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Abstract: Mg3(BixSb1−x)2 (0 ≤ x ≤ 1) nanocomposites are a highly appealing class of thermoelectric
materials that hold great potential for solid-state cooling applications. Tuning of the lattice thermal
conductivity is crucial for improving the thermoelectric properties of these materials. Hereby, we
investigated the lattice thermal conductivity of Mg3(BixSb1−x)2 nanocomposites with varying Bi
content (x = 0.0, 0.25, 0.5, 0.75, and 1.0) using first-principles calculations. This study reveals that the
lattice thermal conductivity follows a classical inverse temperature-dependent relationship. There
is a significant decrease in the lattice thermal conductivity when the Bi content increases from 0
to 0.25 or decreases from 1.0 to 0.75 at 300 K. In contrast, when the Bi content increases from 0.25
to 0.75, the lattice thermal conductivity experiences a gradual decrease and reaches a plateau. For
the nanohybrids (x = 0.25, 0.5, and 0.75), the distribution patterns of the phonon group velocity
and phonon lifetime are similar, with consistent distribution intervals. Consequently, the change
in lattice thermal conductivity is not pronounced. However, the phonon group speed and phonon
lifetime are generally lower compared to those of the pristine components with x = 0 and x = 1.0. Our
results suggest that the lattice thermal conductivity is sensitive to impurities but not to concentrations.
This research provides valuable theoretical insights for adjusting the lattice thermal conductivity of
Mg3(BixSb1−x)2 nanocomposites.

Keywords: Mg3(BixSb1−x)2; lattice thermal conductivity; first-principles calculations

1. Introduction

Thermoelectric (TE) materials can convert thermal energy into electricity, making
them a potential solution to the current energy crisis [1–9]. Among these materials,
Mg3(BixSb1−x)2 is the most promising candidate for TE applications near room temperature
(RT) due to its lower cost than the commercially available Bi2Te3−xSex [10–12]. As a result,
it has received considerable attention [13–26]. Researchers are constantly working to im-
prove the thermoelectric performance of these materials. The thermoelectric figure of merit,
ZT, is typically used to evaluate performance, which is defined as zT = S2σT/(κl + κe).
The parameters T, S, σ, κl , and κe represent the Kelvin temperature, Seebeck coefficient,
electrical conductivity, lattice thermal conductivity, and electronic thermal conductivity,
respectively [27]. Achieving a high thermoelectric figure of merit requires a high Seebeck
coefficient (S), high electrical conductivity (σ), and low thermal conductivity (κ) [28]. Yet,
achieving this is challenging due to the complicated interplay among these parameters.
It is believed that reducing the lattice thermal conductivity is crucial for achieving high
TE performance.

There are currently many methods available to reduce the thermal conductivity of
thermoelectric materials. Biswas et al. achieved the maximum reduction in the lattice
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thermal conductivity of PbTe thermoelectric materials via considering scattering sources
on all relevant length scales in a hierarchical manner, ranging from atomic-scale lat-
tice disorder and nanoscale endotaxial precipitates to mesoscale grain boundaries [29].
Nakamura et al. overcame the amorphous limit of thermal conductivity in Si thermoelectric
materials through constructing a Si nanostructure with “well-controlled nanoscale-shaped
interfaces” and oriented nanocrystals (NCs), resulting in a significant reduction in ther-
mal conductivity [30]. Zhang et al. achieved a reduction in thermal conductivity and
improved thermoelectric performance through doping Sb in Mg2(Si,Sn) compounds [31].
Mo et al. demonstrated that doping a small amount of Se into Mg3Bi1.4Sb0.6 can effectively
reduce the thermal conductivity of the system [32]. Knura et al. found that alloying PbTe
with SnTe leads to a significant reduction in lattice thermal conductivity to values below
approximately 1.0 W m−1 K−1 across a wide range of compositions (from x = 0.25 to
x = 0.80) [33]. Here, we focus on the effect of alloying Mg3Bi2 with Mg3Sb2 on the lattice
thermal conductivity of the Mg3(Sb,Bi)2 system.

