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A thermodynamically consistent kinetic model is proposed for the non-equilibrium
transport of confined van der Waals fluids, where the long-range molecular attraction is
considered by a mean-field term in the transport equation, and the transport coefficients
are tuned to match the experimental data. The equation of state of the van der Waals
fluids can be obtained from an appropriate choice of the pair correlation function. By
contrast, the modified Enskog theory predicts non-physical negative transport coefficients
near the critical temperature and may not be able to recover the Boltzmann equation in the
dilute limit. In addition, the shear viscosity and thermal conductivity are predicted more
accurately by taking gas molecular attraction into account, while the softened Enskog
formula for hard-sphere molecules performs better in predicting the bulk viscosity. The
present kinetic model agrees with the Boltzmann model in the dilute limit and with the
Navier—Stokes equations in the continuum limit, indicating its capability in modelling
dilute-to-dense and continuum-to-non-equilibrium flows. The new model is examined
thoroughly and validated by comparing it with the molecular dynamics simulation results.
In contrast to the previous studies, our simulation results reveal the importance of
molecular attraction even for high temperatures, which holds the molecules to the bulk
while the hard-sphere model significantly overestimates the density near the wall. Because
the long-range molecular attraction is considered appropriately in the present model, the
velocity slip and temperature jump at the surface for the more realistic van der Waals fluids
can be predicted accurately.
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1. Introduction

Transport of the van der Waals fluids through microscale/nanoscale confined geometries
appears in many engineering applications, such as shale gas production (Wu et al. 2016;
Mehrabi, Javadpour & Sepehrnoori 2017), carbon dioxide geological sequestration (Wang,
Wang & Chen 2018), energy-efficient cooling (Rana, Lockerby & Sprittles 2018; Van Erp
et al. 2020) and ultrafast filtration using membranes (Joseph & Aluru 2008; Torres-Herrera
& Poiré 2021). The definition of the van der Waals fluids originates from the celebrated
van der Waals equation of state (EoS) (van der Waals 1873; Maxwell 1874), which extends
the ideal gas law by coupling the effects of both the finite size of gas molecules and the
long-range attraction between gas molecules. The EoS for van der Waals fluids is

— —an?, 11
P=1"w " (1)

where p is the pressure, n is the gas number density, T is the temperature, kg is the
Boltzmann constant, Vo = 2mo>/3 is the excluded volume per molecule, with o being
the molecular diameter, and a is a constant that measures the average attraction between
fluid molecules, which can be determined from the critical pressure and temperature of the
fluids.

The gas volume exclusion and long-range molecular attraction are known as the
real gas effect (Wang ef al. 2018; Zhang et al. 2019), which plays a prominent role
in high-pressure scenarios (Shan et al. 2021) or at near-critical regions (Restrepo &
Simdes-Moreira 2022). In conventional hydrodynamics, the real gas effect is considered
empirically using the realistic EoS with the Euler or Navier—Stokes (NS) equations
(Zhao et al. 2014; Restrepo & Simdes-Moreira 2022), which is valid for equilibrium or
near-equilibrium flows. For the flows far from equilibrium, these continuum models are
no longer applicable (Torrilhon 2016; Rana et al. 2018). In addition, surface confinement
can lead to inhomogeneities in not only density but also transport coefficients (e.g.
shear viscosity and thermal conductivity). However, the van der Waals EoS assumes
homogeneous fluid density (Maxwell 1874), making the conventional continuum models
inadequate to capture inhomogeneous molecular flow features (Kogan 1973).

Consequently, an accurate model of the van der Waals fluids under tight surface
confinement requires simultaneous consideration of the effects of real gas, rarefaction and
surface confinement, which remains a research challenge.

At the molecular scale, molecular dynamics (MD) simulations can provide an accurate
computational tool for investigating gas dynamics under tight surface confinement. In
MD simulations, the van der Waals interactions are described mostly by the 12-6
Lennard-Jones (LJ) potential (Martini et al. 2008), i.e.

-2~ )]

where € and o are the characteristic energy and length (equivalently, the molecular
diameter) scales, respectively, and r is the distance between molecules. The LJ potential is
composed of a strong repulsive part and a weak long-range attractive tail, which describes
the real gas effect from a molecular perspective and captures the fluid inhomogeneity
caused by the confinement. However, MD simulations are prohibitively expensive for
most practical simulations (Nie et al. 2004; Sheng et al. 2020), and suffer from statistical
noise for low-speed flows when the flow velocity is significantly smaller than the thermal
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motions of fluid molecules. Therefore, a multiscale model is required to capture both
molecular and continuum effects.

Kinetic theory relates the molecular-scale dynamics to the continuum-scale flow
properties, serving as a bridge between the continuum and atomistic worlds (Kogan 1973;
Guo & Shu 2013; Gan et al. 2022). The fundamental equation in kinetic theory is the
Boltzmann equation for ideal gases (Takata & Noguchi 2018). However, it becomes invalid
in the scenarios where the gas molecule size is comparable to (i) the gas mean free path
(e.g. dense gas flows) (Cercignani & Lampis 1988; Sadr & Gorji 2017; Wang et al. 2020)
or (ii) the characteristic length of the flow domain (e.g. nanoscale confined flows) (Shan
et al. 2020; Sheng et al. 2020; Corral-Casas et al. 2022).

Enskog (1921) extended the localised Boltzmann collision operator to a non-localised
one by considering the finite size of gas molecules, so that the instantaneous collisional
transfer of momentum and energy over a molecule size comes into play (Frezzotti 1999).
The finite size of gas molecules will increase the collision frequency by reducing the
free streaming space for gas molecules by a factor 1/(1 —2nVp), and decrease the
collision frequency by shielding other molecules (Chapman & Cowling 1990; Wang &
Li 2007) by a factor (1 — 11nV,/8), therefore the overall change in collision frequency is
quantified by

11
1 — —nVy
Enskog _ r+n — 8 1.3
X x[n( 7 T onVy (1.3)

where the density-dependent pair correlation function is evaluated at the contact point
of two colliding molecules, and r; and r, are the positions of two colliding molecules,
respectively. This refers to the original standard Enskog theory (SET).

The SET was refined by van Beijeren & Ernst (1973) to guarantee the irreversible
thermodynamics for dense gas mixtures of hard-sphere molecules and yield the correct
single-particle equilibrium distribution function (van Beijeren 1983), which is now known
as the revised Enskog theory (RET). In the RET, the pair correlation function is no
longer evaluated at the contact point of two colliding molecules, but takes the spatial
variation of density into account (Dorfman, van Beijeren & Kirkpatrick 2021), which
means that the pair correlation function now depends on the density distribution between
the two colliding molecules, i.e. x*T = x[ry, r; | n(r; — r2)]. Both SET and RET for
dense gases have achieved some successes in predicting transport properties of simple
fluids (Hanley, McCarty & Cohen 1972; Amords, Maeso & Villar 1992), shock wave
propagation (Frezzotti 1997) and gas dynamics under confinement (Wu et al. 2016; Sheng
et al. 2020). However, SET and RET ignore the long-range attractive interactions between
gas molecules, which are important in real gases (Vera & Prausnitz 1972; He & Doolen
2002; Wang & Li 2007; Frezzotti, Barbante & Gibelli 2019).

Two approaches have been developed to describe the dynamics of van der Waals
fluids, namely the modified Enskog theory (MET) (Chapman & Cowling 1990; Amorés
et al. 1992; Luo 2000) and the mean-field approximation (de Sobrino 1967; Karkheck
& Stell 1981). The MET imposes two modifications on the pair correlation function
and the co-volume for more realistic molecular interactions. One is to use the ‘thermal
pressure’ from the experimental data (Hanley ef al. 1972; Amordés et al. 1992) or the
van der Waals pressure (i.e. the pressure in the van-der-Waals-type EoS) (Luo 2000) to

replace the pressure p/ in the hard-sphere EoS p™ = nkgT(1 + nVox). With (1.1), the
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pair correlation function becomes

MET _ 1 . a ’ (14)
1 —nVy kgTVy

X

where both the volume exclusion and the molecular attraction are taken into account.
The other modification is to correct the co-volume V( according to either the second
virial coefficient (Hanley ef al. 1972; Amords et al. 1992) or the experimental data of the
transport coefficients (Chapman & Cowling 1990). However, the MET has been applied
only to obtain transport coefficients of real gases. It is not clear whether it can also describe
the dynamic behaviour of real gases. In addition, the MET can predict a negative pair
correlation function, and thus negative transport coefficients for real gases, which is not
physical.

