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ABSTRACT

Deep-sea mining lifting risers experience vibrations induced by the action of ocean waves and currents, and these vibrations have an impact
on the lifting efficiency of ores transported inside the risers. Here, to investigate the effect of riser vibration on ore transport, the motion of a
single solid particle in a riser oscillating in the lateral direction is simulated taking account of collisions between the particle and the riser
using the governing equation for motion of a spherical particle in Poiseuille flow and the Hertz–Mindlin soft sphere collision model.
Validations are conducted based on comparisons between numerical and experimental results. Then, the motion of the particle in the
vibrating riser is explored, considering the effects of the initial position of release of the particle, the frequency and amplitude of the riser
vibrations, and collisions between the particle and the riser. It is found that the initial position of release affects only the initial motion of the
particle, but not its overall motion. With increasing vibrational frequency and amplitude of the riser, the relative lateral velocity of the
particle shows an increasing trend, while its vertical velocity and lifting distance are clearly decreased. The frequency with which the vertical
particle velocity varies is twice as the vibrational frequency of the riser. Moreover, collisions have significant effects on the particle motion,
especially on the velocities of the particle, the phase difference between the displacements of the particle and the vibrating riser, and the
particle trajectory. Finally, the behavioral regime map of the particle under different vibrational frequencies and amplitudes of the riser is
established preliminarily.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172324

I. INTRODUCTION

In deep-sea mining, the manganese nodules estimated to be in
the range of tens of centimeters are first collected in a chamber by col-
lectors, and then crushed into centimeter-sized particles by a crusher,
and finally transported through the riser. Many issues need to be
addressed here due to the complexity of the deep-sea mining process.
For example, apart from the ores and seawater, a small amount of air
might exist in the lifting riser, and thus, the gas–liquid flow may exist
in the process of deep-sea mining, which has been investigated system-
atically and detailed by some scholars.1–4 Moreover, lifting risers
exhibit complicated dynamical behavior when they are subjected to
waves and currents. A number of scholars have conducted studies on
this issue,5–9 and notably, Li et al.8,9 introduced a linear-time-invari-
ance notion to the Koopman analysis, offering a fresh perspective on
the study of fluid–structure interaction and nonlinear, stochastic sys-
tems. However, limited attention has been given to the characteristics
of the motion of ores in lifting risers, which is one of the most impor-
tant tasks required to guarantee the safety of deep-sea mining

operations. Dynamic responses, such as vortex-induced vibration, can
be induced when lifting risers with a large aspect ratio are subjected to
wave and current loads. These riser oscillations can cause collisions
between the ore and the inner wall of the riser, and such collisions will
have a significant impact on the motion of the ore. Since the security
and efficiency of deep-sea mining depend strongly on the conveyance
of ores in lifting risers, it is of great importance to consider the effect of
riser vibration on ore motion.

The dynamics of both a single particle and multiple particles
moving in fluids have been studied extensively for many years. For
example, from an analysis of a rotating sphere in a fluid, Magnus10

found that a force, subsequently termed the Magnus force,11 was
exerted upon the sphere. A particle accelerating in a fluid is subjected
to two kinds of force: the added-mass force and the Basset force related
to viscous effects. Basset12 obtained an expression for the latter force
that is valid when a spherical particle is moving at low velocity but
with rapid acceleration. Odar and Hamilton13 obtained a more general
expression for the two forces involving the added-mass coefficient CA,
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an experimentally determined coefficient CH, the acceleration number
Ac (a dimensionless ratio related to the velocity, acceleration, and
diameter of the sphere), and the Reynolds number Re. Michaelides
and co-workers14–16 compared the Basset force with the total force on
a particle in the case of turbulent flow in a tube and found that the
Basset force term could be ignored in the equation of motion of the
particle when the particle diameter was larger than 1lm, the dimen-
sionless frequency of variation was less than 0.5, and the fluid-to-parti-
cle density ratio was less than 0.002 or greater than 0.7.

Based on earlier work, an equation for the motion of a sphere in
nonuniform flow was first proposed by Tchen.17 This equation was
later modified and applied by many researchers.18–22 Using the particle
equation of motion and the Navier–Stokes equation, Feng et al.23,24

studied the sedimentation of a circular particle in a vertical channel in
two dimensions and discovered five different regimes of motion as the
Reynolds number was increased to 600: steady motion with and with-
out overshoot and weak, strong, and irregular oscillations. The transi-
tions between adjacent regimes of motion arising from variations in
the solid/fluid density ratio have been discussed by Jenny et al.25 in
terms of primary and second bifurcations. The effects of the Reynolds
number, particle–tube size ratio, and degrees of freedom on the trajec-
tory and velocity of a particle falling in a fluid-filled tube, as well as on
the associated vortex structures, have been analyzed and discussed by a
number of authors.26–28

Particles in a shear flow behave very differently compared with
those in still water, and hence, the motion of rigid spheres in linear
shear flow and Poiseuille flow have attracted much attention. In the
case of particles in Poiseuille flow in a vertical tube, it was observed
experimentally by Oliver29 that downward-settling particles in
downward-flowing liquid moved toward the wall, whereas upward-
settling particles moved toward the axis, and this behavior was also
shown theoretically by Saffman30,31 and by Moore and Saffman.32

Particles suspended in a tube flow with relatively low concentration
were found by Segr�e and Silberberg,33 Matas et al.,34 and Pan et al.35 to
accumulate at a position approximately one-third of the tube radius
away from the tube wall. The distribution of neutrally buoyant spheri-
cal particles in circular tube flow was measured by Morita et al.,36 who
found two peaks in the radial probability function, corresponding to
two annuli at which particles accumulated. The inertial focusing of an
isolated particle and of a dilute suspension of particles in wall-bounded
laminar flow was studied numerically by Nakayama et al.37 and
Aouane et al.38 It was observed that there are three Re regimes of
particle-focusing patterns and the channel focusing length increases
with Re for Re� 600. The trajectories, velocities, and equilibrium posi-
tions of a neutrally buoyant sphere in vertical and horizontal channels
were investigated by Fox et al.39 The lift and drag forces acting on a
spherical particle in a linear shear flow bounded by a single wall were
examined by Shi and Rzehak40 and by Ekanayake et al.,41 with particu-
lar attention being paid to the particle migration caused by hydrody-
namic lift forces. In addition to the above-mentioned studies, the laws
of motion of single and multiple particles in fluid flows have been
widely investigated both experimentally and theoretically.42–48

The studies of particles moving in shear flow described above
were concerned mainly with the case of low Reynolds number, in
which the density of particles was approximately equal to that of the
fluid or the particle diameter was very small. However, the more gen-
eral case of particles with a large density difference from the fluid has

also been studied. The lateral migration and the equilibrium position
of non-neutrally buoyant particles in planar Poiseuille flow and
Couette flow were investigated by Feng et al.24 and Fox et al.39 It was
found that when the density difference between particle and fluid is
large enough, the equilibrium position of the particle shifts toward the
centerline of the riser regardless of whether the particle is lighter or
heavier than the fluid. It should be noted that the findings of these two
studies were different from the predictions of the perturbation theory
of Vasseur and Cox.49 The trajectories of a sphere in Poiseuille flow
with Ret¼ 20–150 (Ret is the Reynolds number of the tube) were simu-
lated by Shao et al.50 for various density ratios qr¼ qp/qf (qp and qf are
the densities of the particle and the fluid, respectively) and diameter
ratios ka¼ d/D, and the results obtained were found to be the same as
those of Feng et al.24 when the particle was heavier than the ambient
fluid. The migration of particles was studied by Shao et al.,50 Matas
et al.,34,51,52 and Bai et al.53 for various particle–tube size ratios and
Reynolds numbers. Liu et al.54 carried out simulations to investigate
the behavior of the hydrodynamic forces and the velocity of a heavy
sphere in upward Poiseuille flow for a wide range of density ratios 1.1
� qr � 4 and various degrees of freedom. The above-mentioned stud-
ies have provided a clear picture of the motion of particles in a station-
ary riser with upward Poiseuille flow.

