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a b s t r a c t 

The subgrid-scale (SGS) kinetic energy has been used to predict the SGS stress in compressible flow 
and it was resolved through the SGS kinetic energy transport equation in past studies. In this paper, 
a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic 
energy precisely, instead of using the SGS kinetic energy equation. Using the infinite series expansion 
and reserving the first term of the expanded term, we obtain an approximated SGS kinetic energy, which 
has a high correlation with the real SGS kinetic energy. Then, the coefficient of the modelled SGS kinetic 
energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate 
through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation. 
The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure. The 
new model is tested in the compressible turbulent channel flow. From the a posterior tests, we know 
that the new model can precisely predict the mean velocity, the Reynolds stress, the mean temperature 
and turbulence intensities, etc. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 
Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Large-eddy simulation (LES) has been widely used in predicting 
turbulence and gradually applied to high Reynolds number cases. 
In LES, the eddy-viscosity model is a very popular model due to 
its strong stability. The Smagorinsky model (SM) [1] is most pop- 
ular eddy-viscosity model and is used to many different cases, but 
the SM shows excessive dissipation and cannot predict the tran- 
sitional flow. Thus, many different types of eddy-viscosity models 
are proposed. The wall-adapting local eddy-viscosity model [2] was 
proposed by Metais, which shows correct behavior in the near- 
wall region. Vreman obtained a low dissipation model [3] that can 
predict transitional flow well. Considering the helicity effects, Yu 
et al. [ 4,5 ] supplied a new eddy-viscosity model and it was ap- 
plied to predict compressible transitional flows Qi et al. proposed 
an eddy-viscosity model based on the vorticity gradient tensor for 
rotating turbulent flows [6] . The subgrid-scale (SGS) kinetic energy 
equation model ( k -equation model) is also a type of eddy-viscosity 
model, which was added the SGS kinetic energy equation to ob- 
tain the eddy viscosity. The k -equation model was proposed by 
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Schumann [ 7 ] through dimensional analysis and Yoshizawa [ 8 ] also 
obtained the k -equation model by the two-scale direct interaction 
approximation. Then the k -equation model was applied to com- 
pressible flows [9] . Chai et al. [ 10 ] supplied a k -equation model 
where the SGS terms in the equation are modelled independently 
and the coefficients of the SGS models are determined dynamically 
. Except for the eddy-viscosity model, the structural model is an 
important type of SGS models, such as scale-similarity model and 
gradient model. The scale-similarity model was obtained based on 
the scale-similarity hypothesis [11] . The gradient model is derived 
from Taylor expansions for SGS stress [ 12 , 13 ]. The structural model 
has a high correlation with the real SGS stress but is unstable. 

In addition, some LES methods have been introduced to help 
improving the predicting effects in LES. Using the Germano iden- 
tity, Germano et al. [ 14 ] supplied the dynamic procedure which 
can dynamically determine the coefficient of the SGS models. Then, 
Lilly [ 15 ], Ghosal et al. [ 16 ] and Meneveau et al. [ 17 ] obtained 
a scale-dependent dynamic SGS model and generalized the dy- 
namic procedure to any scalar flux model. Except for the dynamic 
methods, some other LES methods have been proposed recently. 
Chen et al. [ 18 ] suggested to constrain the SGS stress model by 
Reynolds stress for LES of incompressible wall-bounded turbulence 
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to improve the prediction of the averaged quantities, and then 
Jiang et al. [ 19 ] generalized this method to compressible cases. Do- 
maradzki et al. [ 20 ] proposed a new method where the total SGS 
energy transfer is used to constrain the SGS models and update 
model constants. 