The mean-field approximation adds a weak attractive tail as an extra force term
to the Enskog-type equation to account for the long-range molecular attraction (de
Sobrino 1967), resulting in the Enskog—Vlasov-type equation (Karkheck & Stell 1981;
Sadr, Pfeiffer & Gorji 2021). Furthermore, a state-dependent hard-sphere diameter, as
commonly discussed in perturbation theories for classical fluids (Barker & Henderson
1967; Andersen, Weeks & Chandler 1971; Cotterman, Schwarz & Prausnitz 1986),
can be chosen for a better approximation of real fluids (Karkheck & Stell 1981; Guo,
Zhao & Shi 2006). In this way, the hard-core repulsion is softened to account for the
softness of the repulsive potential (Ben-Amotz & Herschbach 1990), which modifies the
transport coefficients. However, the Enskog—Vlasov (EV) collision operator still considers
hard-sphere molecules. A more realistic molecular potential model (e.g. LJ type) needs to
be considered for molecular collisions.

Although the van-der-Waals-type EoS can be recovered, both the MET and the EV
equation have their own problems in modelling the van der Waals fluids, e.g. recovering
correct transport coefficients. Therefore, there is still an open question about how to model
molecular attraction in the kinetic theory of dense gases (He, Shan & Doolen 1998; Luo
1998, 2000; He & Doolen 2002). Another major issue that hinders the application of
kinetic models is their computational complexity and cost. As the computational cost of
solving the Enskog and EV equations directly using either probabilistic or deterministic
methods is prohibitive (Frezzotti & Sgarra 1993; Alexander, Garcia & Alder 1995; Wu,
Zhang & Reese 2015; Wu et al. 2016; Frezzotti et al. 2019; Sadr & Gorji 2019), simplified
models have been proposed to achieve efficient computations using the relaxation time
approach, e.g. Luo (1998), He et al. (1998), Wang et al. (2020), Su et al. (2023) and
Busuioc (2023). Based on the intuitive observations of the underlying molecular physics,
various types of simple kinetic models (Suryanarayanan, Singh & Ansumali 2013; Takata
& Noguchi 2018; Takata, Matsumoto & Hattori 2021) have been developed for the van
der Waals fluids, which have been applied successfully to the study of phase transition
problems. However, these models are either limited to the low-speed/isothermal flows or
fail to reproduce the correct transport coefficients. In this study, we will therefore analyse
the available approaches theoretically and numerically, and attempt to develop an improved
kinetic model for the van der Waals fluids that is computationally efficient to solve.

To develop an efficient and accurate kinetic model to describe non-equilibrium transport
of confined van der Waals fluids, the following considerations are made.

(i) The volume exclusion is described for both hard-sphere and LJ molecular
interactions, with appropriate modifications of the transport coefficients.
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(i) The long-range molecular attraction is considered in a thermodynamically consistent
manner.

(iii) The kinetic model reduces to the Boltzmann model equation in the dilute gas limit,
namely when no? (~ 1/1) — finite, with A being the gas mean free path, no> — 0
(ie. x = 1)and o — 0.

(iv) The model recovers the NS equations in the continuum limit, i.e. when H/o — o0
and Kn — 0, with H being the characteristic length of the flow domain, and Kn the
Knudsen number.

(v) The non-equilibrium (e.g. velocity slip), thermal (e.g. temperature jump) and
confinement (e.g. inhomogeneous fluid properties) effects can be captured
accurately.

The remainder of the paper is organised as follows. In §2, a new kinetic model for
the van der Waals fluids is developed starting from the generalised Boltzmann equation
using the mean-field approximation. Through the Chapman—Enskog expansion, we show
that the correct EoS can be recovered from our kinetic model to achieve thermodynamic
consistency, where the relaxation time and Prandtl number (Pr) can be determined using
the transport coefficients of real gases. In § 3, numerical simulations are performed to
validate the model and to understand the effects of long-range molecular attraction and
viscous dissipation on gas dynamics at different density, non-equilibrium and confinement
conditions, using the MD data for comparison. We also show that the current kinetic
model reduces to the Shakhov model for hard-sphere molecules in the dilute limit,
and recovers the NS equations when the confinement and non-equilibrium effects are
negligible. Finally, conclusions are drawn in § 4.

2. Kinetic modelling of van der Waals fluids

As gas density increases, the molecular size can no longer be neglected. Therefore, the
Boltzmann equation becomes inappropriate. For dense gases, the molecular interactions,
including short-range repulsion and long-range attraction, play a prominent role, especially
in applications such as phase transitions (Frezzotti et al. 2019; Huang, Wu & Adams 2021)
and multiphase flows (Sadr et al. 2021; Huang, Li & Adams 2022). To consider molecular
interactions, we can start from the BBGKY (Bogoliubov—Born—Green—Kirkwood—Yvon)
hierarchy to derive appropriate models for the dynamics of both dilute and dense gases.
For example, diffuse interface and Cahn—Hilliard fluid models including the Dunn—Serrin
heat flux have been derived from the BBGKY hierarchy by Giovangigli (2020, 2021). The
generalised Boltzmann equation derived from the BBGKY hierarchy (Ferziger & Kaper
1972; He & Doolen 2002) can be written as

of Fei o .  [[0®
E+§.Vf+ . -VEf— ﬁ-Vdﬂr,rl)d&]drl, 2.1

where f = f(r, &, 1) is the velocity distribution function of molecular velocity & at the
spatial position » and the time ¢, F,y, is the external force, f(z) =f(r & r1, &, 1) is the
two-particle distribution function, and ¢ (r, r1) is the pairwise intermolecular potential.
For the LJ potential (1.2), it can be decomposed into a short-range repulsive core ¢, and
a long-range attractive tail ¢, according to perturbation rules (Barker & Henderson 1967,
Andersen et al. 1971; Cotterman et al. 1986). Furthermore, two simplifications are made
to the two-particle distribution function. First, fluid molecules are assumed to satisfy the
molecular chaos hypothesis, i.e. the positions and velocities of colliding molecules are not
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correlated so that the two-particle distribution function can be expressed by the product of
two one-particle distribution functions, i.e.

Fr & r. 8.0 = x ('E’l)ﬂr,s, 0f(r. & 1). 2.2)

The second simplification is based on the observation that the pair correlation function is
approximately unity in the attractive range (Reichl 2016). With these two simplifications,
the generalised Boltzmann equation (2.1) can be transformed to

) Fo:+F
a‘—];ﬁ—E-Vf—i- extm att-st:JE, (23)

where Jr and F;; are the Enskog collision operator and the mean-field force for molecular
attractions, respectively. Equation (2.3) is also known as the EV equation (de Sobrino
1967). The Enskog collision operator can be expressed as

x(r+ ok)f(r ENfilr+ ok, &)
JE(f.f) =0 ff g-kdkd&,, (2.4)

—x(r— —Gk)f(r ) fir—ok, &)

where g = &, — & is the relative velocity of two colliding molecules, k = (r1 — r)/|r] — 7|
is the unit vector that specifies the relative position of two colliding molecules, and & and
&) are the post-collision velocities, which are related to the pre-collision velocities & and
&, through

£ =t+k(g-k), & =& —k(g-k. (2.5a,b)

Meanwhile, the mean-field force term can be expressed as
Fy =-V [/ n(r+r') pan(Ir')) dr/] . (2.6)
|V |>0

To better represent realistic gases, the hard-sphere collisions (2.4) are softened by taking
a state-dependent molecular diameter according to the perturbation theories (Barker &
Henderson 1967; Andersen et al. 1971; Cotterman et al. 1986). For example, the effective
molecular diameter, according to Barker & Henderson (1967), can be calculated as

ae=a/(;oo{l—exp [—%]}dr, 2.7)

which decreases with increasing temperature and plays a role similar to that of
two colliding molecules penetrating into each other. It is not surprising that this
state-dependent molecular diameter changes the transport coefficients. Shear viscosity uﬁ”
and thermal conductivity k¥ can be calculated as

1
uhs = " [1+0.8nVox + 0.7614(nVox)*1 1o (2.8)
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and

1
K" = = [1 + 1.2nVox + 0.7574(nVo x)*] ko, (2.9)
X

respectively, with o and ko being the viscosity and thermal conductivity at the
atmospheric pressure, respectively. It is noted that the EV equation (2.3) and its
corresponding transport coefficients (2.8) and (2.9) are based on binary collisions.
While the BBGKY hierarchy allows for investigating collisions involving three or more
particles, the collision operator encounters divergence under specific circumstances,
such as when considering quadruple collisions in a three-dimensional space, which
presents a fundamental research challenge (Ferziger & Kaper 1972; Chapman & Cowling
1990). This divergence can be amended by taking the mean free path damping into
account in the density expansion of the generalised collision integral, leading to a new
term in the viscosity that is proportional to n* Inn. Unfortunately, this new result has
not been confirmed by experimental observations. Therefore, (2.8) and (2.9) are used
more commonly in predicting transport coefficients of dense gases. However, molecular
attraction is not considered in (2.8) and (2.9) as well as the collision integral (2.4), which
makes them unsuitable for modelling realistic gases.