In the previous studies described above, the motion of particles in
fluid contained in a fixed pipe has mainly been investigated without
taking account of any movement of the pipe. However, as mentioned
at the start of this section, lifting risers can move or oscillate periodi-
cally when subjected to waves and currents in the ocean. Once such
oscillations occur, collisions between particles and riser are inevitable,
and these can intensify the dynamic motion of the particles. Thus, it is
necessary to investigate the motion of particles in fluid contained in a
vibrating riser and the underlying mechanisms. Undoubtedly, in the
study of this issue, particles’ motion and their interactions can be
affected by the particle count, which has been studied by numerous
scholars.55–60 However, it should be noticed that the underlying mech-
anisms behind the occurrence of these phenomena are extremely com-
plicated with the increase in particle count, which has received limited
attention. Therefore, it is informative to explore the motion of a single
particle within a vibrating riser first, as it can be a foundation for the
investigation of the multiparticle behaviors within such riser.

Additionally, ores transported in the riser might be irregular, and
according to the investigation of Chen et al.,61 it is found that irregu-
larly shaped particles, compared to spherical particles, can increase the
possibility of blockage, and the particle behavior varies with different
parameters. However, previous research works on the behaviors of
ores in a deep-sea vertical riser (stationary riser) regarded such ores as
spheres, as investigated by Liu et al.,54 Ren et al.,57 Wan et al.,58 and
Zhang et al.62 Therefore, simplifying the shape of the ore to a sphere
provides a convenient and effective approach to analyze the behavior
of ores. Accordingly, in our study, the ore and the lifting riser are sim-
plified as a spherical particle and a vertical riser, respectively. Thus, the
problem reduces to that of a single spherical particle moving in a riser
with transverse vibration.

Based on the above simplification, here, the motion of a single
particle in a transversely oscillating riser is investigated using the gov-
erning equation for the motion of a sphere together with the
Hertz–Mindlin soft sphere collision model,63 and the internal flow in
the riser is taken to be upward Poiseuille flow. First, the model
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established using this approach is validated through a comparison of
numerical results and experimental data. Then, the characteristics of
particle motion, such as velocities and trajectories, are analyzed and
discussed when positions of initial particle release, vibrational frequen-
cies, and amplitudes of the riser are changed. The effect on particle
motion of collisions between the particle and the oscillating riser is
also investigated. It should be emphasized here that the aim of this
study is to carry out a preliminary exploration of the characteristics of
motion of a single particle in an oscillating riser that will provide a
foundation for further experimental and numerical investigations of
the motion of multiple particles in which additional factors are taken
into account.

The remainder of the paper is structured as follows. The equation
governing the motion of the sphere and the model adopted for colli-
sions between the particle and the vibrating riser are introduced in Sec.
II. Section III presents a validation of the model based on a comparison
between numerical and experimental results. Then, in Sec. IV, the
effects on particle motion of the position at which the particle is ini-
tially released, the vibrational amplitude and frequency of the riser,
and the particle–riser collisions are analyzed and discussed. Moreover,
the possible behavioral regimes of the particle affected by the vibra-
tional frequency and amplitude of the riser are summarized and
depicted in Sec. IVD. Finally, the conclusions of the study are drawn
in Sec. V.

II. NUMERICAL MODEL
A. Governing equations of particle motion

As mentioned above, the ore in the vibrating riser is simplified as
a spherical particle. In addition, particle rotation and fracture of the
particle during collisions are left out of consideration. In addition, in
order to give prominence to the influence of the collision between the
particle and the riser on the motion of the particle inside a vibrating
riser, the perturbation on the flow field by the particle is not taken into
consideration in the present study and hence, the flow velocity inside
the riser is given as was done by some researchers such as Maxey and
Riley19 and Michaelides and co-workers.14–16

The particle moving in the vibrating riser is subject to gravita-
tional, impact, and fluid forces. The drag force, Saffman lift force, pres-
sure gradient force, additional forces, and Basset force are included the
fluid force exerted on the particle. When a collision occurs between the
particle and the oscillating riser, the collision force must be taken into
account, which will be done in Sec. II B. The governing equation for
the spherical particle moving in the fluid is given as22

pd2

6
qp

dvpi
dt

¼ pd2

8
qf CDjufi � vpij ufi � vpið Þ þ

pd3

12
qf

dvpi
dt

� dufi
dt

� �

þ pd3

6
qp � qfð Þgi þ

pd3

8
qf CLS ufi � vpið Þ � 2xfi

þ CH
d2

4
ffiffiffiffiffiffiffiffiffiffiffiffi
pqf lf

p ðt
0

dðufi � vpiÞ
dsffiffiffiffiffiffiffiffiffiffi
t � s

p ds

þ pd3

6
qf

Dufi
Dt

� l
qf

r2ufi

 !

¼ FD þ FAM þ FG�B þ FLS þ FH þ FFS; (1)

where the various terms on the right-hand side of Eq. (1) are as fol-
lows: FD denotes the drag force; FAM is the force due to the added
mass; FG-B is the body force (gravity minus buoyance); FLS represents
the Saffman force resulting from the shear of the fluid; FH is the Basset
force in the time domain, representing the memory effect on the parti-
cle motion; and the last term, FFS, denotes the force of fluid stress gra-
dients on the particle, which results from the acceleration of the local
fluid element or the stress on the sphere owing to the undisturbed fluid
flow. In addition, d is the diameter of the spherical particle, qp and qf
are the densities of the particle and the fluid, respectively, ufi and vpi
are the particle and fluid velocities, respectively, and xfi ¼ 1

2r� ufi is
the fluid vorticity. l denotes the dynamic viscosity of the fluid. CD,
CLS, and CH are the drag coefficient, Saffman lift coefficient, and Basset
term (history term) coefficient, respectively. Here, the fluid density qf,
vertical velocity ucm, and riser diameter D are taken as dimensional
units. The corresponding dimensionless quantities can be obtained as
follows:

v�pi ¼
vpi
ucm

; u�fi ¼
ufi
ucm

; x�
fi ¼

xfi

ucm=D
; Fr ¼ jgijD

u2cm
;

Recm ¼ qf ucmD

l
;

qf ucmD

l
; b ¼ qp

qf
; k ¼ 1

1þ 0:5b
:

The governing equation can then be expressed in a dimensionless
form as

dv�pi
dt

¼ k

3
4
CDju�fi � v�pij u�fi � v�pi

� �
þ 1
2

du�fi
dt

þ 1� bð ÞFr gi
jgij

þ 3
4
CLS u�fi � v�pi
� �

� 2x�
fi

þ 3
12

CH

ffiffiffiffiffiffiffiffiffi
p

Recm

r ðt�
0

dðu�fi � v�piÞ
ds�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� � s�

p ds�

þDu�fi
Dt

� 1
Recm

r�2u�fi

2
66666666666666664

3
77777777777777775

: (2)

In comparison with the other terms, Re�1
cmr�2u�fi can be ignored,

since Recm is generally of the order of magnitude of 105. Henceforth,
for brevity, the superscript � will be omitted. Finally, the governing
equation is expressed as

dvpi
dt

¼ k

3
4
CDjufi � vpij ufi � vpið Þ þ

1
2

dufi
dt

þ 1� bð ÞFr gi
jgij

þ 3
4
CLS ufi � vpið Þ � 2xfi

þ 3
12

CH

ffiffiffiffiffiffiffiffiffi
p

Recm

r ðt
0

dðufi � vpiÞ
dsffiffiffiffiffiffiffiffiffiffi
t � s

p dsþ Dufi
Dt

2
66666666664

3
77777777775
: (3)

As described by Clift et al.,64 CD and CLS are the drag coefficient
and Saffman lift coefficient, which depend on the Reynolds number
Rep and the shear Reynolds number Reshear of the particle,

Rep ¼
qf d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jufi � vpij2

q
l

; (4)
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CLS ¼ 4:1126ffiffiffiffiffiffiffiffiffiffiffiffiffi
Reshear

p f Rep;Reshearð Þ; Reshear ¼
qf d

2jr � ufij
lf

; (5)

f Rep;Reshearð Þ ¼

1� 0:3314

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Reshear
2Rep

s0
@

1
Ae�0:1Rep

þ0:3314

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Reshear
2Rep

s
; Rep � 40;

0:0524
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5Reshear

p
; Rep > 40:

8>>>>>>>><
>>>>>>>>:

(6)

The drag coefficient CD of an unbounded flow field depends
closely on the Reynolds number. In addition, the diameter ratio a¼ d/D
also plays an important role in determining CD when the particle moves
in the riser.64 After correction, CD can be expressed as follows:

CD ¼

24
Rep

K; Rep � 1;

24
Rep

1
6
Re2=3p þ K

� �
; 1 < Rep < 100;

0:42KF1; 100 < Rep < 600;

0:42KF2; Rep > 105;

8>>>>>>>>><
>>>>>>>>>:

(7)

where

K ¼ 1� 0:75857a5

1� 2:1050aþ 2:0865a3 � 1:7068a5 þ 0:72603a6
; (8)

KF1 ¼ 1
1� 1:6a1:6

; (9)

KF2 ¼ 1þ 1:45a4:5

1� a2ð Þ2 : (10)

As investigated by Michaelides and Roig,65 the empirical coeffi-
cient of Basset term CH depends on the Reynolds number of the parti-
cle Rep and Strouhal number St. The expressions of CH and St are
shown as follows:

St ¼ 9l
16pfR2

pqf
; (11)

CH ¼ 6:00� 3:16 1� exp �0:14RepSt
0:82

� �2:5h i
; (12)

where f is the frequency of the fluid oscillations. Rp denotes the sphere
radius.

B. Collision model

As collisions will occur between the particle and the vibrating
riser, it is necessary to take the effect of these collisions on particle
motion into account during the calculation. Two collision models can
be employed for simulating particle-wall collisions, namely, hard
sphere model66 and soft sphere model.63 The former enables the calcu-
lation of post-collision velocities, but it fails to capture variations in
particle velocities during collisions. However, the soft sphere model
addresses this limitation. Therefore, the Hertz–Mindlin soft sphere col-
lision model is selected for this purpose, and the solid particles in the
ore-lifting riser are assumed to be ideal soft spheres during our investi-
gation. In this collision model, the overlap distance d is solved each

time step during collision to calculate the collision force Fcol and parti-
cle velocity. Since the overlap distance d, consisting of the normal over-
lap distance dn and tangential overlap distance ds, varies with time, the
trend of variation of the particle velocity can be obtained, enabling
analysis of the influence of collisions on particle motion. The collision
force Fcol can be expressed as

Fcol ¼ Fn þ Fs; (13)

where Fn and Fs denote the normal and tangential forces, respectively.
These forces can be calculated as

Fn ¼ knjdnj3=2 � NnUpw � n
� �

n; (14)

Fs ¼
�lf jkndnj

ds
jdsj s; ksjdsj > lf jkndnj;

�ksdss� NsUpw;s; ksjdsj � lf jFnj;

8><
>: (15)

with

Upw;s ¼ Upw � Upw � nð Þn� Rpxp þ Rwxwð Þ � n; (16)

n ¼ Paxis � Pp

jPaxis � Ppj ; (17)

where kn and ks are the normal and tangential elastic constants, dn and
ds are the normal and tangential overlap distance, and Nn and Ns are
the normal and tangential damping constants (usually, Nn¼Ns). The
relative velocity can be calculated as Upw ¼ Up � Uw, where Up and
Uw are the velocities of the particle center and vibrating riser, respec-
tively. Upw;s represents the tangential component of the relative speed
of the contact point between the particle and riser wall. The normal
unit vector n and normal overlap distance dn are defined in terms of
the positions of the particle center Pp(xp,yp) and riser centerline
Paxis(xc,yc). s represents the tangential unit vector. In addition, kn, ks,
Nn, dn, and ds are set as follows:

kn ¼ 4
3
Eeq

ffiffiffiffiffiffiffi
Req

p
; (18)

ks ¼ 8Geq

ffiffiffiffiffiffiffiffiffiffiffi
Reqdn

q
; (19)

Nn ¼ Cn;restd
1=4
n

ffiffiffiffiffiffiffiffiffiffiffiffi
knMeq

q
; (20)

dn ¼ Rp þ Rw � jPp � Pwj; (21)

ds ¼ jUpw;sjDt; (22)

where Rp is the particle radius, Cn,rest is the normal recovery coefficient,
and Dt is the time step. The subscript “eq” indicates the equivalent
parameters that are used because of the different material parameters
of the particle and riser. The equivalent Young’s modulus Eeq, equiva-
lent radius Req, equivalent mass Meq, and equivalent shear modulus
Geq are defined as follows:

Eeq ¼
1� t2p
Ep

þ 1� t2w
Ew

 !�1

; (23)

Geq ¼
2 2þ tp � t2p
� �

Ep
þ 2 2þ tw � t2w
� �

Ew

2
4

3
5�1

; (24)
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Req ¼ 1
Rp

þ 1
Rw

� ��1

; (25)

Meq ¼ 1
Mp

þ 1
Mw

� ��1

; (26)

where subscripts p and w represent particle and riser wall. E, G,M, and
R are the Young’s modulus, shear modulus, mass, and radius. In the
case of particle–wall collision, the riser wall is regarded as a particle
with infinite radius Rw¼1 and mass Mw¼1, and thus, Req¼Rp
andMeq¼Mp.

Since a particle–riser collision occurs in three dimensions, the rel-
ative velocity of the particle can be decomposed into three compo-
nents: two in the tangential directions and one in the normal direction.
As shown in Fig. 1, the normal and tangential relative velocities can be
expressed in terms of the velocity difference and the angle h between
the particle and the riser in the plane perpendicular to the riser
centerline,

h ¼ arctan
yp � yc
xp � xc

� �
; (27)

vn ¼ vpy � ucyð Þsin hþ vpx � ucxð Þcos h;
vsh ¼ vpy � ucyð Þcos hþ vpx � ucxð Þsin h;
vsz ¼ vpz :

8>><
>>: (28)

The directions of the normal relative velocity vn and tangential relative
velocity vsh are set along the radial and one of the tangential directions
of the riser, respectively, as shown in Fig. 1. The other tangential direc-
tion vsz is set along the centerline of the riser (the z axis).

Whether a collision occurs depends on the distance between the
particle center and the riser centerline, which can be denoted by

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � xcÞ2 þ ðyp � ycÞ2

q
, where the cross section of the riser is

in the x–y plane. The z axis corresponds to the vertical centerline of

the riser. (xp, yp) and (xc, yc) are the coordinates of the particle center
and the riser centerline. A collision between the particle and the oscil-
lating riser will occur when h> (D� d)/2� ed, where h is the distance
between the particle center and the riser centerline, and e is a tolerance
coefficient (e¼ 10�3–10�4 in this study). The collision between parti-
cle and riser stops when the normal overlap distance dn� 0.

C. Detailed description of the solving procedure

The particle motion in a vibrating riser can be calculated using
governing equations of particle motion and collision model, as
described in Secs. II A and IIB. Here, the conjunctional solution proce-
dure for these two equations is presented in detail.

The solve processor of the collision model in conjunction with
Eq. (3) is presented in Fig. 2. During the calculation, the initial posi-
tion and velocity of the particle are set as (xp0, yp0, zp0) and (vpx0,
vpy0, vpz0), respectively. Before iteratively solving for particle veloci-
ties, it is necessary to determine whether a collision between the par-
ticle and the riser wall occurs. The distance between the particle
center and the riser centerline is denoted by

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � xcÞ2 þ ðyp � ycÞ2

q
, where the cross section of the riser is

located in the x–y plane.