Recently, artificial neural networks (ANNs) have been increas- 
ingly applied to develop turbulence models [ 21 ]. Ling et al. [ 22 ] 
supplied a new Reynolds stress anisotropic tensor through a new 
multiplicative-layer neural network with an invariant tensor firstly, 
which can obtain obvious improvement in simulation result. Us- 
ing machine learning and through optimal evaluation theory anal- 
ysis, Vollant et al. [ 23 ] obtained a new SGS scalar flux model 
which can predict results much closer to the DNS results. With the 
ANN method, Xie et al. [ 24 ] supplied the coefficients of the mixed 
model which combined the Smagorinsky model and the gradient 
model for compressible isotropic turbulence and the new method 
have better behaviours than the traditional LES models. Through 
the relationship between the resolved-scale velocity gradient ten- 
sor and the SGS stress tensor, Zhou et al. [ 25 ] proposed a new 
SGS model using the ANN method for isotropic turbulence. Park 
and Choi [ 26 ] obtained an SGS model for LES of turbulent channel 
flows using a fully connected neural network . The new model can 
have good performance and is not affected by the grid resolution 
Yuan et al. [27] . 

In this paper, a new dynamic eddy-viscosity model (NDKM) is 
proposed for LES of compressible flow. In this new model, the 
eddy-viscosity is supplied by the SGS kinetic energy, which is ob- 
tained by the infinite series expansion. And the coefficient of the 
modelled SGS kinetic energy is determined by the artificial neural 
network. 

Filter the Navier-Stokes (N-S) equations and the filtered N-S 
equations for compressible in LES can be written as 

∂ ρ̄
∂t 

+ 
∂ ρ̄ ˜ u i 
∂x j 

= 0 , (1) 
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And ( ̄·) represents spatial filtering with a low-pass filter at scale 

� and ( ̃ ·) represents density-weighted (Favre) filtering ( ̃  φ = ρφ
ρ̄ ). 

In the filtered N-S equations, ρ̄ , ˜ u i , ˜ T , p̄ and ˜ E are the filtered den- 
sity, velocity, pressure and total energy, respectively. The filtered 
pressure is determined by p̄ = ρ̄R ̃  T , where R is the specific gas 
constant. In the equations, Pr is the molecular Prandtl number and 

the molecular viscosity μ takes the form μ = 1 
Re ( 

˜ T 
˜ T ∞ 

) 
3 / 2 ̃  T ∞ + ̃ T s 

˜ T + ̃ T s 
ac- 

cording to Sutherland’s law, in which T s is 110.3 K, the Reynolds 
number Re takes the form Re = ρ∞ U ∞ L/μ∞ . 

Based on Boussinesq type hypothesis, the eddy-viscosity model 
can be written as 
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δi j τ
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(
˜ S i j −

1 
3 
δi j ̃  S kk 

)
, (12) 

where τ mod 
kk is the isotropic part of the SGS stress model and μsgs 

is the SGS eddy viscosity. And it can be known τkk = 2 ̄ρk sgs . 
For the SGS heat flux model, the commonly used SGS diffusion 

model is as 

Q mod 
j = − μsgs 

Pr sgs 

∂ ̃  T 
∂x j 

, (13) 

and Pr sgs is the SGS Prandtl number. 
In the compressible d k -equation model, the modelled SGS stress 

and SGS heat flux can be written as 
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In compressible d k -equation model, k sgs is solved by the SGS ki- 
netic energy equation. In the following, we will introduce another 
method to obtain k sgs . 

First, we introduce the infinite series expansion [28] as 

f g − f g = α
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where 

α( y ) = 
∫ ∞ 

−∞ 
2 x 2 G ( x, y ) d x. (17) 

In Eq. (17) , G ( x , y ) is the kernel of the filter and designated as 
the box filter in a priori and the grid filter in a posterior . 

When applying the infinite series expansion to SGS kinetic en- 
ergy, one can obtain 
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2 
k ρ

∂ ̃  u i 
∂x k 

∂ ̃  u i 
∂x k 

+ 
1 
2! 

(
C 2 k �

2 
k �

2 
l 
)
ρ

∂ 2 ̃  u 2 
i 

∂ x k ∂ x l 

∂ 2 ̃  u 2 
i 
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+ · · · , (18) 

where C k is the coefficient and �k is the grid width in the x k di- 
rection. 