Equation (2.3) combined with (2.4) and (2.6) formulates an integral procedure to
simulate the dynamics of van der Waals fluids, where the macroscopic properties can then
be obtained by taking moments of the distribution function, i.e.

Mnﬂ=/ﬂn§ﬂ@, (2.10)
nMnn=/§ﬂnao@, (2.10b)
;@ngzfgﬁﬂnamm (2.10¢)
me:/mwmﬁjwa (2.10d)
gmwzfgédmao@, (2.10¢)

where u is the macroscopic flow velocity, ¢ = |¢| is the magnitude of the peculiar
velocity ¢ = & — u, T is the temperature, and P, and Q) are the kinetic stress tensor and
heat flux, respectively, which arise from the free streaming of gas molecules. However,
the collision operator (2.4) is more complex than the Boltzmann collision operator,
so a simplified model is required to achieve computational efficiency with reasonable
simulation accuracy.

2.1. The simplified kinetic model for van der Waals fluids

Following our previous works (Wang et al. 2020; Su et al. 2023), we expand the collision
operator (2.4) into a Taylor series near » and retain up to the second-order terms as shown
below:

Je(f ) = x JOUH IV +IDE 1), 2.11)
976 A7-7
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JOU.f) = o2 / P —fog - kdkde,,
TV f) = 0%y / / k- (f' Vf 41 Vg - kdkdé,
3
+ % [[wevoous 4 karas,.
(2.12)

4
JO(f.f) = %x /f kk : (f VVf —fVVf)g - kdkdg,

4
4 %//(k- VOl (f Vf, — £ ViDlg - kdkdg,

4
+ %f/(kk VYOS — fiD)g - kdkdg,.

where all the quantities are evaluated at the position #, and J (f,f) is the Boltzmann
collision operator for dilute gases, which can be simplified further by kinetic models. Here,

we choose the Shakhov model (Shakhov 1968), which is written as

1 Q
©0) ~ — fe fe Pr T2k

where 1, is the relaxation time, Pr is the Prandtl number, po = nkpT is the EoS for
ideal gases, R = kp/m is the specific gas constant, and 7 is the Maxwellian distribution
function, which reads as

m \/? mc?
“q — - . 2.14
! n(anq;T) exp ( 2kBT> 2.14)

The terms J (£, £) and J@ (£, f) describe the dense gas effect arising from increasing
density. Considering that (i) for dilute gases far from equilibrium, the density terms
JO(f, ) and TP (f, f) are negligible, and the non-equilibrium effect can be captured by
the Shakhov model (2.13), (ii) for the gases of large densities, the density terms J M .0

and J@ (£, f) become important, where the gas mean free path should be small as 1 o 1/n,
implying that the gases are not far from equilibrium, and (iii) for gases not far from
equilibrium, the equilibrium distribution function f¢7 is the leading part of the distribution
function f, further simplifications can be made on JV' (£, f) and J® (£, f) by replacing the
velocity distribution functions therein with their corresponding equilibrium distribution
functions, leading to the following two terms (Rangel-Huerta & Velasco 1996; Kremer
2010; Wang et al. 2020; Su et al. 2023):

|:V In(n’>xT) + = ((22 — g) Vin T:|

IO ) ~TW = —pVyyfed (2.15)
+% 20C : Vu+ 62—5 V-u
5 ' 2
and
JOf ) ~TI? = [f“l ’;B (V - u) (02 — %) c} +R, (2.16)
976 A7-8
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where C = (m/ZkBT)l/ 2¢ is the non-dimensional peculiar velocity, and up is the bulk
viscosity. Here, R is a second-order quantity that has no contribution to the transfer of
mass, momentum and energy, so it can be ignored hereafter in the kinetic model. Since
n — 0 leads to up — 0 for monatomic gases, the dense gas terms Z(!) and Z® become
negligible in the dilute gas limit. In this case, the present kinetic model reduces to the
Shakhov model.

It should be noted that the bulk viscosity up appears when calculating the pressure
tensor and heat flux from the Enskog equation using the Chapman-Enskog analysis
(Ferziger & Kaper 1972; Chapman & Cowling 1990), but is absent in the previous
simplified kinetic models (Luo 1998; He & Doolen 2002; Wang et al. 2020; Takata et al.
2021). Although it is a small quantity involved in the second-order term of the Taylor
series (Rangel-Huerta & Velasco 1996; Kremer 2010), it is important in many applications
(Jaeger, Matar & Miiller 2018), such as sound attenuation and shock wave propagation,
where gases undergo strong compression or expansion (Hoover et al. 1980a,b).

For simplicity, the pair correlation function x in (2.11) can be absorbed into the
relaxation time ty in (2.13). The final evolution equation of the kinetic model for the van
der Waals fluids can be written as

a F F
ai;+§-Vf+M-V,;f=J§°>+I<1>+I<2>, (2.17)
m
where
1 c- 0 c?
JO — 2| (f_feay _reac; _ p k(= 5], 2.18
| t[(f R U e @18)

with the relaxation time t = t,/x. The attractive part of the LJ potential, i.e. ¢y =
—4e(a/ )0, is chosen to simulate the molecular attraction in the mean-field force term
(2.6). It should be emphasised that (2.17) is second-order accurate in the Taylor series
of the Enskog collision operator (2.4), with omitted second-order quantities that have no
contribution to mass, momentum and energy transfer. It should be noted that although

the collisional terms JS(O), ZM and Z® are derived from the Enskog collision operator
(2.4), the kinetic model (2.17) is not restricted to hard-sphere molecules as the transport
coefficients can be corrected to account for the influence of intermolecular potentials. In
the following subsections, we will demonstrate the thermodynamic consistency of our
kinetic model and how to obtain correct transport coefficients.

2.2. The hydrodynamic equations and relaxation time

Using the Chapman—Enskog expansion (see Appendix A for the details), the following
hydrodynamic equations can be obtained:

ap
— 4+V. =0,
o1 + (pu)

d(pu)

o7 + V- {puu+[p—pup(V-uwlU— 2158 — K} — nFpy = 0, (2.19)

d(pE )
%—FV-{pEu—KVT—i—[p—MB(V.u)]u.u_(zﬂss_i_K).u}_nFeXt_u=O’

where E = (3RT + u?)/2 is the combination of internal and kinetic energies per unit mass
of monatomic gases, and S and K are the rate-of-shear and capillary tensors, respectively,
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which can be found in Appendix A. According to (A20), the relaxation time t and the
Prandtl number Pr can be obtained as

s 1
YT kT . 2
"B 1+§”VOX
3 (2.20)
Pr = 2— 2— ——
" I+ SnVox o

The proper assignment of the relaxation time 7 and Prandtl number Pr is a key requirement
for the thermodynamic consistency of the kinetic model, which depends on the appropriate
determination of the shear viscosity wg and thermal conductivity « of the fluids, to be
discussed in § 2.3.