(1) When h > (D � d)/2 – ed, the collision occurs, and the particle
velocities are determined using the Hertz–Mindlin soft sphere
collision model described in Sec. II B in the revised manuscript.
The special processor of the collision can be expressed as
follows:
(a) Before the collision, the positions and velocities of particle

and riser wall are represented as [xp
(0), yp

(0), zp
(0)], [vpx

(0),
vpy

(0), vpz
(0)] and [xc

(0), yc
(0), zc

(0)], [ucx
(0), ucy

(0), ucz
(0)],

respectively. It should be pointed out that the relative
velocity of the particle to the riser wall is required for solv-
ing the collision. The relative velocity before the collision is

FIG. 1. Schematic representation of the
model of a collision between the particle
and the riser wall.
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calculated by [vpxre
(0), vpyre

(0), vpzre
(0)]¼ [vpx

(0) � ucx
(0),

vpy
(0) � ucy

(0), vpz
(0) � ucz

(0)]. In addition, since a particle-
riser collision occurs in three dimensions, the relative
velocity of the particle can be decomposed into three com-
ponents: two in the tangential directions and one in the
normal direction. As shown in Fig. 1, the normal and tan-
gential relative velocities can be expressed in terms of the
velocity difference and the angle h between the particle and
the riser in the plane perpendicular to the riser centerline is
expressed in Eq. (27).
Therefore, at the beginning of the collision, the normal
and tangential velocities can be expressed as

vð0Þn ¼ vð0Þpxre cos hþ vð0Þpyre sin h;

vð0Þsh ¼ vð0Þpxre sin hþ vð0Þpyre cos h;

vð0Þsz ¼ vð0Þpzre:

8>>><
>>>:

(29)

The collision forces in normal and tangential directions
are calculated as Eqs. (14) and (15). It should be noted
that at the beginning of the collision, the overlap is set
as 0, and so the collision forces Fn

(0) and Fs
(0) are equal

to 0, indicating zero acceleration for the particle.
However, due to the existence of the relative velocity,
the particle keeps moving toward the wall and the over-
lap exists. Consequently, the collision process can be
progressed.

(b) As the collision progresses, the overlap distances and
velocities in normal and tangential directions can be
obtained by the following equations:

dn ið Þ ¼ dn i� 1ð Þ þ vn i� 1ð ÞDt þ 0:5an i� 1ð ÞDt2; (30)

ds ið Þ ¼ ds i� 1ð Þ þ vs i� 1ð ÞDt þ 0:5as i� 1ð ÞDt2; (31)

where Dt and i represent the time step and the number of
the time steps, respectively. The accelerations of the rela-
tive motion between the particle and the riser wall in the
normal and tangential directions are set as an and as. “(i)”
and “(i� 1)” denote the variables of this and previous
time step, respectively. The forces Fn and Fs at this time
step can be obtained using the overlap distance dn(i) and
ds(i), and therefore, the acceleration at this time step i can
be calculated by the following expressions:

an ið Þ ¼ Fn ið Þ=mp as ið Þ ¼ Fs ið Þ=mp: (32)

The relative velocities at the next time step i þ 1 can be
obtained by

vn iþ 1ð Þ ¼ vn ið Þ þ an ið ÞDt; (33)

vs iþ 1ð Þ ¼ vs ið Þ þ as ið ÞDt: (34)

After completing the calculations within a time step Dt,
the process continues to be repeated if the condition dn(i)
� 0 is satisfied. When dn(i) � 0 but ds(i) < 0, the overlap
distance and relative velocities in the normal direction are
still obtained using the procedure described above.
Meanwhile, the variables in the tangential direction will
not change as the time step progresses, meaning that they
remain the same as those in the previous time step,
denoted as “�(i þ 1)¼�(i),” where “�” denotes the varia-
bles during the collision calculation. Finally, as dn(i) < 0,

FIG. 2. A flow chart showing solving pro-
cedure of the coupling method.
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the loop process mentioned above is terminated. At this
moment, the relative velocities after collision are denoted
as vn(end), vth(end), and vtz(end), where “end” represents
the last time step of the collision.

(c) For convenience of calculation, the velocities after the col-
lision are converted to the Cartesian coordinate and
expressed as

vpxð1Þ ¼ vn endð Þcos hþ vsh endð Þsin hþ ucxð0Þ;

vpyð1Þ ¼ vn endð Þsin h� vsh endð Þcos hþ ucyð0Þ;

vszð1Þ ¼ vpz endð Þ þ uczð0Þ;

8>><
>>: (35)

wherein superscript “(1)” represents the variables of the
particle after the collision. In addition, it should be noted
that the positions of particle and riser axis remain the
same {[xp

(1), yp
(1), zp

(1)]¼ [xp
(0), yp

(0), zp
(0)], [xc

(1), yc
(1),

zc
(1)]¼ [xc

(0), yc
(0), zc

(0)]} before and after the collision
due to that the duration of collision is transient, but an
abrupt in velocities exists.

(d) After the collision, the particle velocity can be obtained
using the governing equation expressed as Eq. (3). The
fourth–fifth order Runge–Kutta algorithm is employed to
solve Eq. (3). During the calculation, the time step for the
fluid is chosen to be 10�3, meaning that the variables of
the particle and fluid are updated every 10�3 unit of time.
The time step for the collisions process is set as 10�6,
which is significantly smaller compared to the time step
for the fluid, allowing for a more accurate calculation of
the particle collisions.

(2) When h � (D � d)/2 – ed, collisions do not occur, and the vari-
ation of the particle velocity with time can be determined by
solving Eq. (3) iteratively, as shown in (d).

D. Dimensionless parameters of particle motion

The motion of the sphere in the vibrating riser is mainly affected
by the fluid force and gravitational force when the fluid in the riser is
set as upward Poiseuille flow. Collisions between the particle and riser
wall will occur owing to the vibration of the riser. As noted above, the
occurrence of a collision depends on the distance between the particle

center and the riser centerline, h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � xcÞ2 þ ðyp � ycÞ2

q
. The

parameters associated with the distance h are the riser diameter D, the
fluid density qf, the fluid viscosity l, the maximum vertical velocity
ucm, the particle diameter d, the particle density qp, the gravitational
acceleration g, and the position P0(xp0, yp0) at which the particle is ini-
tially released. The vibrational amplitude Am and frequency x of the
riser must also be considered here. We, thus, have the following func-
tional relationship:

h ¼ f D; qf ; l; ucm; d; qp; g;Am;x; P0
� �

: (36)

The fluid density qf, riser diameter D, and maximum vertical
velocity ucm are selected as dimensional units. Equation (36), then,
becomes

h
D
¼ f

qf ucmD

l
;
d
D
;
qp
qf

;
g

u2cm=D
;
Am

D
;

x
ucm=D

;
P0
D

 !
: (37)

Here, seven dimensionless parameters appear to be related to h. In our
simulation, we have qf¼ 1000 kg/m3, l¼ 0.001Pa s, g¼ 9.8 m/s2,
ucm¼ 1m/s, qP¼ 2000 kg/m3, d¼ 0.01m, and D¼ 0.1 m. Thus,
qf ucmD=l, d/D, qp/qf, and g=ðu2cm=DÞ are constants. Consequently,
the motion of the particle is mainly determined by Am=D; x=
ðucm=DÞ; andP0=D. In the following analysis of a particle moving in a
vibrating riser with upward Poiseuille, the effects of these parameters
are mainly considered.

III. VALIDATION

Before the implementation of our model for further investiga-
tions, we shall validate it by comparison with existing results published
by Gondret et al.67

We first consider the experiment conducted by Gondret et al.,67

which investigated the behavior of a steel particle falling in fluid and col-
liding with the bottom of a vessel. The collision between the particle and
the vessel bottom is simulated using the soft collision model presented
in Sec. II B, with the particle velocity being calculated from Eq. (3).

In the experiment by Gondret et al.,67 the steel sphere had a
diameter of 3mm and a density of qp ¼ 7800 kg=m3. The vessel was
filled with silicone oil of density qf ¼ 935 kg=m3 and viscosity
l ¼ 0:01 Pa s. The particle velocity and displacement are calculated
with and without the Basset force. Comparisons of the calculated data
with the experimental results are shown in Fig. 3, in which h represents
the distance between the lowest point of the sphere and the bottom
wall of the vessel. t¼ 0 is defined as the time at which the first collision
occurs.

It can be seen that the numerical results show better agreement
with the experimental data. For the particle velocity and displacement,
there is an error of approximately 5% before and after each collision.
As noted by Gondret et al.,67 there was the possibility of errors in mea-
suring the sphere position and velocity as well as the time interval
between two successive images during the experiments, and these
might account for these discrepancies between the numerical and
experimental results. In addition, fluid dissipation will also contribute
to such errors. However, it should be emphasized that the main char-
acteristics of the motion of a steel particle falling in fluid and colliding
with the bottom of a vessel, including the particle velocity and the fea-
tures of the collision, are captured well by our model, thus verifying its
accuracy.

