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a b s t r a c t 

A unidirectional, weakly dispersive nonlinear model is proposed to describe the supercritical bifurcation 

arising from hydroelastic waves in deep water. This model equation, including quadratic, cubic, and quar- 

tic nonlinearities, is an extension of the famous Whitham equation. The coefficients of the nonlinear 

terms are chosen to match with the key properties of the full Euler equations, precisely, the associated 

cubic nonlinear Schrödinger equation and the amplitude of the solitary wave at the bifurcation point. It 

is shown that the supercritical bifurcation, rich with Stokes, solitary, generalized solitary, and dark soli- 

tary waves in the vicinity of the phase speed minimum, is a universal bifurcation mechanism. The newly 

developed model can capture the essential features near the bifurcation point and easily be generalized 

to other nonlinear wave problems in hydrodynamics. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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It is well known that there exist two types of solitary waves 

n water waves, namely gravity solitary waves in shallow water 

nd gravity-capillary solitary waves in deep water, and their bi- 

urcation mechanisms are very different. Gravity solitary waves in 

hallow water, which exist above the phase speed maximum, de- 

ay monotonically in the direction of wave propagation and can 

e approximated by the sech-squared solitons of the celebrated 

orteweg-de Vries (KdV) equation. However, gravity-capillary soli- 

ary waves in deep water, which exist below the phase speed 

inimum, feature oscillatory decaying tails and bifurcate from in- 

nitesimal periodic waves [3,4] . Akylas [3] elucidated that the en- 

elopes of gravity-capillary solitary waves can be well described 

y the nonlinear Schrödinger (NLS) equation with cubic nonlin- 

arity. Therefore, these waves are usually called wavepacket soli- 

ary waves in the literature. Akylas also gave the condition for 

avepacket solitary waves: a phase speed extremum achieved at 

 non-zero wavenumber and a focusing cubic NLS equation at this 

oint. 

However, Laget and Dias in 1997 computed interfacial capillary- 

ravity solitary waves between two semi-infinite fluids. They 

howed that when the density ratio of the upper to lower fluids is 
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reater than 0.283, wavepacket solitary waves still exist; however, 

he branch does not bifurcate from infinitesimal periodic waves [ 8 ]. 

ias and his collaborators [1,6] conducted the normal form analy- 

is. They found that the cubic NLS equation is of defocusing type 

t the minimum of the phase speed in this situation. Therefore, a 

urther asymptotic expansion needs to be carried out, such that the 

ubic-quintic NLS equation can explain the existence of these un- 

sual solutions. This fact indicates that the focusing NLS equation 

s not necessary for wavepacket solitary waves. 

Based on the Kirchhoff-Love plate theory, P ̆ar ̆au and Dias in 

002 investigated hydroelastic solitary waves, which deal with the 

nteraction between moving loads and deformable sheets that have 

ide usage in marine structures and sea transport [13,14] . Their 

nalysis showed that there exists a critical depth H c where the as- 

ociated cubic NLS at the phase speed minimum changes the type. 

ilewski et al. in 2011 revisited the problem and found that even 

hough small-amplitude solitary waves are not predicted to exist 

n deep water by standard perturbation analyses due to the defo- 

using nature of the NLS equation, solitary waves with finite am- 

litude do exist in the full Euler equations, a phenomenon similar 

o interfacial capillary-gravity waves. Taking advantage of the novel 

umerical scheme, Milewski et al. [12] continued the branch to ex- 

lore the bifurcation mechanism of these large-amplitude solitary 

aves. It is shown in Fig. 1 that they occur along a branch of gen-

ralized solitary waves that itself bifurcates from periodic waves of 
ety of Theoretical and Applied Mechanics. This is an open access article under the 
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Fig. 1. Speed-amplitude bifurcation diagram of hydroelastic waves near the phase speed minimum c min = 1 . 3247 (vertical dotted line). The solutions are computed in the full 