It should be noted that the hydrostatic pressure p in (2.19) satisfies the
van-der-Waals-type EoS, where both the volume exclusion and the intermolecular
attraction are considered. The specific form of the EoS depends on the choice of the
pair correlation function x. If we choose x = 1/(1 — nVjp), then the hydrostatic pressure
(A22) recovers the exact van der Waals EoS (1.1). However, the shielding effect of the
gas molecules is not taken into account by this choice. As the density inhomogeneity may
become significant in a nano-confined system, we use the Fischer—Methfessel method to
consider the density dependence of the pair correlation function (Fischer & Methfessel
1980), and the Carnahan—Starling EoS to consider the shielding effect (Carnahan &
Starling 1969). Therefore, the pair correlation function can be written as

_ 1—-0.59 _

x = xlri, | n(ry — rn)] =~ x(n) = W, n = 0.25nVy, (2.21)
where 7= [w(¥)n(r+#)dr is the local average density, with w(r) being a weight
function (Tarazona 1985; Vanderlick, Scriven & Davis 1989). Substituting (2.21) into
(A22), we can get the hydrostatic pressure p satisfying the EoS

l+n+n>—n°
W — anz. (222)

Other cubic equations of state, such as the Soave—Redlich—-Kwong and Peng—Robinson
types, can also be recovered by choosing appropriately the pair correlation function
x using the above approach. This hydrostatic pressure, which is recovered from the
non-equilibrium transport equation, is consistent with the thermodynamic theory for
the equilibrium state, demonstrating that our kinetic model (2.17) is thermodynamically
consistent.

p = nkgT

2.3. Transport coefficients for van der Waals fluids

The transport coefficients in (2.8) and (2.9) are obtained through the first-order
Chapman—-Enskog expansion of the Enskog equation, and include both the kinetic and
collisional contributions. For simplicity, the derivation of (2.8) and (2.9) was based on the
hard-sphere molecules, i.e. all intermolecular collisions are rigid and elastic. To improve
accuracy of the predictions for real gases, the molecular dimensions are assumed to change
with temperature, i.e. a higher temperature leads to a smaller molecular diameter, which
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Cq (&) c3 C4 cs €6
1.16145 0.14874 0.52487 —0.7732 2.16178 —2.43787
c7 cg Cc9 c10 Cl1

—0.0006435 0.14874 18.0323 —0.7683 —7.27371

Table 1. Coefficients for calculating the transport integral in (2.24).

has been adopted widely in MET (Hanley et al. 1972), kinetic reference theory (Karkheck
& Stell 1981) and other models (Guo, Zhao & Shi 2005; Guo et al. 2006; Shan et al. 2020).
This modification accounts for the softness of molecules during the collision, but the
effect of the gas molecular attraction on transport coefficients can still not be considered
properly. In contrast to the Enskog equation, which describes the dynamics of hard-sphere
gases, no molecular potential model appears explicitly in our kinetic model (2.17). Instead,
the intermolecular potential, including molecular attraction for real gases, is included in
the transport coefficients.

For different molecular potential models (Chapman & Cowling 1990), the shear
viscosity of real dilute gases can be written as

s w5 [mkgT

Ho = ey’ Ky = 1602V (2.23a,b)

where ;Lgs is the viscosity of dilute gases of hard-sphere molecules, and £2?) is the
reduced collision integral depending on the intermolecular potential, which accounts for
the effect of gas molecular attraction on viscosity and is difficult to obtain theoretically.
Neufeld, Janzen & Aziz (1972) proposed an empirical form of the integral that performs
well (with error less than 0.1 %) in the temperature range 0.3 < T < 100, with T = kT /e,
which can be written as

c N A A A
@2 = T—l + czexp(esT) + csexp(cgT) + 7T sin(coT0 + c1y), (2.24)
(&)

with corresponding coefficients given in table 1.

To obtain the shear viscosity and thermal conductivity of the van der Waals fluids, we
use the method proposed by Chung, Lee & Starling (1984) and Chung et al. (1988), which
is based on the kinetic theory and experimental correlation. For convenience, we convert
the original expression to the following form where the shear viscosity can be calculated
as

FAF
_h Al'B
with
Fy=1-0.275w, (2.26a)
1
Fp = — + Agn, (2.26b)
Gy
Ay A
_ 2 -7
Fc = ?1/2 A1n°Gy exp <A8 + f“ + ]A_Q ) s (2.26¢)
A 1-— —A A A A
G, — (Ar/mI[1 — exp(—A4n)] + Az x exp(Asn) + 3x’ (2.26d)
AlAy + Ay + Az
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~.

ao(i)

a (i)

1 6.32402 50.4119

2 0.0012102 —0.0011536
3 5.28346 254.209

4 6.62263 38.0957

5 19.7454 7.63034

6 —1.89992 —12.5367

7 24.2745 3.44945

8 0.79716 1.11764

9 —0.23816 0.067695
10 0.068629 0.34793

Table 2. Coefficients for calculating the viscosity of van der Waals fluids in (2.27).

where F4 accounts for the effect of the acentric of molecules, with @ being the acentric
factor, and Fp and F¢ account for the dependence of viscosity on gas density. For
monatomic gases, the acentric factor is w = 0, so F4 = 1. The coefficients A;—Ag9 can
be calculated by

Ai=ap(i) +a1() o, (2.27)

with the corresponding constants listed in table 2.
Similarly, the thermal conductivity of dilute gases can be calculated as

hs
Ky hs T5kp  |mkgT
Ko = 50" Ky = 64m02‘/—n . (2.28a,b)
The thermal conductivity of van der Waals fluids at large densities can be calculated as
FpFsF
_ns [ TPFAFD
K =K\ (W + FE) y (229)
with
1
Fp = — + Ben, (2.30a)
G,
Fr = 0.8906B71°G, (2.300)

_ (B1/mI1 — exp(—Ban)] + B x exp(Bsn) + B3 x

G,
B1Bs+ By + B3

(2.30¢)

where Fp accounts for the polyatomic effect on thermal conductivity, which is unity for
monatomic gases, Fp and Fr account for the dependence of thermal conductivity on
density, and the coefficients Bj—B7 can be calculated from

B =bo(i) + b1 () w (2.31)

using the constants listed in table 3.

Since the correlated density-dependent functions are introduced to extend the Enskog
model (2.8) and (2.9) for real gases by taking gas molecular attraction into account, the
modified Enskog model (2.25) and (2.29) is referred to as the correlated Enskog model
in this study. Once the shear viscosity uy and thermal conductivity x are calculated

976 A7-12


https://doi.org/10.1017/jfm.2023.893

https://doi.org/10.1017/jfm.2023.893 Published online by Cambridge University Press

Molecular kinetic modelling of confined fluids

i bo (i) b1()

1 2.41657 0.74824
2 —0.50924 —1.50936
3 6.61069 5.62073
4 14.5425 —8.91387
5 0.79274 0.82019
6 —5.8634 12.8005
7 81.171 114.158

Table 3. Coefficients to calculate the thermal conductivity of van der Waals fluids in (2.31).

from (2.25) and (2.29), respectively, the relaxation time t and Prandtl number Pr can
be determined through (2.20).

One last parameter that needs to be determined is the bulk viscosity pp, which was
derived for the hard-sphere fluids as

Wy = Vo) xug'. (2.32)

This equation overestimates the bulk viscosity of dense LJ fluids according to Hoover
et al. (1980a) and Borgelt, Hoheisel & Stell (1990). The overestimation is inherent in the
calculation of the shear viscosity and thermal conductivity of the Enskog model given
by (2.8) and (2.9), as these two transport coefficients are a combination of kinetic and
collisional contributions. Taking the shear viscosity (2.8) as an example, (2.8) can be
rewritten as

hs hs

2 2 2 3

uh = B0 (1 Zavox )+ 5 (14 Snvox ) = nVox + 2 ulb (2.33)
X 5 X 5 5 5

Mk He

where p; and u. are the kinetic and collisional contributions to the shear viscosity,
respectively. An overestimation of the bulk viscosity in . will naturally lead to an
overestimation of the shear viscosity, especially at large densities where . dominates.
This explains that the transport coefficients of the Enskog model at large densities are not
accurate.