For avoiding the complexity of additional boundary conditions 
and due to the other higher-order terms are small enough com- 
pared to the first term, we only reserve the first term and it can 
be expressed as 

ρk sgs ≈ C k �
2 
k ρ

∂ ̃  u i 
∂x k 

∂ ̃  u i 
∂x k 

, (19) 

For obtaining the coefficient C k , we will use artificial neural net- 
work in the next part. 

The coefficient C s and Pr sgs are determined dynamically by the 
Germano identity. For any term a = αβ − αβ , we assume that A = 
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̂ 
αβ − ̂ α

̂ 
β holds on the test filter level, where ˆ · denotes test filter- 

ing. The Germano identity is then defined by L = A − ˆ a = ̂  
ᾱβ̄ − ̂ ᾱ

̂ 
β̄ . 

Assume that the model for a is a = Cm , where m is a function 
of the resolved (grid filter level) quantities; then at the test filter 
level, A = CM, where M takes similar form to m but is a function 
of the test-filtered quantities. Substituting the models for A and a , 
the Germano identity becomes 

L = ˆ αβ − ˆ α ˆ β = C 
(
M − ˆ m 

)
. (20) 

The model coefficient C can be solved dynamically as 
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ˆ αβ − ˆ α ˆ β

M − ˆ m 
. (21) 

The coefficient C varies with time and space. To avoid compu- 
tational instability, C is regularized using a combination of least- 
square method and volume averaging. For the coefficient of SGS 
stress C s is 
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)
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For the coefficient of SGS heat flux model, it can be determined 
dynamically as 

P r sgs = 
〈 M θ

j M θ
j 〉 

〈 L θ
j M θ

j 〉 
, (27) 

where 

L θj = ρ̄̂ ˜ u j ̃  T − 1 
̂ ρ̄
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M θj = ρ̄
̂ 

νsgs 
∂ ̃  T 
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∂ ̂  ˜ T 
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. (29) 

In our study, we use an ANN to construct the coefficient C k in 
compressible turbulent channel flow. The data selected for train- 
ing and testing in this study are obtained from the direct numeri- 
cal simulation (DNS) data of a temporally compressible isothermal- 
wall turbulent channel flow [29] . In this case, the Mach num- 
ber Ma = 1 . 5 , the Reynolds number Re = 30 0 0 , and the friction 
Reynolds number Re τ = u τ δ/ν = 220 ( u τ and δ are the friction ve- 
locity and the half width of the channel). The computation domain 
for the DNS of channel flow is a box with a size of 4 π × 2 × 4 / 3 π, 
and the grids for DNS are 900 × 201 × 300 and �x + × �y + 

wall ×
�z + = 3 × 0 . 32 × 3 , where �x + , �y + 

wall , and �z + ( �x + 
i = �x i u τ /ν) 

are the mesh spacings of wall units in streamwise, wall-normal, 
and spanwise directions. During the course of training and test- 
ing, the DNS data are filtered in streamwise and spanwise direc- 
tions with a box filter. The input features of the ANN are critical 
to the performance of predicting the coefficient C k . A set of in- 
put variables are dimensionless quantities, where several variables 
may be selected in compressible wall-bounded turbulence, such as 

Fig. 1. Schematic diagram of the artificial neural network for predicting the model 
coefficient C k . 

Table 1 
A set of inputs and outputs for different ANN 
models. 