IV. EFFECT OF RELATED PARAMETERS ON PARTICLE
MOTION

According to Vojir and Michaelides,16 the Basset force is impor-
tant when a fine evaporating particle (the diameter about 1lm) is
driven by a sinusoidal flow velocity with the dimensionless frequency
of fluid velocity fluctuations larger than 0.5. However, Vojir and
Michaelides16 also pointed out that the Basset force has little effect on
the motion of particles with medium and large diameters, but the accu-
rate range of the particle diameter is not defined by them. In our study,
the diameter of the particle is 0.01m that is significantly larger than
the particle diameter 1lm studied by Vojir andMichaelides.16 In addi-
tion, it can be seen from Eq. (3) that the Basset force decreases with
increasing Reynolds number and omitting the Basset force term can
noticeably improve the calculation efficiency. Therefore, it is necessary
to discuss the contribution of the Basset force to the particle velocities
with various vibrational parameters of the riser.
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In this section, the motion of a sphere in a transverse vibration
riser with upward Poiseuille flow is investigated first. The direction of
riser vibration is taken as x direction. The dimensionless velocity of the
Poiseuille flow in the vertical riser can be expressed as

u�f ¼ w�A�
m cos w�t þ u0ð Þ	 


iþ 0j

þ 1�
x�p � x�c
� �2 þ y�p � y�c

� �2
R�2

" #
k; (38)

where the dimensionless amplitude, angular frequency, and initial
phase of the oscillation riser are denoted by Am, w, and u0, respec-
tively. In this section, the modulus of elasticity of the riser and particle,
Ew and Ep, are set as 200 and 60GPa, respectively, the Poisson’s ratios
lw and lp are set as 0.3 and 0.26, the restitution coefficients in the nor-
mal and tangential directions are set as 0.76 and 0.7,68 respectively,
and the friction coefficient is set as 0.2.

The effect of the Basset force on the particle motion in a lateral
vibration riser with Poiseuille flow is examined. In this examination,
the diameter ratio D/d¼ 10, the vibration amplitude Am¼ 1.0, and
the frequencies f¼ 0, 0.05, and 0.2, where the case of f¼ 0 indicates
that the riser is fixed and without any movement. In the case of f¼ 0,
the particle is released from xp¼ 0.3 and yp¼ 0.3. The lateral and
vertical velocities of the particle with and without Basset force for
different vibrational frequencies are depicted in Fig. 4. It can be seen
that the Basset force has no effect on the particle velocities regardless
of collisions, indicating that the Basset force can be ignored during
our study. Therefore, in order to improve calculation efficiency, the
following investigation is conducted without considering the Basset
force.

Owing to the absence of fluid shear in the validation of Sec.
III, there is no Saffman force on the moving particle and therefore,
the calculation is appropriate to test whether the Saffman force
induced by the fluid shear force exerts any impact on the particle
motion. Here, the particle is released from different initial distan-
ces away from the riser centerline to observe the particle motion in
stationary riser with upward Poiseuille flow. Here, the diameter
ratio is D/d¼ 10, and the vibration amplitude and frequency are
set as 0.

The variation of the particle displacement and velocities with
time are shown in Fig. 5. It can be seen from Fig. 5(a) that the particle
moves rapidly to the centerline of the riser after being released, which
is consistent with the experimental and theoretical results of Saffman30

and Segre and Silberberg.33 This can be attributed to the lateral velocity
of the particle induced by the Saffman force. Furthermore, as the dis-
tance between the position at which the particle is released and the
riser wall is decreased, the maximum lateral velocity of the particle
becomes larger, which can be explained by the fact that the shear in
the flow field is stronger near the wall than near the centerline of the
riser. This is consistent with the properties of Poiseuille flow. It can
also be observed from Figs. 5(b) and 5(c) that the lateral velocity vpx
and vertical velocity vpz increase rapidly and then decrease to a certain
degree as the particle moves toward the axis of the riser, regardless of
where it is initially released. That is, the position at which the particle
is released has no effect on the terminal velocity of the particle under
given conditions of Poiseuille flow and particle parameters. It should
be noted that it is the effect of the Saffman force that is mainly under
consideration here. Although no direct comparison with experimental
data has been made here, the lateral displacement and the lateral and
vertical velocities of a particle related to the Saffman force in Poiseuille
flow do show similar trends to those found by Saffman30 and by Segre
and Silberberg,33 which again proves the accuracy of our proposed
model. Therefore, it is reasonable to use this model to investigate the
particle motion in a vibrating riser.

In addition, the effects of the initial position of release of the par-
ticle, the oscillation amplitude, and the oscillation frequency of the
riser on the particle motion are analyzed and discussed in Secs. IVA
and IVB, respectively, as are those of collisions in Sec. IVC.
Furthermore, the possible trajectories of the particle affected by the
vibrational frequency and amplitude of the riser are summarized in
Sec. IVD.

A. Initial position of release of the particle in oscillation
riser

Then, the effect of the initial position of release of the particle on
the particle motion is studied. The dimensionless amplitude of the
vibrating riser is set as Am¼D¼ 1, with two dimensionless frequencies
f¼ 0.05 and 0.15 and an initial phase u0¼ 0. The initial position of the

FIG. 3. Comparisons of (a) particle displacement and (b) particle velocity between experimental data and numerical results.
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riser is given by xc0 ¼ Amsinu0; yc0 ¼ 0, while the initial position of
the particle is given by xp0 ¼ yp0; zp0 ¼ 0 and its initial velocity by vpx0
¼ wAm cosu0; vpy0 ¼ 0; vpz0 ¼ 1� ½ðxp0 � xc0Þ2 þ ðyp0 � yc0Þ2�=R2.

The corresponding particle displacements and velocities in the
vibrating riser without and with collisions are shown in Figs. 6 and 7,
respectively. It can be seen from Fig. 6 that the initial position of
release of the particle has an effect on particle motion when the par-
ticle begins to move. However, the effect tends to be disappeared
over time. Such evolution of the particle velocities and displacements
can be explained based on the governing equations of particle
motion in three directions (x, y, and z directions), which are
expressed as follows:

dvpx
dt

¼ k

3
4
CDjuf � vpj ufx � vpxð Þ þ

1
2

dufx
dt

þ Dufx
Dt

þ 3
4
CLS xfzuyre � xfyuzreð Þ

þ 3
12

CH

ffiffiffiffiffiffiffiffiffi
p

Recm

r ðt
0

dðufx � vpxÞ
dsffiffiffiffiffiffiffiffiffiffi
t � s

p ds

2
66666666664

3
77777777775
; (39)

dvpy
dt

¼ k

3
4
CDjuf � vpj ufy � vpyð Þ þ

1
2

dufy
dt

þDufy
Dt

þ 3
4
CLS xfxuzre � xfzuxreð Þ

þ 3
12

CH

ffiffiffiffiffiffiffiffiffi
p

Recm

r ðt
0

dðufy � vpyÞ
dsffiffiffiffiffiffiffiffiffiffi
t � s

p ds

2
66666666664

3
77777777775
; (40)

dvpz
dt

¼ k

3
4
CDjuf � vpj ufz � vpzð Þ

þ 1
2

dufz
dt

þ Dufz
Dt

� 1� bð ÞFr

þ 3
4
CLS xfyuxre � xxzuyreð Þ

þ 3
12

CH

ffiffiffiffiffiffiffiffiffi
p

Recm

r ðt
0

dðufz � vpzÞ
dsffiffiffiffiffiffiffiffiffiffi
t � s

p ds

2
666666666666664

3
777777777777775

; (41)

where the expression of fluid velocity uf is shown in Eq. (38), and the
fluid vorticity xf is denoted as

FIG. 4. Particle velocities with and without Basset force for different frequencies: lateral velocity in x direction with (a) f¼ 0, (c) f¼ 0.05, and (e) f¼ 0.2 and vertical velocity
with (b) f¼ 0, (d) f¼ 0.05, and (f) f¼ 0.2.
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xf ¼ 1
2
r� uf ¼ 1

2
r� wAm cos wt þ u0ð Þiþ 0j

(

þ 1� ðxp � xcÞ2 þ ðyp � ycÞ2
R2

� �
k

)

¼ yp � yc
R2

iþ xp � xc
R2

jþ 0k ¼ xfxiþ xfyjþ xfzk:

(42)

The initial velocities of the particle are set as (vpx0, vpy0, vpz0) mentioned
at the beginning of Sec. IVA.