Gray & Rice (1964) proposed an explicit formula for the bulk viscosity, suggesting that
the bulk viscosity consists of three parts: the hard-core collision part ,u,gs , the long-range
attractive part %", and the cross (intermediate) part * between hard-core collision and

long-range attraction, namely up = ,uf‘; + uf" + ng®. There are conflicting explanations
Ccrs

for this formula. Madigosky (1967) stated that the cross part u* is negligible when T>1
att

and the long-range attractive part satisfies u$" o p2, and p 3 1s always positive. On the
Ccrs

contrary, Collings & Hain (1976) found that the cross part " cannot be neglected, and the
long-range attractive part u%" can be negative at large densities, which is consistent with
the fact that the Enskog prediction of the transport coefficients is much larger than the
experimental values at large densities, where the contribution of the long-range molecular
attraction to the bulk viscosity is ignored.

A two-parametric function has recently been proposed by Chatwell & Vrabec (2020)
to calculate the bulk viscosity, which is in good agreement with the experimental data
and the MD simulation results at ultra-low temperature and ultra-high density conditions.

However, it may become problematic when the density reduces or temperature increases,
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Figure 1. Schematic of (a) Poiseuille, (b) Couette, and (c) Couette—Fourier flows.

as non-physical bulk viscosity would appear. Overall, the bulk viscosity for dense
monatomic gases needs further investigation. Here, we adopt an empirical approach
(Hoover et al. 1980b) to calculating the bulk viscosity, which considers the effect of
attraction between gas molecules as

e \ /12 ,
=nVoy [ — 2.34
up = nVoy (kBT) Mo (2.34)
with
y = 2.722x + 3.791x% 4 2.495x> — 1.131x°, (2.35a)
e \ /4

x = 04774650V  — ) . (2.35b)

ksT

To be consistent with the shear viscosity and thermal conductivity, we refer to (2.34) as
the correlated Enskog model since the effect of gas molecular attraction is included.

3. Numerical results and discussion

Here, we examine whether our kinetic model (2.17) can capture the non-equilibrium and
dense gas effects of confined flows of the van der Waals fluids. The kinetic model is solved
by the discrete velocity method together with the diffuse boundary condition, which is set
at the position a half-molecule size away from the physical boundary as the molecule
dimension is considered (see figure 1). The steady-state solutions are obtained using
a semi-implicit iteration scheme (Su er al. 2020), with the flow field initialised at the
equilibrium state.

To validate the current kinetic model, MD simulations are conducted using a large-scale
atomic/molecular massively parallel simulator (Thompson et al. 2022). In the MD
simulations, fluid molecules interact with each other through the LJ potential (1.2),
while the fluid—surface interaction is described by the diffuse boundary condition, to
be consistent with the kinetic simulations. For initialisation, molecular velocities are
generated with a Gaussian distribution to produce the required temperature, followed by
a run of 5 x 10* steps in the constant number, volume, temperature ensemble to ensure
that the initial states (mass, momentum and energy) are the same for the MD and kinetic
simulations. Afterwards, the constant number, volume, energy ensemble is applied to fluid
molecules to run all the cases with sufficient time steps and obtain the flow field data.
The parameters for energy and size (molecule diameter) are obtained through the critical
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temperature and volume of the fluids (Chung et al. 1988), respectively, as

kgT, MV
€ = s o =
1.2593 Nym

where 7T, is the critical temperature (K), o is the molecular diameter (m), V. = 1/p,
is the critical volume (m? kg_l), M 1is the molar mass (kg mol™!), and N, is the
Avogadro constant. For argon, the critical temperature 7, = 150.69 K and critical density

pe = 535.60 kg m~3 are chosen in this study.

We consider the van der Waals fluids confined between two parallel plates located at y =
0 and y = H, as shown in figure 1. In Poiseuille flow, the plates are kept stationary and all
the fluid molecules are subjected to an external force F,y; in the x direction. In the Couette
and Couette—Fourier flows, the top and bottom plates move with velocities u,, and —u,,
in opposite directions, which drive fluid molecules to move. In the Poiseuille and Couette
flows, the temperatures of the top and bottom plates are identical, while the temperature
of the top plate T}, is higher than that of the bottom plate 7, in the Couette—Fourier flow.

(3.1a,b)

3.1. Model analysis and comparison

The pair correlation function plays an essential role in the MET. A key requirement for
determining the pair correlation function is that x — 1 asn — 0, so that the Enskog-type
equation for dense gases reduces to the Boltzmann-type equation in the dilute gas limit.
However, the MET does not satisfy this requirement when the van der Waals pressure is
chosen, as shown by (1.4), which makes the MET inaccurate in capturing the effect of the
long-range molecular attraction. A temperature-dependent diameter (Hanley et al. 1972)
can be employed to correct this error, which relates the co-volume V; with the second
virial coefficient B through Vo = B + T dB/dT, and leads directly to the following EoS
for real gases:

p =7ZnkgT, Z=1+ny <B +T j—?) , (3.2a,b)
where Z is the compressibility factor. Clearly, the real gas EoS recovers the ideal gas EoS
as the compressibility factor Z — 1 when n — 0. However, the compressibility factor
Z may be less than unity near the critical temperature (Mahmoud 2014), which means
that the pair correlation function y may be negative in (3.2a,b) as both n > 0 and V =
B+ T dB/dT > 0, thus leading to negative shear viscosity and thermal conductivity, as
can be seen from (2.8) and (2.9), which is physically inappropriate. Therefore, the MET is
not suitable for modelling gas dynamics of the van der Waals fluids.

As shown in figure 2, the Enskog prediction overestimates the shear viscosity and
thermal conductivity at large densities. The assumption of a state-dependent diameter
(2.7) attenuates this overestimation at low temperatures (see figure 2a), but leads to an
overestimation of the shear viscosity at low densities (see figure 2b). Overall, the correlated
Enskog model agrees well with the experimental data for a wide range of temperatures
and densities, particularly for shear viscosity and thermal conductivity, which indicates
the importance of molecular attraction.

Similar to shear viscosity and thermal conductivity, molecular attraction is important
for bulk viscosity. However, the bulk viscosity is predicted more accurately by the
Enskog formula (2.32) with a state-dependent diameter (2.7), i.e. the softened Enskog
prediction, as shown in figures 2(e) and 2(f). Consequently, the Enskog prediction of
shear viscosity and thermal conductivity is in better agreement with the experimental
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Figure 2. Comparison of transport coefficients of argon: (a,b) for the shear viscosity at 7' = 173.0 K and
298.0 K, respectively, with the experimental data from Haynes (1973); (c,d) for the thermal conductivity at
T = 298.15 K and 348.15 K, respectively, with the experimental data from Michels, Sengers & Van de Klundert
(1963); and (e, f) for the bulk viscosity with the experimental data from Malbrunot ez al. (1983) and Madigosky
(1967), respectively. The correlated Enskog model considers the effect of gas attraction on shear viscosity and
thermal conductivity using the approach of Chung er al. (1988), and on the bulk viscosity using the approach
of Hoover et al. (1980b). The softened Enskog uses a state-dependent molecule diameter (2.7) in the Enskog
prediction of transport coefficients (2.32). The Enskog (corrected np) uses the corrected bulk viscosity in the
Enskog prediction of shear viscosity (2.33).

data at large densities if we use this corrected bulk viscosity in (2.33), replacing the
original hard-sphere bulk viscosity ,ug‘ (see figures 2a,b,c,d). So the overestimation of
bulk viscosity from the Enskog theory leads to the overestimation of shear viscosity and
thermal conductivity (see figures 2a,b,c,d) at large densities.

To evaluate the effect of viscosity models on gas dynamics, a Poiseuille-type flow
is investigated with the bottom and top wall temperatures 7, = 173 K and 7), = 373 K,
respectively, the averaged density p,ve = 150 kg m~3, the channel width H = 15 nm, and
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Figure 3. The effect of viscosity models on (a) density and viscosity, and (b) velocity profiles, where ‘viscosity
without attraction’ refers to the hard-sphere model (2.8), and ‘viscosity with attraction’ refers to the Chung
model (2.25).

the external force F,y; = 0.0003 kcal mol ™! A" The profiles of gas density, viscosity
and velocity distributions are shown in figure 3. Although the density distribution is barely
changed, the molecular attraction affects the velocity and viscosity profiles obviously.
The present kinetic model (2.17) will then be evaluated by comparison with the
simulation results of MD, the Shakhov—Enskog model (Wang et al. 2020), and the NS
equations. For incompressible, steady-state and laminar flows, the NS equations reduce to

92%u
) + Fexn =0, (3.3a)
dy
3T >
—_— — ] =0, 3.3b
K 57 +u <8y> (3.3b)

with the second-order boundary condition for velocity slip and the first-order boundary
condition for temperature jump, namely

) 92
wo= +A A a2 (3.4q)
2
2y A dT
=p—"2 2 (3.4b)
Y+ 1 Prdy|,.

where the slip coefficients A = 1.0 and A, = 0.5 are chosen (Chapman & Cowling 1990),
and B = (2 — o7) /o7 with the chosen thermal accommodation coefficient o7 = 1.0.

