physical mechanism of the abnormal phenomenon
that the∆r

GH−D,∆
r
GH−C and∆r

GH−DC change with the polarization state of incident light. According to
equations (7)–(9), we can clearly show the trend of∆r

GH−D,∆
r
GH−C and∆r

GH−DC changing with the

amplitude ratio angle α of incident light for the θi = θ
pB
i = 75.8o and αt = 1.25, as shown in figure 4(a).

Specifically, figure 4(a) shows that the∆r
GH−D curve is no longer symmetric with the longitudinal axis, that

is, the∆r
GH−D corresponding to α= 0.1◦ is obviously no longer equal to the∆r

GH−D corresponding to
α=−0.1◦, which is obviously different from the characteristics of GH displacement reflected by the
isotropic interface. From the previous analysis, it can be seen that this obvious difference is caused by the
spin-dependent abnormal interference effect. A similar phenomenon can also be found in the variation trend

7
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Figure 4.When the incident angle is equal to the pseudo-Brewster angle, the∆r
GH−D,∆

r
GH−C and∆r

GH−DC change with the

amplitude ratio angle α. (a) αt = 1.25, θi = θ
pB
i = 75.8o,∆ϕ = 90o; (b) αt = 1.25, θi = 60o,∆ϕ = 90o.

of the∆r
GH−C with the polarization state of incident light. Interestingly, the variation of∆r

GH−DC with the
state of polarization of incident light is very similar to the variation of IF displacement with isotropic
interface reflection with the state of polarization of incident light, but the former is asymmetrical about the
origin of coordinates (i.e., α= 0,∆ϕ = 0), while the latter is symmetric about the origin of coordinates. The
abnormal phenomenon of∆r

GH−DC is completely caused by the spin-dependent abnormal interference effect
between the direct reflected light field and the cross-reflected light field, and the symmetry breaking can be
quantified by the spin-dependent abnormal interference effect. Therefore, the anomalous phenomenon of
GH displacement of polarized light at the Type II WSM film can also be manipulated by changing the
spin-dependent abnormal interference effect. By further observing figure 4(a), and combining with the
results of figure 3(a), it can be found that the abnormal effect of GH displacement decreases with the increase
of the degree of tilt αt of the Type II WSM. In other words, we can identify the magnitude of the degree of tilt
αt of the Type II WSM by calculating the strength of the abnormal interference factorNx/s. It is worth noting
that the abnormal GH displacement disappears when the incident angle is far away from the
pseudo-Brewster angle, as shown in figure 4(b). This is because the P component of the direct reflected light
field composed of the plane wavelets with slightly different wave vectors will change very slowly with the
small change of the wave vector, which leads to the fact that the abnormal interference factor is almost zero.
In short, the spin-dependent abnormal interference effect is the physical source of the abnormal
phenomenon that the symmetry of the GH displacement curve is broken in different degrees.

To further demonstrate a clear physical picture, figure 5 shows the intensity distribution of the light field
reflected by polarized light with the amplitude ratio angle α=−0.1◦ and+0.1◦and the phase difference
∆ϕ = 90◦ through the air-Type II WSM interface at θi = 75.8◦. It is easy to see the interference intensity
between the |Erj(D)〉 and |Erj(C)〉, and the self-intensity of the |Erj(D)〉 and |Erj(C)〉 has Gaussian distribution. On
the one hand, by observing figures 5(c) and (f), it can be further found that the abnormal interference
intensity between the |Erj(D)〉 and |Erj(C)〉, corresponding to the incident spins of plus or minus 0.1
respectively, shows an obvious spin-dependent intensity distribution. On the other hand, the self-intensity
distribution of the direct reflected light field shows a significant spin-independent GH shift, as shown in
figures 5 (d) and (g), while the cross-reflected light field self-intensity distribution shows almost zero GH
shift, as shown in figures 5(e) and (h). Interestingly, the superposition of the |Erj(D)〉 and |Erj(C)〉 results in a
novel GH shift dependent on the spin of the incident light in the total light field intensity, i.e.
∆r