With the above-mentioned equations, it is indisputable that the
terms of Saffman force and Basset force are nonlinear regardless of the
velocity of the flow field. In our study, the fluid velocity inside the riser
is assumed to a Poiseuille flow, and hence, the forces of drag, added
mass, and stress-gradients are nonlinear in the z direction due to the
nonlinearity in the velocity profile of the flow fluid. Furthermore, the
nonlinearity of the drag force in the other two directions (x and y) is
determined by drag coefficient CD. When Rep is larger than 1, the drag
force is nonlinear. While Rep � 1, CD is equal to 24

Rep
K, and in x and y

directions, the drag force can be expressed as a linear function
18l
qf d

ðufi � vpiÞ of the relative velocity in those directions. Consequently,

it is the presence of these non-linearities that presents significant chal-
lenges in obtaining the theoretical solution of the particle motion. So
that, the characteristics of the particle motion can be explained by ana-
lyzing the calculation results and the flow field properties.

First, in the y direction, the particle velocity is initially dominated
by Saffman force at t¼ 0, causing that it moves toward the riser axis.
However, when t> 0, a velocity difference arises, resulting in a non-
zero drag force exerting on the particle, so the particle is subjected to

the combined action of Saffman force and drag force. The former force
acts toward the riser axis, while the latter opposes the direction of the
relative velocity vpi � ufi. As shown in Fig. 6(d), during the early
period following particle release, the particle velocity increases rapidly
and reaches its maximum due to the fact that the Saffman force is
greater than the drag force. Nevertheless, as the particle approaches
the riser axis, the Saffman force decreases. After the moment when
vpy/ucm reaches its peak, the Saffman force is less than the drag force,
resulting in a reduction in vpy/ucm. Upon reaching the riser axis [as
depicted in Fig. 6(b)], the Saffman force vanishes, and concurrently,
vpy/ucm diminishes to 0, leading to the absence of drag force and the
cessation of particle motion in the y direction. Additionally, the evolu-
tion of vpy/ucm always exists in this way regardless of whether a colli-
sion occurs between the particle and the riser wall.

As for the motion in the x direction in which the riser undergoes
vibrations, at t¼ 0, apart from the Saffman force, the particle experien-

ces the added mass force due to non-zero value of dvpi
dt � dufi

dt . As time
progresses (t> 0), in addition to these two forces mentioned above,
the drag force arises because the particle cannot synchronize with the
vibrating riser. In the early period of particle release t¼ 0–20, the equal
velocity of the particle and the riser at t¼ 0 results in a slight value of
the velocity difference vpxre/ucm in the x direction, causing a small drag
force. Therefore, the magnitudes of these three forces approach each
other, leading to the occurrence of fluctuations in vpxre/ucm under their
combined influence. However, as time continues to advance t> 20, the
carrying of the fluid exerted on the particle progressively intensifies.
Eventually, the particle motion in the x direction is dominated by this
fluid carrying, as evidenced by the periodical variations observed in
vpxre/ucm and xr/D when t> 20 [as shown in Figs. 6(a) and 6(c)].

In addition, at t¼ 0, the particle is subjected to gravity and buoy-
ancy in the z direction, while at t> 0, the drag force, added mass force,

FIG. 5. (a) Lateral displacement, (b) lat-
eral velocity, and (c) vertical velocity of
particles with different initial positions of
release.
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and Saffman force exert on the particle due to non-zero relative veloc-
ity between the particle and riser wall. During the initial period
(t¼ 0–20), the vertical velocity of the particle is significantly influenced
by its initial velocity and position due to the larger Saffman force near
the riser wall and significant fluctuations in vpxre/ucm and xr/D. Note
that the effect of the initial released position of the particle on vpz/ucm
diminishes over time. As shown in Figs. 6(a) and 7(a), the particle in
the riser oscillates periodically around the riser centerline, resulting in
a periodic variation of the vertical Poiseuille flow velocity acting on the
particle. Consequently, in the vertical direction, forces (including drag
force, added mass force, and Saffman force) with periodic changes
exert on the particle. That is, the combined effect of the lateral motion
of the particle and the characteristics of the Poiseuille flow field in the
riser accounts for the regular oscillations of the particle’s vertical
velocity.

Additionally, as demonstrated in Fig. 7, the velocities and dis-
placements of the particle are almost independent of the initial posi-
tion. It can be explained by that compared to low vibrational

frequencies (Fig. 6), increasing vibrational frequency enhances the car-
rying ability of the fluid on the particle, leading to an attenuation effect
of the initial positions on the particle motion during the early period of
particle release.

Therefore, it can be concluded that during the early period after
particle release, the forces exerted on the particle arising from the
ambient fluid are irregular and the particle motion is affected by the
initial condition, owing to the combined action of several forces acting
in opposition and their approaching magnitudes, or irregular acting
on the sphere. However, once stable motion of the particle is achieved,
the forces determined by the relative position, relative velocity, and
velocity derivatives exhibit periodic variations, resulting in periodical
oscillations of the particle velocity in x, y, and z directions.
Consequently, the initial released position of the particle has no effect
on the stable particle movement in the transverse oscillation riser.

In addition, the magnitude of the velocity vpy [Figs. 6(d) and
7(d)] is remarkably small compared with that of vpxre [Figs. 6(c) and
7(c)]. This can be explained by the dominant effect of riser vibration in

FIG. 6. Particle displacements and veloci-
ties for different initial positions of release
of the particle without collisions (f¼ 0.05):
(a) relative lateral displacement; (b) lateral
displacement in y direction; (c) relative lat-
eral velocity in x direction; (d) lateral
velocity in y direction; and (e) vertical
velocity.
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the x direction. When the particle moves in the transversely vibrating
riser with Poiseuille flow, the motion of the particle in the direction
corresponding to the riser oscillation (the x direction) is determined
by both riser vibration and the Saffman force, while its motion per-
pendicular to the riser vibration (the y direction) is mainly induced
by the Saffman force rather than the riser oscillation. Although the
particle motion can be influenced by the Saffman force, the induced
velocities in two directions are notably small, as can be seen from the
velocity vpy in Figs. 6(d) and 7(d). From Figs. 6(b) and 7(b), it can
also be seen that the particle displacement yp in the y direction even-
tually tends to zero, meaning that the motion of the particle is
scarcely affected by its velocity and displacement in the y direction,
regardless of its initial position of release. Since the characteristics of
particle motion in the y direction are hardly impacted by the riser
vibration in the x direction, it is mainly the particle velocity and dis-
placement in the lateral x direction and vertical z direction that will
be analyzed in Subsections IVB–IVD.

B. Riser vibration

It has been shown above that the particle velocity and displace-
ment in the y direction can generally be neglected compared with those
in the lateral x direction and vertical z direction. Therefore, the effects
of variations in the amplitude and frequency of the riser vibrations on
the characteristics of particle motion in the lateral x direction and ver-
tical z direction will be investigated here.

1. Vibrational frequency

Here, the amplitude of riser vibration is fixed as Am¼D¼ 1,
while its oscillation frequency is varied as f¼ 0.025, 0.05, 0.1, 0.2, 0.3,
and 0.4. The internal Poiseuille flow is again expressed as in Eq. (29).
The corresponding time histories of the relative lateral velocity are pre-
sented in Fig. 8. Note that to demonstrate the results more clearly, the
time histories here and in Figs. 9 and 10 are nondimensionalized by
the vibrational period T of the riser.