3.2. Poiseuille flows

In Poiseuille flows, an external body force acts on all the fluid molecules in the x direction
with the wall temperature T,, = 273 K. By solving (3.3) and (3.4), the velocity and
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temperature distribution across the channel can be obtained as

F
u(y) = =22 [y = yH — HY (A1 Kn + 242 Kn?)], (3.5a)
n
(Fexn)? 4 3 2.2 3 4
T(y)=——2y" —4Hy’ +3Hy" — H’y — LtH") + T}, (3.5b)
24k
where Kn is the Knudsen number defined as
K ! (3.6)
n—=——————. .
V2nno2xH
and L7 is the thermal jump length expressed as
2y Kn
Ly =8 —8 —. 3.7
r=>p y+1 Pr 3.7

Figure 4 shows the density and velocity profiles of the Poiseuille flows under a
small external body force at different densities, i.e. different degrees of non-equilibrium
(rarefaction) effect. As shown, the results of our kinetic model are in good agreement
with the MD data for a broad range of densities (the reduced number density 7 ranges
from 0.00031 to 0.14). By contrast, the Shakhov—Enskog model (Wang et al. 2020),
which neglects the gas molecular attraction, overestimates the density near the wall and
underestimates the overall velocity profiles, particularly at large densities. The reduced
fluid density at the wall when the molecular attraction is considered is due to the ‘pull’ of
the molecules in the bulk. The NS prediction, on the other hand, is better at large densities
where the non-equilibrium effect is not significant.

For high-speed flows, the viscous dissipation plays an important role, which is
investigated in figure 5 with the average density o4 = 350 kg m~3, channel width
H = 5 nm, and wall temperature 7,, = 273 K. Two large external forces are considered,

namely F,,; = 0.01 and 0.02 kcal mol~! 10\71, respectively. Again, the density oscillation,
parabolic velocity and quartic temperature profiles are well captured by the current
kinetic model, while the Shakhov—Enskog model and the NS equation show large errors.
The discrepancy in the results between the current kinetic model and the Shakhov—Enskog
model suggests the important role of the long-range molecular attraction in gas dynamics,
leading to reduced density near the wall, and enhanced velocity slip and temperature jump.

The effect of temperature on density and velocity profiles is shown in figure 6,
with the average density pqug = 350 kg m~3, channel width H = 5 nm, and external

force F,y = 0.001 kcal mol~! A 1tis very clear that the density and velocity profiles
predicted by our kinetic model agree with the MD data, while the NS equation fails
to predict density variation, and the Shakhov—Enskog model overpredicts the density
near the wall. The main difference between our model and the Shakhov-Enskog model
is that we include the gas molecular attraction, which can pull the gas molecules to
the bulk. As a result, our prediction of the density at the wall is significantly smaller
than the Shakhov—Enskog model for hard-sphere molecules, which ignores the molecular
attraction. As shown in figure 6(e), even at high temperatures, the gas density of van der
Waals fluids is still significantly affected by the long-range molecular attraction, i.e. the
gas molecular attraction is not negligible even at high temperatures, which has largely been
ignored in the previous studies.

The velocity decreases with the temperature, as shown in figures 6(b), 6(d) and 6(f),
which is caused by the larger near-wall density and viscosity at high temperatures.
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Figure 4. Density and velocity profiles: (a,b) for p4yg = 10 kg m—3 (n = 0.00031, Kn = 2.56); (c,d) for
Pavg = 150 kg m~3 (y = 0.047, Kn = 0.15); and (e, f) for Pavg = 450 kg m—3 (y = 0.14, Kn = 0.039). The

external force Fey; = 0.001 kcal mol ™! 13:1 is small, so the viscous dissipation is negligible, the channel width
is H = 5 nm, and the wall temperature is 7,, = 273 K.

The larger near-wall density means more efficient momentum transfer between the fluid
and the wall, leading to smaller velocity slips at the solid surfaces, while the larger
viscosity means more flow resistance for bulk fluid in the channel. This can be seen more
clearly by normalising the slip velocity us by FeH /(mu,,), namely

N UsMUyy, [2kgT
= , = , 3.8a,b
Ug FouH Um m (3.8a,b)
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Figure 5. The density, velocity and temperature profiles at different external forces: (a—c) for
Fop = 0.01 keal mol™! A7 and (d—f) for Fy = 0.02kcal mol™! A7 The average density iS papg =

350 kg m3 (n = 0.11), the channel width is H = 5 nm, and the wall temperature is 7, = 273 K. The resulting
Knudsen number is Kn = 0.055.

where u,, is the most probable velocity. The variation of the normalised slip velocity
with temperature is shown in figure 7. The normalised slip velocity of hard-sphere gases
predicted by the Shakhov—Enskog model is nearly constant as the temperature changes,
while the present kinetic model and MD simulation predict a decreasing slip velocity
with temperature. For the hard-sphere gases, the density distribution is not affected
by the temperature and the velocity distribution u(y) o 1/ ,uﬁ’s. As shown by (2.8), the
shear viscosity of hard-sphere gases satisfies ,ui,’s x /T, so the normalised velocity is

temperature-independent as u,,  ~/T. However, the relationship between viscosity and
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Figure 6. The density and velocity profiles at different temperatures: (a,b) for T = 253 K; (¢,d) for T = 313 K;;

and (e, f) for T = 373 K. The average density is pqyg = 350 kg m~3, the channel width is H = 5 nm, and the
external force is F,,, = 0.001 kcal mol~! A_l.

temperature s o< /7T no longer holds for the van der Waals fluids as the collision
integral £2(?, which is temperature-dependent, comes into play. Furthermore, a new

dimensionless number, namely the reduced temperature T= kT /e, is introduced to
signify the competition between gas molecular attraction and kinetic energy for the van
der Waals fluids. As the temperature increases, the gas molecules gain more kinetic
energy to overcome the attractive forces holding them to the bulk. This results in greater
accumulation of gas molecules near the walls, leading to the increased momentum transfer
between the solid and the gas, thus reducing the slip velocity.
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Figure 7. The variation of the normalised slip velocity with temperature.

4 T T T
5 nm
Boltzmann limit

—e—F,,=0.001 kcal mol! A1
31 —a—F_=0.01 kealmol-' A~!
——F,,=0.02 kcal mol™! A™!

0, 5|
j il
14 TR
' = 0.001 keal mol™! Al
—8— H=2nm
—#—H=1
0 : . —
102 107! 100 10! 102

Figure 8. The variation of normalised mass flow rate with the Knudsen number at different external forces
and confinements.