The lattice thermal conductivity of Mg3X2 (X = Bi, Sb) has been thoroughly researched.
Mg3X2 (X = Bi and Sb) has an uncommonly low lattice thermal conductivity that can
be attributed to the notable softening and flattening of low-energy transverse acoustic
phonons [15,34,35]. Zhang et al. offered new insights into the low lattice thermal conduc-
tivity of Mg3Bi2 through relating the pronounced phonon anharmonicity to the asymmetric
nature of Bismuth’s 6s lone-pair electrons [15]. Contrary to the anticipated T−1 temperature-
dependent κl at high temperatures, Zhu et al. discovered that Mg3Sb2 exhibits a feeble
temperature dependence of κl following a power law of T−0.48 from theory and T−0.57 from
experimental measurements. This weak dependence can be traced back to the stiffening
of low-lying phonons and diminished anharmonicity at high temperatures, as indicated
by the authors [36]. Mg3Sb2 and Mg3Bi2 can be combined in different stoichiometric
ratios [37–40]. The combination of these compounds has been found to lower lattice
thermal conductivity [41]. Nonetheless, it is still a major challenge to synthesize ternary
Mg3(Bi,Sb)2 with a controllable Bi/Sb ratio [42].

Computational simulations are crucial for studying the thermal properties of
Mg3(Bi,Sb)2. Various first-principles-based software, including phono3py [43] and
ShengBTE [44], have been used to explore phonon transport phenomena. The lattice ther-
mal conductivity of Mg3(Bi,Sb)2 has been studied to a limited extent using first-principles
calculations, unlike that of Mg3X2 (X = Bi, Sb), due to its computational cost. Addition-
ally, machine learning potentials have emerged as an alternative approach to expedite
research on heat transport [45–48]. hiPhive, developed by Eriksson et al., efficiently
extracts high-order force constants from density functional theory calculations [49,50].
Yang et al. utilized a machine learning potential function based on dual adaptive sampling
to investigate the lattice thermal conductivity of Mg3Sb2, and obtained results consistent
with the experimental data [51]. Ouyang and colleagues conducted a molecular dynamics
(MD) exploration of the thermal properties of Mg3(BixSb1−x)2 using a moment tensor
potential (MTP) model [52,53]. They developed an MTP model, which was based on ma-
chine learning (ML). Their predictions of changes in thermal conductivity with varying
solution concentrations were generated using molecular dynamics simulations based on
ML-interatomic potential (MLIAP) [54].

In this research, we analyze the lattice thermal conductivity of Mg3(BixSb1−x)2
(0 ≤ x ≤ 1) utilizing first-principles calculations. Initially, we assess the crystal struc-
ture, thermodynamic stability, and dynamic stability of Mg3(BixSb1−x)2 at different Bi
contents (x = 0.0, 0.25, 0.5, 0.75, and 1.0). Subsequently, we examine the heat capacity,
phonon group velocity, and phonon lifetime of Mg3(BixSb1−x)2 to identify the factors that
affect the changes in lattice thermal conductivity in the presence of various Bi contents.

2. Methods

The unit cell structure of Mg3Bi2 and Mg3Sb2 comprises five atoms. To investigate
alternative structures, we expanded the Mg3Bi2 unit cell to create a 1 × 1 × 2 supercell.
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In this supercell, Sb atoms substitute Bi atoms, yielding three nanohybrid structures:
Mg3Bi1.5Sb0.5, Mg3BiSb, and Mg3Bi0.5Sb1.5. We used first-principles calculations with
VASP [55,56] to determine the lowest-energy structures for each composition. To compute
the phonon spectrum, we utilized Phonopy [57–59] via the finite-displacement supercell
approach. In the finite-displacement supercell approach, the first-principles calculation is
utilized to acquire atomic forces in the supercell crystal structure model. Force constants
were computed from an adequate number of supercells with distinct sets of displacements
and corresponding forces were obtained using the first-principles calculation. For Mg3Bi2
and Mg3Sb2, 3 × 3 × 2 supercells were utilized, while 3 × 3 × 1 supercells were employed
for Mg3Bi1.5Sb0.5, Mg3BiSb, and Mg3Bi0.5Sb1.5.