FIG. 7. Particle displacements and veloci-
ties for different initial positions of release
of the particle with collisions (f¼ 0.15): (a)
relative lateral displacement; (b) lateral
displacement in y direction; (c) relative lat-
eral velocity in x direction; (d) lateral
velocity in y direction; and (e) vertical
velocity.
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It can be seen from Fig. 8 that a higher vibrational frequency of
the riser leads to larger magnitudes of the lateral velocity vpxre of the
particle relative to the riser, which means that the ability of the particle
to catch up with the oscillating riser is weakened at high vibrational
frequencies. For example, the maximum value of the relative lateral
velocity is equal to 0.049 at f¼ 0.05. When the riser’s vibrational fre-
quency is increased to 0.4, the maximum value of the relative lateral
velocity is increased to 1.149. Furthermore, regardless of collisions
between the particle and the riser, the relative lateral velocity always
changes periodically. In the absence of collisions, the relative lateral
velocity vpxre varies smoothly with time, whereas a collision between

the particle and the riser will lead to a jump in vpxre, as can be observed
in Fig. 9. When a collision occurs, there is a reversal in the relative lat-
eral velocity due to the sudden change in particle motion, and at the
time of collision, vpxre attains a large magnitude. As can be seen in
Fig. 9, a collision occurs at t/T¼ t1, resulting in a jump in the lateral
velocity vpx of the particle as well as a reversal in the relative lateral
velocity vpxre between the particle and the vibrating riser with f¼ 0.4.
As time proceeds further, vpx approaches its maximum, while vpxre
decreases slightly to a minimum at t/T¼ t2. This decrease in vpxre can
be attributed to the weakening influence of the collision. As both the
particle and riser continue to move, the internal flow again comes have
the dominant effect on particle motion, concurrent with the decaying
effect of the collision. Consequently, the magnitude of the relative lat-
eral velocity increases gradually after its minimum at t/T¼ t2, and it
continues to increase until the next collision occurs between the parti-
cle and the vibrating riser.

The behavior of the vertical velocity of the particle is depicted in
Fig. 10. It can be seen that the vertical particle velocity varies periodi-
cally with a frequency approximately twice that of the riser. This can
be explained by the symmetries of the Poiseuille flow field and the
particle displacement around the riser axis (as shown in Fig. 12). The
particle moves in the transversely vibrating riser with Poiseuille flow

1� ðxp�xcÞ2þðyp�ycÞ2
R2 , which exhibits symmetry about the riser axis

(xc, yc) in terms of vertical velocity. Furthermore, as depicted in Fig. 12,
a periodical variation of the relative displacement between the particle
and riser axis can be found. The values of peaks and valleys within one
period are equal, indicating that the particle moves symmetrically
around the riser axis. Under the combination effect of fluid and riser
vibration, the particle travels through the flow field with symmetrical
vertical velocity two times within one vibrational period; as a result,
the vertical particle velocity presents periodic variation with a fre-
quency approximately twice as that of the riser frequency.

Additionally, it is also clear that collisions between the particle
and the vibrating riser have an effect in reducing the vertical velocity of
the particle. As can be seen from Fig. 10, when f¼ 0.3, before the colli-
sion at t/T¼ t1, the particle has a vertical velocity vpz/ucm¼ 0.3119,
whereas after the collision, this decreases to vpz/ucm¼ 0.0105. The rea-
son for the decrease in particle vertical velocity after collision will be
introduced in combination with the reason for the decrease in the lift-
ing distance of the particle with increasing vibrational frequency.

Since the lifting distance of the particle plays a vital role in deter-
mining the lifting efficiency of the riser, it is important to consider
how this lifting distance changes under different vibrational frequen-
cies of the riser. Here, the lifting distance of the particle is calculated
over the same time interval for different values of the vibrational fre-
quency. As can be seen from Fig. 11, the lifting distance of the particle
decreases with increasing vibrational frequency, indicating that the
efficiency of ore haulage is influenced by the vibrational frequency of
the riser. At higher vibrational frequencies, the efficiency of ore haulage
is reduced. This variation in the lifting distance of the particle can be
ascribed to the variations in lateral particle motion. In the absence of
collisions, it can be seen from Fig. 12(a) that as the vibrational fre-
quency of the riser is increased, the amplitude of the lateral displace-
ment of the particle relative to the riser centerline is increased.
Consequently, the particle moves closer to the riser wall, and the verti-
cal fluid flow velocity that it experiences is reduced. This leads to a
decrease in the vertical particle velocity, and so the particle is conveyed

FIG. 8. Relative lateral velocity for different vibrational frequencies of the riser.

FIG. 9. Lateral velocities of the particle and the riser at f¼ 0.4.

FIG. 10. Vertical velocity of the particle for different vibrational frequencies of the
riser.
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more slowly, resulting in its lifting distance in the vibrating riser being
reduced. More importantly, however, it can be seen from Fig. 12(b)
that when collisions do occur, the amplitudes of the relative lateral dis-
placement under different riser vibrational frequencies are the same,
indicating that the variations in the particle lifting distance are scarcely
affected by the internal flow in this situation. That is, the reduction of
the lifting distance of the particle is dominated by collisions, which
demonstrates the crucial effect of collisions on the lifting efficiency of
the riser.

In the case considered in this study, when a collision occurs
between the particle and the riser, the condition ksjdsj > lf jkndnj is
satisfied throughout the collision process. The tangential force can,
then, be calculated as Fsz ¼ �lf jkndnjdsz=jdszjsz . It can be seen that
Fsz is related to the normal parameters kn and dn and the friction coef-
ficient lf, which depends on the particle and riser materials. The results

in Fig. 8 have shown that the relative lateral velocity can be increased
by increasing the vibrational frequency of the riser. As this frequency
increases, the maximum normal overlap exhibits an increasing trend,
as shown in Fig. 13(a). From the values of dn [Fig. 13(a)] and dsz
[Fig. 13(b)], the particle acceleration can be obtained. The relative
vertical velocity of the particle can then be calculated, as shown in
Fig. 13(c), from which it can be seen that at higher vibrational frequen-
cies of the riser, the relative vertical velocity of the particle tends to
become small after a collision. As a consequence, the lifting distance of
the particle decreases with increasing vibrational frequency when colli-
sions do occur.

2. Vibrational amplitude

In addition to the vibrational frequency of the riser, changes in
its vibrational amplitude can also exert an impact on the motion of
the particle. Therefore, the motion of the particle in upward
Poiseuille flow is investigated for five vibrational amplitudes
Am¼ 0.5, 0.75, 1, 1.5, and 2.0 and two vibrational frequencies
f¼ 0.05 and 0.3. The aim of choosing two vibrational frequencies
here is to ensure that collisions occur between the particle and the
vibrating riser. The variations in the velocities and the lifting distance
of the particle are displayed in Figs. 14–16.

It is clear from Figs. 14(a) and 15(a) that an increase in the vibra-
tional amplitude of the riser will increase the relative lateral velocity
vpxre of the particle regardless of collisions. When f¼ 0.05,
vpxre¼ 0.0214 at Am¼ 0. 5. When the vibrational amplitude of the riser
is increased to 2.0, the relative lateral velocity reaches 0.14. This phe-
nomenon can be explained by the fact that with increasing vibrational
amplitude of the riser, the relative motion between the particle and
oscillation riser is intensified, resulting in an increase in the relative lat-
eral velocity between them, whether or not collisions occur.

Furthermore, as shown in Fig. 14(b), at a riser vibrational fre-
quency f¼ 0.05, the vertical velocity vpz of the particle decreases signifi-
cantly with increasing riser vibrational amplitude, which implies that
the lifting distance of the particle will also decrease when the vibra-
tional amplitude is increased. Collisions do not occur at the low vibra-
tional frequency of f¼ 0.05, and so the vertical velocity of the particle
is mainly affected by the internal flow, as pointed out in Sec. IVB1. At
a higher vibrational frequency of f¼ 0.3, for which collisions between
the particle and the riser do occur, it can be seen from Fig. 15(b) that
vpz decreases slightly with increasing vibrational amplitude of the riser.
It is evident that at a high vibrational frequency, collisions have a dom-
inant effect on the relatively lateral velocity and vertical velocity of the
particle. From Fig. 16, it can also be seen that the lifting distance of the
particle decreases with increasing vibrational amplitude of the riser,
regardless of collisions and the vibrational frequency. This behavior
can again be attributed to the effects of both internal flow and colli-
sions, as described in Sec. IVB1.