Model ANN1 ANN2 ANN3 

Inputs �+ , y + �+ 
l , y 

+ Re �, y + 
Outputs C k C k C k 

�+ , y + , Re �, and �+ 
l . In this paper, �+ = ρ̄w ̃  u τ�/μw is the nor- 

malized filter width, y + = ρ̄w ̃  u τ y/μw is the dimensionless normal 
distance, Re � = ρw | ̃  S | �2 /μw is the mesh Reynolds number, and 

�+ 
l = �/l, l = [ μ2 

w / (2 ̄ρ2 
w 〈 ̃  S i j ̃  S i j 〉 ) ] 1 / 4 . The filtered wall friction ve- 

locity is ˜ u τ = 
√ 

τw / ̄ρw , where τw = μw ∂ ̃ u 
∂y is the wall shear stress 

and 〈·〉 is denoted as the spatial average along the homogeneous 
directions. Figure 1 shows schematic diagram of the artificial neu- 
ral network for predicting the model coefficients C k . Table 1 shows 
a set of inputs and outputs for different ANN models. In this pa- 
per, a total of four layers (an input layer, two hidden layers and 
an output layer) with neurons in the ratio M : 100: 100: 1 and 
M is the number of input variables listed in Table 1 . The activa- 
tion functions of the hidden layers and output layer are the hy- 
perbolic tangent function ( σh (x ) = (e x − e −x ) / (e x + e −x ) ) and lin- 
ear function ( σo (x ) = x ). The mean-squared error (MSE) function 

is chosen as the loss function of the ANN ( L = 〈 ( C true 
k − C pred 

k ) 
2 〉 , 

where C true 
k and C pred 

k denote the true and predicted values of the 
ANN.) 

In this study, we select 2 × 10 4 samples from 20 snapshots of 
the filtered DNS data with a ratio of the filter width �/ �DNS rang- 
ing from 2 to 20 ( �/ �DNS ∈ {2, 4, …, 20}). The cross-validation 
strategy is used and the dataset is divided into a training set 
and testing set to suppress parameter overfitting of the ANN. We 
randomly extract seventy percent of the samples from the total 
dataset and are used as the training set, while the others are used 
for testing. The weights of the ANN are initialized by the Glorot- 
uniform algorithm and optimized by the Adam algorithm [30] for 
1 × 10 4 iterations, with a batch size and learning rate of 10 0 0 and 
0.01, respectively. To determine the optimal hyperparameters, such 
as the numbers of layers and neurons and the types of activation 
functions, we choose the grid search method as the hyperparame- 
ter pruning method of the ANN. 

For seeing the rationality of the selected hyperparameters, in 
Table 2 , we supply the correlation coefficient C ( C k ), the relative er- 
ror E r ( C k ), and the ratio of the root-mean-square value R ( C k ), which 
are defined, respectively, as 

C (C k ) = 

〈(
C real 

k −
〈
C real 

k 
〉)(

C mod el 
k −

〈
C mod el 

k 
〉)〉

〈 (
C real 

k −
〈
C real 

k 
〉)2 

〉 1 / 2 〈 (
C mod el 

k −
〈
C mod el 

k 
〉)2 

〉 1 / 2 , (30) 
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Fig. 2. Comparisons of the coefficient C k reconstructed by different ANN models along the normal direction with different filter widths: ( a ) �/ �DNS = 4 ; ( b ) �/ �DNS = 8 ; 
( c ) �/ �DNS = 12 ; ( d ) �/ �DNS = 16 (the Model in the pictures means that C k is 1/12 and ρ̄k sgs ≈ 1 

24 �2 
k ̄ρ( ∂ ̃  u i /∂x k ) 2 ). 

Table 2 
Correlation coefficient( C ), relative error( Er ), and ratio of root-mean-square value 

Dataset \ C ( C k ) ANN1 ANN2 ANN3 

Training 0.922 0.932 0.933 
Testing 0.911 0.913 0.919 
Dataset \ E r ( C k ) ANN1 ANN2 ANN3 
Training 0.112 0.109 0.105 
Testing 0.123 0.122 0.118 
Dataset \ R ( C k ) ANN1 ANN2 ANN3 
Training 0.921 0.931 0.932 
Testing 0.901 0.903 0.909 

E r (C k ) = 

〈 (
C real 

k − C mod el 
k 

)2 
〉 1 / 2 

〈 (
C real 

k 
)2 

〉 1 / 2 , (31) 

R ( C k ) = 

〈 (
C mod el 

k −
〈
C mod el 

k 
〉)2 

〉 1 / 2 
〈 (

C real 
k −

〈
C real 

k 
〉)2 

〉 1 / 2 . (32) 

From the results in Table 2 , we know that the selected hyper- 
parameters are reasonable and the ANN models are well trained. 