GH(α=+0.1◦,∆ϕ = 90◦) 6=∆r
GH(α=−0.1◦,∆ϕ = 90◦), as shown in figures 5(a) and (b). The above

novel spin-dependent abnormal GH shifts are essentially caused by the coherent superpositions of the |Erj(D)〉
and |Erj(C)〉. It is worth emphasizing that the influence of coherent superposition of |Erj(D)〉 and |Erj(C)〉 on the
calculation results of the∆r

GH−D,∆
r
GH−C and∆r

GH−DC is due to the consideration of the total light field
normalization factor. In other words, spin-dependent constructive interference leads to a decrease in GH of
the total reflected light field, while spin-dependent destructive interference leads to an increase in GH
displacement of the total reflected light field. So far, the physical mechanism of anomalous GH displacement
is deeply revealed from the perspective of spin-dependent abnormal interference between |Erj(D)〉 and |Erj(C)〉
light fields (i.e. the interference appears one positive and one negative). More importantly, the intensity
distribution of the light field simulated by equation (4) as shown in figure 5 is exactly the same as the GH
displacement image simulated by equations (7)–(9) as shown in figure 4(a), which shows that
equations (7)–(9) of the main theoretical derivation results can be indirectly verified.

8
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Figure 5. Reflected light field intensity distributions when an elliptically polarized beam with α=±0.1◦ and∆ϕ = 90◦ strikes
an air- Type II WSM film interface withθi =75.80◦, αt = 1.25, w0 = 2000λ/π . (a) α=−0.1◦ and (e) α=+ 0.1◦ for the total
reflected light field, (b) α=−0.1◦ and (f) α=+0.1◦ for the abnormal interference between direct reflected light field and
cross-reflected light field, (c) α=−0.1◦ and (g) α=+0.1◦ for the direct reflected light field, and (d) α=−0.1◦ and (h)
α=+0.1◦ for the cross-reflected light field.

4. Conclusion

In conclusion, we have conducted a comprehensive investigation into the anomalous GH displacement
observed in light reflection at the interface between air and an anisotropic medium. Our study highlights the
essential role played by the spin-dependent interference effect in the reflected light field as the fundamental
physical mechanism underlying the anomalous GH displacement phenomenon. By focusing on the air and
type II WSM interface as a specific case, we have thoroughly analyzed the physical nature of the anomalous
GH displacement resulting from the spin-dependent abnormal interference effect between the direct
reflected light field and the cross-reflected light field. We have elucidated the close connection between the
spin-dependent abnormal interference effect and the tilt factor of the type II WSM, providing a promising
avenue for determining the degree of tilt of the Weyl nodes. This contribution holds significant importance
from a fundamental standpoint, and the proposed theory can also be extended to uncover anomalous GH
displacement phenomena at other anisotropic interfaces, such as those found in two-dimensional Dirac
materials.
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Appendix A. Fresnel equation for two-dimensionalWSM

We assume that a monochromatic plane wave strikes an air-WSM film interface at an arbitrary angle of
incidence θi, as shown in figure 6. The electric field of incident polarized light can be expressed as:

Ei (r, t) = EiP (r, t)e
i
P + EiS (r, t)e

i
S, (A1)

9
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Figure 6. Schematic diagram of reflection and refraction of polarized light beams at the air-2D WSM interface. (a)
Three-dimensional installation diagram; (b) EiP is located at the plane of incidence; (c) EiS is perpendicular to the plane of
incidence. Here B is not drawn and Q denotes the Weyl node separation, σxy,σyx ∝ Q, the Weyl node separation
Q= 3.2× 108 m−1, σxx = σyy ∝ ω, σS

ij = dσij, a thin film of thickness d= 10 nm.