As the viscous dissipation is non-negligible for fluids under high shear rates, we
investigate its effect on the normalised mass flow rate Q,,, which is defined as

H
/0 n(y) u(y)dy

”angextHz/(mum) ‘

On= (3.9)

As shown in figure 8, increased viscous dissipation reduces the mass flow rate in all the
flow regimes. This is because the viscous dissipation leads to a smaller slip velocity and a
larger flow resistance, as shown by the results in figure 5. The effect of viscous dissipation
on mass flow rate is similar to that of confinement, which is also included in figure 8
for comparison. However, the confinement reduces the mass flow rate more significantly
for small-Kn flows, resulting in the disappearance of the Knudsen minimum. On the
contrary, the viscous dissipation flattens the variation curve (Q, ~ Kn), but no Knudsen
minimum disappearance is observed.
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3.3. Couette flows

In the Couette flows, the top and bottom walls move at speed u,, in opposite directions, as
shown in figure 1(b). No external force is exerted on fluid molecules, so F,; = 0 and the
wall temperature is set to be 7,, = 273 K. The velocity and temperature profiles can also
be obtained by solving (3.3) and (3.4), which are written as

(y) = 2w (3.10a)
uly) = 7)’ Uy, AVa
_ 2#”& 2 2
T(y) = - (y — Hy—LyH ) +T,,. (3.10b)
KkH

Figure 9 shows the density, velocity and temperature profiles of the Couette flows at
different shear rates, with the average density pgve = 350 kg m~3, and the channel width
H = 5nm. The present kinetic model captures the density oscillation, linear velocity
distribution and parabolic temperature distribution, which are in good agreement with
the MD data. Similar to the Poiseuille flow, the Shakhov—Enskog model, which neglects
the long-range attraction between gas molecules, overestimates the density near the wall,
and underestimates both the velocity slip and the temperature jump. As the shear rate
increases, gas molecules are more likely to accumulate near the wall, as the long-range
molecular attraction may not be sufficient to pull the gas molecules to the bulk, also shown
in figure 10. In contrast to the density peak near the wall, the viscosity is the lowest in
this region; see figure 10(d). This is because the bulk gas has higher temperatures due to
viscous heating. Figure 10(b) shows that stronger viscous dissipation causes a reduction in
velocity slip as a combined consequence of a higher density peak and a greater viscosity
near the wall.

The viscous dissipation effect on Couette flows under tighter confinement is also
investigated, where the channel width shrinks from 5 nm to 2 nm, as shown in figure 11.
For such a case, both the non-equilibrium and confinement effects become stronger. The
results from the Shakhov—Enskog model and the NS equations exhibit larger discrepancies
compared to the MD simulation results, while our kinetic model can still capture accurately
the density, velocity and temperature profiles.

3.4. Couette—Fourier flows

The Couette—Fourier flow differs from the Couette flow only in the different wall
temperatures, with the top wall temperature at 7;, = 373 K and the bottom wall
temperature at 7. = 273 K. By solving (3.3) and (3.4), the velocity and temperature can
be obtained as

2u,,

u(y) = 5 )T (3.11a)

Ty —Te _ ¥\2 y y
Th—Te ZBF[(H> (1 =2Lp) & = Lr(1 =2Lp) | + = + Ly, (3.11b)

where Br = uufv/ [« (T, — T.)] is the Brinkman number measuring the competition
between viscous heating and thermal conduction.

The density, velocity and temperature profiles of the Couette—Fourier flows at two
different wall velocities are shown in figure 12, with the channel width H = 5 nm. At
a small wall moving velocity (u,, = 50 m s~!), the viscous dissipation is negligible, so
the density and temperature distributions recover those of the Fourier flows, while the
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Figure 9. The density, velocity and temperature profiles: (a—c) u,, = 200 m s~!; and (d—f) u,, = 400 m s~ 1.

The average density is pgv = 350 kg m~3, the channel width is H = 5 nm, and the wall temperature is T}, =
273 K.

velocity distribution is similar to the Couette flows. When the wall velocity increases to
u,, = 300 m s~!, the temperature profile becomes a combination of the linear and parabola
distributions resulting from the Fourier and Couette flows, respectively. Again, the present
kinetic model predicts these profiles accurately, while the results of the Shakhov—Enskog
model deviate significantly from the MD data, particularly for the density and temperature
profiles.

With increased viscous dissipation at large wall velocities, the heat generated in the
gases leads to higher gas temperatures, as shown in figure 13(a). The viscous dissipation
increases the heat transfer rate between the gas and the cold (bottom) wall, while it limits
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Figure 10. Distribution of (a) density, (b) velocity, (¢) temperature, and (d) viscosity across the channel at
different wall velocities. The average density is pavg = 350 kg m~3, the channel width is H = 5 nm, and the
wall temperature is 7, = 273 K.

the heat transfer rate between the gas and the hot (top) wall, which can be seen clearly
from the heat flux variation in figure 13(»). When the wall velocity is sufficiently large,
the hot wall can also be heated by the gases due to the large amount of heat generated by
viscous heating. Thus our kinetic model may provide a design simulation tool to develop
next-generation technologies such as nanoscale evaporative cooling.

3.5. Model solution in the dilute and continuum limits

As shown in figures 14(a) and 14(b), the results of the present kinetic model for the van
der Waals fluids are in good agreement with the Shakhov—Boltzmann model for dilute
gases and the MD simulation when the real gas effects (namely the volume exclusion
and the long-range molecular attraction) and the confinement effect are negligible. This is
because the density terms 7 M (2.15) and Z@® (2.16) and the mean-field force (2.6) become
negligible, and the kinetic model (2.17) reduces to the Shakhov model for the hard-sphere
molecules in the dilute limit. Meanwhile, the results of our kinetic model, NS equations
and MD simulations are very close in the continuum limit where the non-equilibrium and
confinement effects are sufficiently small, as shown in figures 14(c) and 14(d). This is
also expected because the NS equations are recovered from the kinetic model (2.17) in the
small-Kn limit, as shown in Appendix A. Therefore, the present kinetic model, which is
an extension of the EV model for the hard-sphere molecules to consider real gas effects, is
capable of simulating non-equilibrium flows of the confined van der Waals fluids.
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Figure 11. The density, velocity and temperature profiles: (a—c) u,, = 200 m s~ ! and (d—f) uy, = 400 m s—L.

The average density is pavg = 350 kg m~3, the channel width is H = 2 nm, and the wall temperature is T}, =
273 K. The resulting Knudsen number is Kn = 0.14.

4. Conclusions

We have proposed a new kinetic model for confined flows of the van der Waals fluids that
is consistent with the Boltzmann model in the dilute limit and with the NS equations
in the continuum limit. The long-range molecular attraction is considered in both the
kinetic equation and the transport coefficients (shear viscosity and thermal conductivity).
Building upon the Enskog theory for dense gases, the kinetic model is capable of
handling dilute to moderately dense gas flows at any Knudsen number. Through the
Chapman-Enskog expansion, macroscopic equations can be obtained with a correct
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Figure 12. The density, velocity and temperature profiles of the Couette—Fourier flows at different wall
velocities: (a—¢) u,, = 50 m s~ !; and (d—f) uy =300 m s~!. The average density is pqug = 350 kg m3,
the channel width is H = 5 nm, and the top and bottom wall temperatures are 7, = 373 K and 7, = 273 K,
respectively.

form of EoS if the pair correlation function is chosen appropriately, demonstrating the
thermodynamic consistency of our kinetic model.

Further analysis shows that the shear viscosity and thermal conductivity are in better
agreement with the experimental data when the molecular attraction is taken into account,
while the bulk viscosity is more accurately predicted by the Enskog formula for the
hard-sphere molecules with a state-dependent diameter. The Enskog theory greatly
overestimates the bulk viscosity of dense gases, which explains the overestimation of shear
viscosity and thermal conductivity at large densities. The empirical MET that incorporates
the molecular attraction into the pair correlation function either fails to recover the
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velocities, where the symbols denote the MD data. The averaged density is pgug = 350 kg m~3, the channel
width is H = 5 nm, and the top and bottom wall temperatures are 7, = 373 K and T, = 273 K, respectively.
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Figure 14. The present kinetic model agrees with (a,b) the Boltzmann model in the dilute limit, and
(c,d) the NS equations in the continuum limit. The average density pqp, = 2 kg m~3, the channel width

H = 100 nm and the external force F,; = 0.00003 kcal mol~! A ! in (a,b) correspond to n = 0.00062 and
Kn = 0.64; the average density pgyg = 450 kg m~3, the channel width H = 50 nm and the external force

Feyr = 0.00005 keal mol ™! Afl in (c,d) correspond to n = 0.14 and Kn = 0.0039.
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Boltzmann equation in the dilute limit or produces non-physical properties, e.g. negative
transport coefficients near critical temperatures. Momentum and energy transfer become
temperature-dependent for the van der Waals fluids due to gas molecular attraction, which
is not the case for the hard-sphere molecules. The extensive numerical tests suggest that
the present model can capture the effects of non-equilibrium, confinement and real gas
simultaneously. While this study is concerned primarily with the confined flows of van der
Waals fluids, the present kinetic model can be applied to other types of flows, including
unconfined flows and non-equilibrium evaporating flows. In this work, only monatomic
gases are considered. Nevertheless, the developed model, with the transport coefficients
corrected by the acentric factor, may be applicable to the polyatomic gases if the internal
energies of molecules (i.e. rotational, vibrational and electronic energies) are thermalised
rapidly with the translational energy. Otherwise, more terms should be added to account
for the relaxation between the translational and internal modes during molecular collisions.
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Appendix A. Chapman-Enskog expansion of the present kinetic model