Euler equations with the Kirchhoff-Love plate model. The amplitude is defined as ( max η − min η) / 2 , where η is the wave profile. The uppermost curve is a branch of bright 

solitary waves for c < c min (solid red line) and generalized solitary waves for c > c min (dashed red line) which are distinguished from one another at the point (1.3247,0.9370) 

(labeled with a pentagram). The branches originating at c min are periodic Stokes solutions (dotted red line) and dark solitary waves (black circles). Typical profiles for bright 

solitary wave (left), generalized solitary wave (upper right), dark solitary wave (lower right), and multi-packet bright solitary wave (upper middle) are plotted. 
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nite amplitude. We call this new bifurcation mechanics the ‘su- 

ercritical bifurcation’ since the branch first grows in the super- 

ritical regime until a turning point that leads it to the subcritical 

egime. On the other hand, Milewski et al. in 2013 computed dark 

olitary waves predicted by the defocusing NLS equation whose 

nvelope approaches a non-zero constant state in the far field and 

ecreases to zero at the origin (see the embedded image in the 

ottom right corner of Fig. 1 ). The branch of dark solitary waves in

ydroelastic waves stems from the bifurcation point with zero am- 

litude and also features a turning point. If one traces the upper 

ranch by decreasing wave speed, traveling-wave solutions become 

ulti-packet bright solitary waves once the wave speed reaches 

he subcritical regime. In summary, the bifurcation of deep-water 

ydroelastic waves near the critical speed, rich with Stokes, soli- 

ary, generalized solitary, and dark solitary waves, is of a novel 

ype. This type of bifurcation was also found later in other hy- 

rodynamic problems, including interfacial capillary-gravity waves 

16] , electrohydrodynamic surface waves under a vertical electric 

eld [9] , and hydroelastic waves with constant vorticity [7] , indi- 

ating its universal property. Though this new bifurcation mecha- 

ism was numerically found in the full Euler equations under var- 

ous situations, it is still necessary to propose a simplified model 

ike the KdV equation to gravity waves in shallow water and the 

ubic NLS equation to gravity-capillary waves in deep water. 

To study the stability and dynamics of capillary-gravity waves 

n deep water, Akers and Milewski (2009) [17] proposed a reduced 

odel that generalized the famous Whitham equation (see Ref. for 

xample). They expanded the linear dispersion relation near the 

hase speed minimum and fixed the coefficient of the quadratic 

onlinearity by matching the coefficient of the cubic nonlinearity 

n the associated NLS equation. This model was further generalized 

o include forcing and viscosity to validate the laboratory experi- 

ents on symmetric and asymmetric shedding of capillary-gravity 

umps [5,10] . Motivated by the work of Akers and Milewski [2] , we

n this paper extend their idea via introducing cubic and quartic 

onlinear terms to acquire more degrees of freedom, and hence 

chieve the defocusing NLS equation and mimic the new bifurca- 

ion. The newly proposed model is simple enough and can capture 

he main features of the bifurcation mechanism. The rest of the pa- 
2 
er is structured as follows. The detailed derivations of the model 

quation and the associated NLS equation are described. Then, the 

umerical results for both two- and three-dimensional problems 

re presented and discussed. 

We take the problem of hydroelastic waves as an example to 

emonstrate the procedure of modeling. Following Refs. [11,12,15] , 

e consider two-dimensional (2D) hydroelastic waves in deep wa- 

er based on the nonlinear Kirchhoff-Love plate theory. First of all, 

he linear dispersion relation of the problem reads ω 

2 = | k | (1 + k 4 
)

ith ω the wave frequency and k the wavenumber, which has 

 phase minimum c min = 2 × 3 −
3 
8 ≈ 1 . 3247 at k ∗ = 3 −

1 
4 ≈ 0 . 7598 .

ince we are interested in the bifurcation mechanism of progres- 

ive waves of permanent form in the vicinity of this particular 

oint, a narrow band approximation and unidirectional propaga- 

ion of waves are assumed. Following Ref. [2] , we expand the dis- 

ersion relation about | k | = k ∗ as a Taylor series and retain terms

p to quadratic order: 