with EiP/S(r, t) = aP/S exp[i(k
i · r−ωit)], r= xx̂+ yŷ+ zẑ

where x̂, ŷ and ẑ represent unit vectors along the x, y, and z axes respectively and eiP, e
i
S represent unit vectors

along the xi and yi axes respectively.
Considering that the electromagnetic field is limited by the boundary continuity condition, the electric

field expression of the incident polarized light is expanded under the {x̂, ŷ, ẑ} basis to make use of the
boundary continuity condition. The expression of the incident light field after expansion is as follows:

Ei (r, t) = EiP cosθix̂+ EiSŷ− EiP sinθiẑ. (A2)

Similarly, the electric fields of transmitted light and reflected light are respectively expressed as follows:

Et (r, t) = EtP cosθtx̂+ EtSŷ− EtP sinθtẑ, (A3)

Er (r, t) = ErP cosθrx̂+ ErSŷ− ErP sinθrẑ. (A4)

Here EaP,S(r, t) = baP,S exp[i(k
a · r−ωat)], a= r, t. According to the second equation of Maxwell’s

equations, the relationship between the magnetic field and electric field satisfies the following:

Ba (r, t) = nak(−EaSe
a
P + EaPe

a
S)/ω

a. (A5)

Therefore, the magnetic field expressions of incident light, transmitted light, and reflected light are
respectively expressed as:

Bi (r, t) =
nik

ωi

(
−EiS cosθix̂+ EiPŷ+ EiS sinθiẑ

)
, (A6)

10
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Bt (r, t) =
ntk

ωt
(−EtS cosθtx̂+ EtPŷ+ EtS sinθtẑ) , (A7)

Br (r, t) =
nrk

ωr
(−ErS cosθrx̂+ ErPŷ+ ErS sinθrẑ) . (A8)

Obviously, the electric field and magnetic field must meet the boundary conditions at the interface [58]:

ẑ×
(
Et − Ei − Er

)
= 0, (A9)

ẑ×
(
Bt −Bi −Br

)
= µJ. (A10)

Therefore, the component expressions of equations (A9) and (A10) can be written as:

Eix + Erx = Etx, (A11)

Eiy + Ery = Ety, (A12)

−Bt
y +Bi

y +Br
y = µJx, (A13)

Bt
x −Bi

x −Br
x = µJy. (A14)

Here J is the conduction current density vector. For two-dimensional anisotropic materials, the current
density vector J caused by the optical field is:(

Jx
Jy

)
=

(
σS
xx σS

xy

σS
yx σS

yy

)(
Etx
Ety

)
. (A15)

Therefore, after substituting equation (A15) into equations (A13) and (A14), the following relation can
be easily obtained:

−Bt
y +Bi

y +Br
y = µ

(
σS
xxE

t
x +σS

xyE
t
y

)
, (A16)

Bt
x −Bi

x −Br
x = µ

(
σS
yxE

t
x +σS

yyE
t
y

)
. (A17)

On the boundary surface of z = 0, the incident light field, transmitted light field, and reflected light field
meet the boundary continuity condition at any position and at any time, which means that the variation law
of these fields on the interface with space (time) must also be the same, so the frequencies of the incident,
transmitted and reflected light beams must satisfy the following relation:

ωi = ωr = ωt. (A18)

Here, equation (A18) does not consider electromagnetic waves with high intensity, so the high-order
harmonic effect can be ignored. Meanwhile, the wave vectors of the incident, transmitted, and reflected light
beams must satisfy the following relation:(

ki · ex
)
x+
(
ki · ey

)
y=

(
kt · ex

)
x+
(
kt · ey

)
y= (kr · ex)x+

(
kr · ey

)
y. (A19)

Equation (A19) is obviously valid for any x and y on the interface, so the following relation must be
satisfied:

ni sinθi = na sinθa. (A20)

For the convenience of the following calculation, it is obvious that equations (A11) and (A12) can be
further written as:

EiP cosθi + ErP cosθr = EtP cosθt, (A21)