( R ) of the coefficient C k in different datasets for different ANN 
models. 

Figure 2 shows comparisons of the coefficient C k reconstructed 
by different ANN models along the normal direction with different 
filter widths. From the figures, we know that the modelled SGS 
kinetic energy modified by the ANNs models can have similar re- 
sults and have good agreement with the DNS results. We choose 

the ANN3 model in the following testing because the ANN3 model 
has the best behaviours in the three ANN models. 

In this section, the new model is tested in compressible turbu- 
lent channel flow. The case setting of the LES in this part is same 
as that of the DNS in previous part. The governing equations are 
solved by a high-precision non-dimensional finite difference solver 
in Cartesian coordinates: the third-order R - scheme is chosen as 
the time integrating method, and a sixth-order central difference 
scheme is used for the discretization of both the convective and 
viscous terms. The grid filter width is � = ( �x �y �z ) 

1 / 3 
with �x , 

�y and �z representing the local grid width, and the test-filter 
width is set as 2�. Table 3 shows the grid setting and the main pa- 
rameters for the simulations in the compressible turbulent channel 
flow. 

Figure 3 shows the profiles of Van Driest transformed mean 
velocity ( U v d = 

∫ U 
0 

√ 〈 ρ〉 /ρw d〈 U〉 ) and the mean temperature T + a v = 
( T w − 〈 T 〉 ) /T τ obtained from DNS, the NDKM and the d k -equation 
model. T τ = B q T w is the friction temperature, B q = q w / ( ρw c p u τ T w ) 
is the nondimensional heat flux, and q w is the wall-normal heat 
flux. From the figures, we know that the NDKM can have perfect 
agreement with the DNS results, but the d k -equation model shows 
deviations at y + > 30. 

The profiles of the total Reynolds stress and the total turbu- 
lent heat flux from DNS and different SGS models are shown in 
Fig. 4 . In Fig. 4 a, the NDKM can have perfect behavior at almost 
regions but the d k -equation model shows worse results. In Fig. 4 b, 
the NDKM has good performance but the results from the NDKM 
are a little higher than results from DNS at 15 < y + < 30. The d k - 
equation model still shows deviation with DNS. 
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Table 3 
The grid setting and the main parameters for the simulations in the compressible turbulent 
channel flow ( Ma = 1 . 5 and Re = 30 0 0 ). 

Grids �x + �y + w �z + Re τ Ma τ −B q 

DNS 900 ×201 ×300 2.99 0.32 2.99 220 0.0815 0.0445 
d k -equation model 48 ×65 ×48 57.6 1.07 18.2 210 0.0805 0.0431 
NDKM 48 ×65 ×48 57.5 1.07 18.1 216 0.0813 0.0442 

Fig. 3. The profiles of Van Driest transformed mean velocity and the mean temperature from different SGS models and results from DNS is as comparison (‘Coleman et al.’ 
is data from Coleman et al. [29] ). 

Fig. 4. The profiles of the total Reynolds stress normalized by ρw and u τ , and the total turbulent heat flux normalized by ρw , u τ and T w from DNS and different SGS models. 

The profiles of the resolved turbulence intensities from DNS, the 
NDKM and d k -equation model are shown in Fig. 5 a, 5b and 5c. 
From the figures, we know that the NDKM shows better predic- 
tions than the d k -equation at almost regions. Figure 5 d shows the 
turbulent kinetic energy from DNS and different SGS models. In 
the figure, we know that the NDKM can well predict the total tur- 
bulent kinetic energy and the SGS part. We also can infer that the 
NDKM can obtain better SGS kinetic energy than the d k -equation 
model. 