The thermal conductivity κl is closely related to heat capacity, phonon group velocity,
and phonon lifetime, as shown in Equation (1):

κl =
1

NV0
∑
λ

Cλv2
λτλ (1)

where λ represents the phonon mode, N is the total number of q points used to sample
the Brillouin zone, V0 stands for the volume of a unit cell, and Cλ, vλ, and τλ indicate the
specific heat capacity, group velocity, and phonon lifetime, respectively. The Cλ values
were determined via analyzing the phonon density of states using the Bose–Einstein dis-
tribution. On the other hand, the vλ values were obtained via calculating the gradient of
the phonon dispersion relation. To account for various phonon scattering mechanisms,
the phonon relaxation time τλ can be divided into three contributions: phonon–phonon
scattering, phonon–grain boundary scattering, and phonon–defect scattering. This divi-
sion is performed using Matthiessen’s rule [60]. In the current study, our main focus is
on phonon–phonon scattering. We calculated the phonon relaxation time for this type
of scattering using the harmonic and third-order anharmonic force constants obtained
from density functional theory (DFT) calculations. To solve the phonon Boltzmann trans-
port equation (BTE) [61] and calculate the lattice thermal conductivity, we employed the
phono3py framework within the DFT framework. Phono3py is a tool that allows us to
compute properties related to phonon–phonon interactions. At each step, the users invoked
phono3py with at least the unit cell and the supercell matrix. In the first step, we generated
supercells and sets of atomic displacements. These sets of displacements are referred to
as “displacement datasets”. We constructed supercells using these displacements. Next,
we calculated the forces of the supercell models using the VASP software, which we refer
to as “force sets”. In the second step, we computed the second- and third-order force
constants (fc2 and fc3) from the displacement datasets and force sets obtained in the first
step. Finally, in the third step, we utilized the force constants obtained in the second
step to calculate various properties, such as the lattice thermal conductivity, specific heat
capacity, phonon group velocity, phonon lifetime, and mode-Grüneisen parameters. Due
to the computationally intensive nature of lattice thermal conductivity calculations, par-
ticularly for larger unit cells, we used relatively smaller supercells in our computations.
We utilized a 2 × 2 × 1 supercell for Mg3Bi1.5Sb0.5, Mg3BiSb, and Mg3Bi0.5Sb1.5. Consid-
ering that the original structure of Mg3(BixSb1−x)2 (x = 0.5, 1.0, and 1.5) is based on the
1 × 1 × 2 supercell of Mg3Bi2, the lattice thermal conductivity was calculated based on the
2 × 2 × 1 supercell. Therefore, for Mg3Sb2 and Mg3Bi2, we used a 2 × 2 × 2 supercell
when calculating the lattice thermal conductivity. In this way, the calculation of the lattice
thermal conductivity of Mg3(BixSb1−x)2(0 ≤ x ≤ 1) can be kept in the same dimension, and
the number of atoms in the supercell is 40. For the purpose of comparing the impact of cell
size on the calculation of lattice thermal conductivity, we utilized Mg3Sb2 as an example
and calculated the lattice thermal conductivity of a larger 4 × 4 × 3 supercell using the
hiPhive software in combination with phono3py.

The VASP calculation parameters were chosen as follows. The exchange and cor-
relation functions were approximated using the general gradient approximation with
Perdew–Burke–Ernzerhof parameterization (GGA-PBE) [62]. The energy cutoff for the
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plane-wave basis expansion was set to 450 eV. k-mesh were produced using VASPKIT [63]
in the Gamma scheme at a density of 2π × 0.03 Å−1. For geometry optimization, a con-
vergence criterion of 1 × 10−5 eV in energy and 1 × 10−4 eV/Å in force was applied. For
the calculations of the phonon spectrum and lattice thermal conductivity, a convergence
criterion of 1 × 10−8 eV in energy was utilized.

3. Results and Discussions

The formation energies and crystal structures of Mg3(BixSb1−x)2 (0 ≤ x ≤ 1) are
presented in Figure 1. The formation energies of Mg3(BixSb1−x)2 were calculated using
Equation (2):

E f orm =
[

EMg3(BixSb1−x)2
unitcell − 3EMg

f orm − 2xEBi
f orm − 2(1 − x)ESb

f orm

]
/5 (2)

In this equation, EMg3(BixSb1−x)2
unitcell represents the total energy of a single chemical formula

Mg3(BixSb1−x)2, and EMg
f orm, EBi

f orm, ESb
f orm denote the single atomic energies of Mg, Bi, and Sb

pure constituents, respectively. The structures of Mg, Bi, and Sb were retrieved from the Ma-
terial Project database [64] and have space groups of P63/mmc, R3m, and R3m, respectively.
The single atomic energies of the pure constituents Mg, Bi, and Sb are −1.508 eV/atom,
−3.9 eV/atom, and −4.13 eV/atom, respectively. As demonstrated in Figure 1, the forma-
tion energies of Mg3(BixSb1−x)2 are negative, indicating thermodynamic favorability.
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Figure 1. The formation energies and crystal structures of Mg3(BixSb1−x)2 (0 ≤ x ≤ 1).