EiS + ErS = EtS. (A22)

11
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Substituting equations (A6)–(A8) into equations (A16) and (A17), and taking into account
equation (A9), the equations (A16) and (A17) can be transformed into the following form:

− ntE
t
S cosθt + niE

i
S cosθi + nrE

r
S cosθr = Z0

[
σS
yxE

t
P cosθt +σS

yyE
t
S

]
, (A23)

− ntE
t
P + niE

i
P + nrE

r
P = Z0

[
σS
xxE

t
P cosθt +σS

xyE
t
S

]
(A24)

where Z0 = µc=
√
µ0/ε0 (µr = 1). Substituting equations (A21) and (A22) into equation (A23), it is easy to

eliminate EtP and EtS, so equation (A23) can be written as follows:

ErP = rPPE
i
P + rPSE

i
S. (A25)

This evidently implies

rPP =
[(Z0σ

S
xx cosθt + nt)cosθi − ni cosθt][nr cosθr − (Z0σ

S
yy + nt cosθt)]+Z0

2σS
xyσ

S
yx cosθi cosθt

[nr cosθr − (Z0σS
yy + nt cosθt)][nr cosθt − (Z0σS

xx cosθt + nt)cosθr]−Z0
2σS

xyσ
S
yx cosθr cosθt

, (A26)

rPS =
−2Z0σ

S
xyni cosθi cosθt

[nr cosθr − (Z0σS
yy + nt cosθt)][nr cosθt − (Z0σS

xx cosθt + nt)cosθr]−Z0
2σS

xyσ
S
yx cosθr cosθt

. (A27)

Similarly, equations (A21) and (A22) can be substituted into equation (A24) to eliminate EtP and EtS, and
equation (A24) can be written as

ErS = rSPE
i
P + rSSE

i
S. (A28)

This implies

rSP =
2niZ0σ

S
yx cosθi cosθt

[nr cosθt − (Z0σS
xx cosθt + nt)cosθr]

[
nr cosθi +

(
Z0σS

yy + nt cosθt
)]

−Z0
2σS

yxσ
S
xy cosθt cosθi

, (A29)

rSS =−
Z0

2σS
yxσ

S
xy cosθt cosθr +

[
nr cosθt −

(
Z0σ

S
xx cosθt + nt

)
cosθr

][(
Z0σ

S
yy + nt cosθt

)
− ni cosθi

]
[nr cosθt − (Z0σS

xx cosθt + nt)cosθr]
[
nr cosθi +

(
Z0σS

yy + nt cosθt
)]

−Z0
2σS

yxσ
S
xy cosθt cosθi

.

(A30)

By using the relations nr = ni = n1, nt = n2, σS
xy =−σS

yx, and cosθr =−cosθi, the formulas (10)–(12) of
Fresnel equations in the reflection case are obtained.

Appendix B. The Type IIWSM transverse optical conductivity for He–Ne laser
wavelength

The degree of tilt of the Weyl nodes is characterized by αt, with |αt|< 1 being a type-I Weyl node, and
|αt|> 1 being a type-II Weyl node [59]. For the Type-II WSM with |αt|> 1, the real and imaginary parts of
the transverse photoconductivity σxx satisfy the following relation:

Re [σxx (ω)]


= 0 I ω < ωl

= σω

(
1
2 − η1

)
II ωl < ω < ω ′

µ

= σωη2 III ω > ω ′
µ

, (B1)

Im [σxx (ω)] =−σω
4π

{
τ (αt) ln


∣∣∣ω ′

µ
2 −ω2

∣∣∣∣∣ω2
l −ω2

∣∣
+

8

|αt|3
(

µ

h̄ω

)2
−
(

µ

h̄ω

)3
Π (ω,αt,µ) ln

[∣∣ω ′
µ −ω

∣∣(ωl +ω)

|ωl −ω|(ω ′
µ +ω)

]