To properly assign the relaxation time 7 and the Prandtl number Pr, we will derive
the hydrodynamic equations from the kinetic model (2.17) using the Chapman—Enskog
expansion (Chapman & Cowling 1990). First, the following expansions are introduced:

0 0 g 0 0 0 (Alab)
—=fg— 4" —, —=g—, a,
ot daf dafp ar ar]

where ¢ is a small parameter on the order of the Knudsen number, and #; and 7, are the
fast convective and slow diffusive scales, respectively. The distribution function f, kinetic
pressure tensor Py, and kinetic heat flux Q) satisfy

W=WO 4 ap® 4 2WD 4. (A2)

where W = {f, P, O,}. Meanwhile, we also assume F = ¢F, with F = Foyy + Fyy
being the total force term. Following (Ala,b) and (A2), the kinetic equation (2.17) can be
transformed into a hierarchy of equations according to the order of ¢, with the preceding

976 A7-29


https://orcid.org/0000-0001-7174-5155
https://orcid.org/0000-0001-7174-5155
https://orcid.org/0000-0002-6791-6369
https://orcid.org/0000-0002-6791-6369
https://orcid.org/0000-0002-0104-828X
https://orcid.org/0000-0002-0104-828X
https://orcid.org/0000-0002-0683-7050
https://orcid.org/0000-0002-0683-7050
https://doi.org/10.1017/jfm.2023.893

https://doi.org/10.1017/jfm.2023.893 Published online by Cambridge University Press

B. Shan, W. Su, L. Gibelli and Y. Zhang

equations given as

0. f(O) = fe,
. WO WO Fo O
' 0t orq m 3&1
()]
1 c- Oy
= —_ | FD _peqq _ ~__5 7D
T[f - g RT(RT )}+ 1w
of(h (0) af M Fy  9fD
f f +&- f + 20, f_
o] 8t2 ory m 3§1
@
1 O
— 2| f@ _peaqy _ pp) -5 79,
T |:f S 5p RT <RT ):| +

Here, Z(" and Z™ are of the order of ¢ and &2, respectively, as they include the first-
and second-order gradients of macroscopic properties (density, velocity and temperature).
From the result of the order £, we can get that

f v fPdg =0, k>1, (A4)

where ¥; = {1, m&, m&?/2} are the summation invariants. Consequently, the hydrodynamic
equations of the order of ¢! can be obtained as

% 0wy =0 (A5q)
—_— —_— u) = . a
ot ory P
d(pu 0
% o [(P” + puu] — nFo = —V - [(nVoxnksT) U], (ASb)
1 1
IpE) 9
wE) | 5 [0 + pEu+ P «u] —nFo-u=—V - aVoxnksTu),  (ASc)
1

ot

where U is the unit tensor, and E = (3RT + uz) /2 is the combination of internal and
kinetic energies of molecules per unit mass. It is noted that the potential energy of
molecules is described by the excess collision terms Z(!) and 7 as well as the mean-field
force term F 4 in the kinetic model, so it does not appear in E. The terms on the right-hand
side of (A5h) and (ASc) quantify the effect of the non-local collisions of gas molecules,

which are negligible for dilute gases. The zeroth-order pressure tensor P(O) and heat flux

Q,EO) can be calculated as
P,(CO) = /mccf(o) dé = nkpTU,

(A6)
o0 — /mc M€ 0 gg — 0.
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Similarly, the hydrodynamic equations of the order of £2 can be obtained by taking the
moments in terms of the summation invariants ¥; as

p
af -
d(pu) 9 )
—_— . P = V . V ° U ’ A7
o, ar K ey -t Y
ApE) | D
(a[;z) [Q(“ P ul = V - [up(V - wul.

From the result of the order ¢! in (A3), /() can be obtained as

0) ) o) (1)
f<1>:-f[i+g.af (o ¥ }+fe‘1(1 pn < (RT 5)+rz“>.

ot ary m &, SpoRT
(A8)
Therefore, the first-order pressure tensor P,({l) and heat flux Q,({l) can be calculated as
2 o
P,(cl) = /mccf(l) dé = —2nkpTt (1 + 3 nVo)() S,
Skp nkgT 3 (A9)
o = /mc TECpmag = — 22T (4 4 Z vy | VT,
2m Pr 5
where the rate-of-shear tensor S can be expressed as
S=1[Vu+ '] - Lv-.uwu, (A10)

where (Vu)T denotes the transpose of Vu.

If the molecular size is not negligible, then the momentum and energy can be transferred
at the instant collisions over a molecule size 0. According to Cercignani & Lampis (1988)
and Frezzotti (1999), the collisional pressure tensor P. and heat flux Q, relate to the
collision operator through

/ mEJ O + 70 + 7P1dg = -V . P,

(A11)
/ MES O L0 L IO ag =V (0, + P,
from which we can get
P. = [nkgTnVyx — V-.ulU,
e BTnVox — pp( ) (A12)
Q. =0.
Combining (AS) and (A7), the hydrodynamic equations can be obtained as

ap

5 TV (ow =0, (Al3a)
d(pu
(gt ) + V. (puu+ Py + Pc) —n(Fay + Fex) =0, (A13Db)
d(pE)

T"’V pEu+Qk+(Pk+Pc)‘u]_n(Fatt+Fext)°u=0’ (Al3c)
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where Py = P,EO) + P,({l) and Q;, = Q,(CO) + Q,(Cl) are the kinetic parts of the pressure tensor
and heat flux, respectively. Now we make further analysis on the mean-field force term
F 4. When the long-range attractive forces between gas molecules are considered, the
intermolecular potential energy comes into play (Chapman & Cowling 1990; Martys
1999; He & Doolen 2002). Assuming that the spatial variation of density is small in the
hydrodynamic limit, the mean-field force F,; can be approximated by

Fu=2aVn+kVVZn, (Al4)

where a and k are two constants related to the attractive potential as

r>o (A15)

Considering the identity n VV?n in the form
nVVn=V. [(nV2n+ %anlz) U—VnVn], (A16)

the mean-field force term in (A5) can be transformed as
nFoy =V Py +V - K, (A17)

where Pg; = anU is the pressure contribution due to attractive forces, and K is the
capillary (or Korteweg stress) tensor (Anderson, McFadden & Wheeler 1998), which is
given by

K = k[ (n9?n+ JIVal?) U= Vava). (A18)

The total pressure tensor P and heat flux Q are the combination of kinetic and potential
contributions, which are

P=P;+P:.+ Py

2 o
_ o . _ z
= [nkgT(1 +nVyx) —an ug(V -u)|U — 2nkpTt (1 + 5 nVox) S, (A19)

SkB nkB Tt (

3
= =—— - nV VT.
0= 0+0.= -3 "0 (14 Tuvar )

5

Comparing (A19) to Newton’s law of viscosity and Fourier’s law of thermal conduction,
the relationship between the relaxation time and transport coefficients can be obtained as

2
ws = nkgTT (1 + 3 nVoX) ,

(A20)
SkB nkBTr 3
K=— 1+ -nVox ).

" 2m  Pr 5
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Finally, combining (A13) and (A17), we obtain the hydrodynamic equations of the
kinetic model (2.17) in the conservative form as

% 1Y o =0
_ . u) = N
o1 p
d(pu) 2
a1 + V. {puu+[p—pup(V-wlU—2u;S — K} = nFey, (
d(pE) o
TS +V - {pEu —«VT +[p— pup(V-w)]U-u— 2u;S+K) - u} =nFoy - u,
(A21)
where the pressure p in both the momentum and energy equations satisfies
p = nkgT(1 +nVox) — an’. (A22)

Noted that if there is no interface, e.g. for single phase flows, then the capillary force
does not appear, and the hydrodynamic equations (A21) reduce to the conventional NS
equations for compressible flows.
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