Additionally, the formation energy increases linearly as the Bi content increases.
Figure 2 illustrates the phonon spectra of Mg3(BixSb1−x)2. With the exception of the
negligible imaginary frequency observed for Mg3BiSb at the L2 point, the remaining struc-
tures exhibit no imaginary frequencies, indicating dynamic stability. Moreover, the absence
of a phonon bandgap facilitates a plethora of phonon–phonon scattering processes.
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The Zintl compounds Mg3Sb2 and Mg3Bi2 share a trigonal CaAl2Si2-type structure
and belong to the space group P3m1 [65]. The polyanions (Mg2X2)2− (X = Bi, Sb), in
which Mg is tetrahedrally coordinated, form covalently bonded layers. These layers are
ionically bonded with the octahedrally coordinated Mg2+ cation layers, forming the overall
framework. Substituting Bi atoms with Sb results in a decrease in system symmetry. As the
concentration of Bi increases, the gradual substitution of Bi atoms by Sb atoms occurs in a
layer-by-layer manner, resulting in an expansion of the unit cell volume. Figure S1 in the
Supplementary Information depicts the average lengths of Mg-X bonds in Mg3(BixSb1−x)2
(0 ≤ x ≤ 1). In the (Mg2X2)2− network, the vertical Mg-X bonds are longer than the three
symmetry-equivalent tilted Mg-X bonds. In addition, the ionic M-X bonds are longer
than the covalent M-X bonds. As the Bi content increases, so does the average bond
length between M and X, suggesting a diminished bonding ability between Mg-X and the
increased Bi content.

Figure 3a presents the average lattice thermal conductivities of Mg3(BixSb1−x)2
(0 ≤ x ≤ 1) obtained from the BTE utilizing second- and third-order force constants calcu-
lated using DFT. These conductivities demonstrate a classical temperature-dependent
relationship of T−1 instead of a weak temperature-dependent κl . It is observed that
the order of lattice thermal conductivity is as follows: Mg3Sb2 (x = 0) > Mg3Bi2 (x = 1)
> Mg3(BixSb1−x)2 (x= 0.25, 0.5, 0.75). Alloying Mg3Bi2 with Mg3Sb2 significantly reduces
the lattice thermal conductivity. We also analyzed the lattice thermal conductivity at 300 K
for various Bi contents and compared it with the previous literature [41,54]. Notably, there
were marked reductions in the lattice thermal conductivity as the Bi content increased from
0 to 0.25 or decreased from 1.0 to 0.75. However, as the Bi content increased from 0.25
to 0.75, the lattice thermal conductivity showed a slight decrease, indicative of a plateau.
Thus, adjusting the Bi content within the range of x = 0.25 to 0.75 may have a negligible
effect on the lattice thermal conductivity. Ouyang and colleagues employed ML-IAP to
compute the lattice thermal conductivity of the Mg3(BixSb1−x)2 alloy at different alloying
concentrations for MCMD structures at 300 K [54]. Our findings are in qualitative con-
currence with the experiment [41] and calculation by Ouyang et al., albeit our computed
lattice thermal conductivities are comparatively lower. This difference could be due to
the reduced size of the supercell employed in the phono3py computations. Due to the
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significant computational resources needed for larger supercells when calculating the lattice
thermal conductivity, we selected Mg3Sb2 as an illustrative example. We assessed the lattice
thermal conductivity in a 4 × 4 × 3 supercell using the hiPhive software and the results,
demonstrated in Figure 4, generally indicate that the thermal conductivity acquired from
the 4 × 4 × 3 supercell using hiPhive exceeds that of the 2 × 2 × 2 supercell calculated
using phono3py. Furthermore, the outcomes generated using hiPhive coincide with the
calculations carried out by Ouyang et al. [54], even though both sets of calculations produce
marginally lower values in comparison to the experimental data [66].
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Figure S2 in the Supplementary Information presents the heat capacity of Mg3(BixSb1−x)2
(0 ≤ x ≤ 1) at 300 K. The difference in thermal conductivity mainly arises from the phonon
group velocity and phonon lifetime rather than the heat capacity, which exhibits only a
small discrepancy. Figures 5 and 6 display the phonon group velocity and phonon lifetime,
respectively, of Mg3(BixSb1−x)2. The phonon group velocity distribution range remains
similar when x equals 0.25, 0.5, and 0.75. However, the overall group velocity is lower
when compared to x equals 0 and 1.0, with the exception of a few higher group velocities
in the low-frequency region. As shown in Figure 5, for x equals 0.25, 0.5, and 0.75, the
proportion of phonon group speeds below 100 m/s increases significantly. Although
the range of phonon group velocity distributions in Mg3Sb2 and Mg3Bi2 is consistent,
the high-frequency region reveals that Mg3Bi2 has a significantly lower phonon lifetime
than Mg3Sb2. Consequently, the lattice thermal conductivity of Mg3Bi2 is lower than that
of Mg3Sb2. For x = 0.25, 0.5, and 0.75, the lifetime distribution pattern of phonons in
Mg3(BixSb1−x)2 is similar, with the distribution interval falling within the same range.
Nonetheless, the overall distribution is lower in comparison to x = 0 and x = 1.0. According
to Figure 6, there is a significant increase in the proportion of phonon lifetimes below
1.0 ps at x = 0.25, 0.5, and 0.75. We further examined the mode-Grüneisen parameters
of Mg3(BixSb1−x)2 (0 ≤ x ≤ 1), as illustrated in Figure 7. We found that compared to
Mg3Sb2 and Mg3Bi2, there is a significant increase in the proportion of regions in the
low-frequency range of Mg3(BixSb1−x)2 with absolute values greater than 10 when x = 0.25,
0.5, and 0.75. This indicates that Mg3(BixSb1−x)2 (x = 0.25, 0.5, and 0.75) exhibits higher
anharmonicity. Therefore, as the Bi content increases from 0 to 0.25 or decreases from 1 to
0.75, the lattice thermal conductivity of Mg3(BixSb1−x)2 decreases considerably. However,
when the concentration changes from 0.25 to 0.75, the change in lattice thermal conductivity
reaches a plateau.
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4. Conclusions