+
6

|αt|3
(

µ

h̄ω

)2
ln


∣∣∣ω ′

µ
2 −ω2

∣∣∣ω2
l∣∣ω2

l −ω2
∣∣ω ′

µ
2

+

(
3

|αt|
+

1

|αt|3

)
ln

 ∣∣ω2
c −ω2

∣∣∣∣∣ω ′
µ
2 −ω2

∣∣∣
+

12

|αt|3
(

µ

h̄ω

)2
ln

∣∣ω2
c −ω2

∣∣ω ′
µ
2∣∣∣ω ′

µ
2 −ω2

∣∣∣ω2
c

},

(B2)

with

σω = e2ω/(6hvF) ,

12
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η1 =
3

8 |αt|

(
2µ

h̄ω
− 1

)[
1+

1

3|αt|2

(
2µ

h̄ω
− 1

)2
]
,η2 =

3

4 |αt|

[
1+

1

3|αt|2
+

(
2µ

|αt| h̄ω

)2
]
,

ωl = 2µ/[h̄(1+ |αt|)],ωµ = 2µ/[h̄(|αt| − 1)],

τ (αt) =
1

2

(
4+

3

|αt|
+

1

|αt|3

)

Π (ω,αt,µ) =
4

|αt|3
+ 3
( µ

h̄ω

)2( 1

|αt|
+

1

|αt|3

)
,

η1 =
3

8 |αt|

(
2µ

h̄ω
− 1

)[
1+

1

3|αt|2

(
2µ

h̄ω
− 1

)2
]
,η2 =

3

4 |αt|

[
1+

1

3|αt|2
+

(
2µ

|αt| h̄ω

)2
]
,

where ωc = vFkc is the ultraviolet cutoff frequency (vFis the Fermi velocity, kc = π/a is the cutoff along the kz
direction, the lattice spacing a= 10 nm), and µ is the chemical potential. For equation (B1), it is worth
stating that the region of ω < ωl (region I) is completely Pauli blocked for vertical transitions, while the
ωl < ω < ω ′

µ (region II), is partially Pauli blocked for vertical transitions, and ω > ω ′ (region III), the full
phase space is available for vertical transitions.

In addition, the real part of transverse photoconductivity σxy can be expressed as:

Re
[
σxy (ω)

]
= Re

(
σdc
xy

)
+Re

(
σac
xy

)
. (B3)

Here, the dc and ac components for Re[σxy(ω)] can be written respectively

Re
(
σdc
xy

)
=

σQ

|αt|
+

sgn(αt)σµ

αt
2

ln

[
µ2

h̄2ω2
cαt

2 (αt
2 − 1)

]
,

Re
(
σac
xy

)
= sgn(αt)σµ

{
− 1

2αt
2
ln

[ (
ω2
c −ω2

)2∣∣ω2
l −ω2

∣∣ ∣∣ω ′
µ
2 −ω2

∣∣ ω2
l ω

′
µ
2

ω4
c

]
+

(
µ

2h̄ωαt
2
+

h̄ω

8µ

1−αt
2

αt
2

)
× ln

[
|ω ′

µ −ω|(ωl +ω)

(ω ′
µ +ω)(ωl −ω)

]
− 2

αt
2

}
where σµ = e2µ

h2vF
and σµ = e2Q

π h .

Finally, the expression for the imaginary part of the transverse photoconductivity σxy can be written as
follows:

Im
[
σxy (ω)

]
= 0 I ω < ωl

= 3σωη3 II ωl < ω < ω ′
µ

=−3µσω/
(
h̄ωα2

t

)
III ω > ω ′

µ

(B4)

In the simulation, we have chosen λ= 632.8 nm, µ= 0.125 eV, and 1.25< αt < 3.25, then the relation
ω > ω ′

µ is satisfied. Therefore, transverse photoconductivity Re[σxx(ω)] and Im[σxy(ω)] in this work are
determined by expression III in equations (B1) and (B4) respectively.
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