C. Collisions between particle and vibrating riser

It has been shown above that collisions between the particle and
vibrating riser will occur at high vibrational frequencies and ampli-
tudes of the riser, and it is, therefore, necessary to explore the effects of
these collisions on the motion of the particle. The time histories of the
riser vibrational displacement xp, the displacement of the particle rela-
tive to the riser centerline xr, the lateral velocity vpx, and the vertical

FIG. 11. Lifting distance of particle for different vibrational frequencies of the riser.

FIG. 12. Relative lateral displacement of the particle for different vibrational frequen-
cies of the riser: (a) without collisions and (b) with collisions.
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velocity vpz are shown in Figs. 17 and 18 for cases without collisions
(f¼ 0.05) and with collisions (f¼ 0.3), respectively. In the plots of xp,
the upper and lower blue lines represent the time histories of the two
riser walls in the direction of vibration.

It can be seen from Fig. 17 that when there are no collisions
between the particle and the riser, the particle moves with the vibrating
riser, with a relative displacement of less than the radius R of the riser.
The particle motion in the lateral direction cannot catch up with the
riser vibrations, leading to a slight phase difference between the particle
motion and the riser oscillations. The maximum relative displacement
between the particle and the riser centerline coincides approximately
with the moment at which the oscillating riser is at its equilibrium
position (as shown by the red dots in Fig. 17).

In the presence of collisions, the particle motion still has to catch
up with the riser vibrations, as can be seen from Fig. 18. In this case,
however, the particle behavior is more complicated, and the displace-
ment of the particle relative to the riser centerline and the lateral and
vertical velocities are obviously affected by the collisions. As shown by
the red dots in Fig. 18, the maximum relative displacement between
the particle and the riser centerline coincides approximately with the
moment at which the oscillating riser is at its maximum amplitude.
This difference from the case without collisions (f¼ 0.05) indicates
that the collisions between the particle and the vibrating riser have an
effect on the phase difference of displacement. Collisions between the
particle and the vibrating riser occur when the relative displacement
reaches its maximum value, and xr begins to decrease immediately

FIG. 13. Variations of (a) normal overlap, (b) tangential overlap, and (c) relative vertical velocity of the particle during a collision.

FIG. 14. (a) Relative lateral velocity and (b) vertical velocity of the particle for differ-
ent vibrational amplitudes of the riser without collisions (f¼ 0.05).
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after a collision. In addition, the lateral velocity and vertical velocity of
the particle both exhibit a jump phenomenon due to collisions. The
maximum value of the vertical velocity vpz coincides with the mini-
mum value of the lateral velocity (as represented by the magenta dots

FIG. 15. (a) Relative lateral velocity and (b)
vertical velocity of the particle for different
vibrational amplitudes of the riser with colli-
sions (f¼ 0.3).

FIG. 16. Lifting distance of the particle for different vibrational amplitudes of the
riser: (a) without collisions (f¼ 0.05) and (b) with collisions (f¼ 0.3). FIG. 17. Particle velocity and displacement without collisions (f¼ 0.05).
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in Figs. 17 and 18), which can be explained by energy conservation in
the two directions. As shown above, the lifting distance of the particle
is related to both its lateral and vertical velocities, and therefore, colli-
sions between the particle and the vibrating riser will affect the lifting
distance through their effects on these two velocities.

Another important characteristic affected by collisions between
the particle and the vibrating riser is the particle trajectory. Figure 19
shows the particle trajectories for vibrational frequencies f¼ 0.05 (in
which case there are no collisions) and f¼ 0.3 (for which collisions do

occur). It can be seen from Fig. 19(a) that in the absence of collisions,
the particle moves along the riser centerline from bottom to top, fol-
lowing a smooth S-shaped trajectory. From Fig. 19(b), it is clear that
the particle trajectory is influenced by collisions, which cause abrupt
changes to the direction of particle motion.

D. The regimemap of the particle behaviors related
to the riser vibration

In Secs. IVA–IVC, the particle motion with various vibrational
frequencies and amplitudes is discussed. It is clear that the vibrational
parameters (Am, f) play an important role in the transformation of the
particle movement regimes. Therefore, a regime map of the particle
related to the vibrational frequency and amplitude of the riser is
attempted to be established here. As this study aims at investigating
the motion of particles for deep-sea mining, the parameters of the par-
ticle are set in reference to the density and diameter of ores.
Correspondingly, the regime of the particle motion with d¼ 0.01 m
and qf¼ 2000 kg/m3 is displayed in Fig. 20, wherein the domain is sep-
arated into three parts by two roughly line related to Am and f. It can
be observed that the collision between the particle and the riser wall
does not occur, which corresponds to the “�” region, as demonstrated
in Figs. 20 and 21(a). Then, the collision between the particle and the
riser wall appears once in the first period of the riser vibration in
Fig. 21(b), which matches the red line with “$” in Fig. 20, indicating
that the particle touches one side of the riser wall. The expression for
this red line with “$” in Fig. 20 is f � ðAm � 0:0146Þ ¼ 0:9627,
where f and Am represent the dimensionless frequency and amplitude
of the vibrating riser. As displayed in Figs. 21(c) and 21(d), the occur-
rence of collision can be detected over the first several periods of the
riser vibration, after which the collision can be scarcely observed,
which corresponds to the “＋” region in Fig. 20. It is also presented in
Fig. 21(e) that the collision can be captured twice in one vibrational
period of the riser on the black line with “�” and in the “(” region,
which means that the particle is in contact with both sides of the riser
wall in one vibrational period. The expression for the black line with

FIG. 18. Particle velocity and displacement with collisions (f¼ 0.3).

FIG. 19. Particle trajectories: (a) without collisions (f¼ 0.05) and (b) with collisions
(f¼ 0.3).

FIG. 20. The regime map of a particle trajectory with various vibrational frequencies
and amplitudes of the riser.
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“�” in Fig. 20 is f � ðAm � 0:507Þ ¼ 0:4168, indicating that the twice
collisions of the particle in one vibrational period of the riser cannot be
observed when the vibration amplitude of the riser is less than the riser
radius.

V. CONCLUDING REMARKS

In this study, the motion of an ore in a lifting riser subjected to
lateral vibrations has been investigated by using the governing equa-
tion for the motion of a spherical particle in Poiseuille flow and the
Hertz–Mindlin soft sphere collision model. The particle velocities, dis-
placement, and trajectory have been analyzed and discussed for vari-
ous initial positions of release of the particle and various vibrational

frequencies and amplitudes of the riser. The influence of collisions
between the particle and the vibrating riser on the motion of the parti-
cle has also been investigated. Furthermore, a regime map of the parti-
cle related to the vibrational frequency and amplitude of the riser is
established preliminarily. The results are likely to provide potential
guidance on transporting the ores in lifting risers efficiently. The main
conclusions that can be drawn from this study are as follows.

The initial position of release of the particle has no impact on the
terminal characteristics of the particle motion. With increasing fre-
quency and amplitude of the riser vibration, the relative lateral velocity
of the particle increases owing to the intensified relative motion
between the particle and riser, while the vertical velocity of the particle

FIG. 21. The particle trajectory with vari-
ous vibrational parameters: (a) f¼ 0.05
without collision; (b) f¼ 0.0867 collision
occurs once; (c) f¼ 0.1 collisions occur
over the first several periods; (d) f¼ 0.12
collisions occur over the first several peri-
ods and once after several periods; and
(e) f¼ 0.15 collision occurs twice in one
vibration period.
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decreases. The vertical velocity of the particle changes periodically with
a frequency twice as the vibrational frequency of the riser. Increases in
the vibrational frequency and amplitude of the riser both lead to a
decrease in the lifting distance of the particle, which can be attributed
to the effect of relative lateral velocity and the internal fluid field, as
well as to collisions between the particle and the vibrating riser.

Collisions between the particle and the vibrating riser affect the
particle motion, leading to a jump in the particle velocities, a phase dif-
ference between the displacements of the particle and the riser, and var-
iations in the particle trajectory. With the various frequencies and
amplitudes of the vibration riser, different regimes of the particle behav-
ior in lateral vibration riser with upward Poiseuille flow can be observed.

It should be recognized that the present study is focused on the
particle motion in a vibrating riser, and that further work is required
to provide a more comprehensive understanding of the characteristics
and underlying mechanisms of such particle motion in the context of
developments in deep-sea mining technology, including the influence
of particle count, particle gradation, and so on.
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