We conducted a comprehensive investigation into the lattice thermal conductiv-
ity of Mg3(BixSb1−x)2 (0 ≤ x ≤ 1) using DFT calculations. The average lengths of the
Mg-X ionic bonds (d1), vertical Mg-X covalent bonds (d2), and three symmetry-equivalent
tilted covalent Mg-X bonds (d3) all increase as the Bi content increases. The formation
energies of Mg3(BixSb1−x)2 are all negative, indicating that their crystal structures are
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thermodynamically stable. The dynamic stability of these structures is confirmed through
the absence of imaginary frequencies in their phonon spectra.

The results from the phono3py calculations reveal that the lattice thermal conductivity
of Mg3(BixSb1−x)2 (0 ≤ x ≤ 1) with different Bi contents follows a descending order as
Mg3Sb2 > Mg3Bi2 > Mg3(BixSb1−x)2 (x = 0.25, 0.5, 0.75). At 300 K, the lattice thermal
conductivity of Mg3(BixSb1−x)2 is higher at both the upper and lower bounds of the
composition range. The effect of Bi content on the lattice thermal conductivity is negligible
for x in the range between 0.25 and 0.75. This trend is directly related to the phonon group
velocity and phonon lifetime. The phonon lifetime of Mg3Sb2 is higher than that of Mg3Bi2.
When x = 0 and x = 1.0, the phonon group velocity and phonon lifetime of Mg3(BixSb1−x)2
are significantly higher compared to the values when x = 0.25, 0.5, and 0.75. When the
Bi content increases from 0.25 to 0.75, there is little change in the distribution patterns
for the phonon group velocity and phonon lifetime. Despite the increase in Bi content,
the distribution range remains consistent, leading to negligible changes in the lattice
thermal conductivity.

It is worth noting that the current calculation of lattice thermal conductivity for
Mg3(BixSb1−x)2 is based on a relatively small supercell with just 40 atoms. While a quali-
tative agreement between the calculated results and the experimental results is observed,
some excluded phonons with shorter wavelengths lead to lower results due to the simu-
lation box’s limitation. Our research contributes not only to the comprehension of ther-
mal transport in Mg3(BixSb1−x)2 but also to the optimization of its thermal conductivity
through experimentation.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/nano13222938/s1, Figure S1. (a) Crystal structure model of
Mg3X2 (X = Sb, Bi); (b) The average lengths of Mg-X ionic bonds (d1), vertical Mg-X covalent bonds
(d2), and three symmetry-equivalent tilted covalent Mg-X bonds (d3); Figure S2. The heat capacity of
Mg3(BixSb1−x)2 (0 ≤ x ≤ 1) at 300 K.
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