Figure 6 shows that the profiles of the resolved RMS density 
fluctuations and the resolved RMS temperature fluctuations from 
DNS and different SGS models. From the figures, we know that the 
NDKM can well predict the resolved RMS density fluctuations and 
the resolved RMS temperature fluctuations. The d k -equation model 
can also show good behaviours but still behaves a little worse than 
the NDKM. 

Next, we will test the new model in the case of Ma = 3 . 0 
and Re = 4880 . The size of the computational domain, the Prandtl 
number Pr , the boundary conditions, the ratio of specifific heats 
and the setting of LES solver are the same with the case of Ma = 

1 . 5 and Re = 30 0 0 . The grid setting and the main parameters for 
this case are shown in Table 4 . 

Figure 7 shows the profiles of the Van Driest transformed mean 
velocity U vd and mean temperature T + av obtained from different 
SGS models and DNS. Figure 8 shows the profiles of the total 
Reynolds stress and the turbulent heat flux from different SGS 
models and DNS. From the figures, we can see that the NDKM can 
also obtain better results than d k -equation model in the case of 
higher Mach number. 

In this paper, we propose a new eddy-viscosity model for large- 
eddy simulation of compressible flow. In this new model, the eddy 
viscosity is obtained by the subgrid-scale kinetic energy. The SGS 
kinetic energy is an unclosed term and for resolving this quan- 
tity, we apply the infinity series expansion to it. Since the other 
higher-order terms are small enough compared to the first term, 
and for avoiding the complexity of additional boundary conditions, 
the first term of the expanded quantity is reserved as the modelled 
SGS kinetic energy. And the coefficient of the modelled SGS kinetic 
energy is determined by the artificial neural network. The coef- 
ficients of the eddy-viscosity model are determined dynamically 
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Fig. 5. The profiles of the resolved turbulence intensities normalized by the friction velocity u τ and the turbulent kinetic energy from DNS and different SGS models: ( a ) 
Streamwise turbulence intensity; ( b ) Wall-normal turbulence intensity; ( c ) Spanwise turbulence intensity; ( d ) The turbulent kinetic energy. 

Fig. 6. The profiles of the resolved RMS density fluctuations normalized by averaged density ρa v , and the resolved RMS temperature fluctuations normalized by averaged 
temperature T a v from DNS and different SGS models: ( a ) density fluctuations; ( b ) temperature fluctuations. 

Table 4 
The grid setting and the main parameters for the simulations in the compressible turbu- 
lent channel flow ( Ma = 3 . 0 and Re = 4880 ). 

Grids �x + �y + w �z + Re τ Ma τ −B q 

d k -equation model 86 ×97 ×86 66.5 1.44 19.5 448 0.108 0.129 
NDKM 86 ×97 ×86 66.4 1.44 19.4 450 0.110 0.131 
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Fig. 7. The profiles of the van Driest transformed mean velocity U vd and mean temperature T + av obtained from different SGS models and DNS. The DNS results are from 
Coleman et al. [29] . 

Fig. 8. The profiles of the total Reynolds stress and the turbulent heat flux normalized by ρw , u τ and T w from different SGS models and DNS. The DNS results are from 
Coleman et al. [29] . 

by the Germano identity. The new model is tested in compress- 
ible turbulent channel flow and it shows that the new model can 
show better behavior than the dynamic SGS kinetic energy equa- 
tion model, including the mean velocity profile, the mean temper- 
ature profile, the RMS quantities, the total Reynolds stress and the 
turbulent heat flux, etc. Compared to the SGS kinetic energy equa- 
tion model, the NDKM can obtain precise SGS kinetic energy and 
has higher computational efficiency. 

In summary, a new SGS eddy-viscosity model is proposed using 
the artificial neural network to predict the SGS kinetic energy for 
LES of compressible flow, and it can present good results. In future 
researches, the new model will be applied to high Mach number 
flows in complex geometries. 
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