(k ) ≈ sgn (k ) 

[
�(k ∗) + �′ (k ∗)(| k | − k ∗) + 

�′′ (k ∗) 
2 

( | k | − k ∗) 2 
]

, 

(1) 

here the right-going wave is picked, �(| k | ) = 

√ | k | (1 + | k | 4 ) , and 

he prime denotes the derivative with respect to | k | . At the mini-

um of the phase velocity, it is not difficult to show that the group 

elocity and phase velocity are equal, namely �′ (k ∗) = �(k ∗) /k ∗.

herefore, Eq. (1) can be recast to 

(k ) ≈ 1 

2 

sgn (k ) 
{ 

�′′ (k ∗)(k ∗) 2 + 2 

[
�′ (k ∗) − �′′ (k ∗) k ∗

]| k | 
+�′′ (k ∗) k 2 

} 

, (2) 

here, specifically, 

(k ∗) = 2 × 3 

− 5 
8 , �′ (k ∗) = 2 × 3 

− 3 
8 , �′′ (k ∗) = 3 

7 
8 . 

y substituting i ∂ t for ω, −i ∂ x for k , and i H for sgn (k ) in Eq. (2) ,

ne obtains a linear dispersive equation 

t − 3 

− 3 
8 ηx − 3 

3 
8 

2 

H 

[ 
η − 3 

1 
2 ηxx 

] 
= 0 , (3) 
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here η is the surface elevation and H is the Hilbert transform. 

e introduce quadratic, cubic, and quartic nonlinearities to com- 

lete the equation, yielding 

t − 3 

− 3 
8 ηx − 3 

3 
8 

2 

H 

[ 
η − 3 

1 
2 ηxx 

] 
+ αηηx + βη2 ηx + γ η3 ηx = 0 , 

(4) 

here α, β , and γ are constants. To determine the coefficients of 

he nonlinear terms, we follow the idea of Akers and Milewski in 

009. First of all, we should match the nonlinear coefficient of the 

ssociated cubic NLS equation of Eq. (4) with that of the full Euler 

quations. It is noted that the quartic term has no contribution in 

eriving the cubic NLS equation but comes into play while deriving 

he cubic-quintic NLS equation. Introducing the amplitude param- 

ter ε and slowly varying variables X = εx , T = εt , and τ = ε2 t , we

xpand the free surface as 

= εA (X − c g T , τ )e i (kx −ωt) + ε2 A 2 (X − c g T , τ )e 2 i (kx −ωt) 

+ c.c. + · · · , (5) 

here c g = 

1+5 k 4 

2 ω is the group velocity and ‘c.c.’ stands for complex 

onjugation. We then substitute the ansatz Eq. (5) into Eq. (4) and 

quate like powers of ε. The resulting equation of O (ε) recov- 

rs the linear dispersion relation Eq. (2) , and the equation asso- 

iated with ε2 e 2 i (kx −ωt) gives A 2 = 3 −
3 
8 αkA 

2 / ( 1 2 −
√ 

3 k 2 ) . On the

ther hand, if we derive the NLS equation based on the full Euler 

quations, the expression of A 2 reads A 2 = ω 

2 A 

2 / (1 − 14 k 4 ) . Mak-

ng these two expressions equal at k = k ∗ yields α = 

2 
11 · 3 

3 
8 . Fi-

ally, the solvability condition for O 

(
ε3 

)
results in the cubic NLS 

quation for A as 

 A τ + 

3 

7 
8 

2 

A XX + 

(
2 · 3 

− 7 
8 α2 − 3 

− 1 
4 β

)
| A | 2 A = 0 . (6) 

ince the coefficient of the cubic nonlinearity in the associated NLS 

quation derived from the full Euler equation is − 79 
88 3 

− 9 
8 (see Refs. 

11,12] for example), we then let 

 × 3 

− 7 
8 α2 − 3 

− 1 
4 β = −79 

88 

3 

− 9 
8 , 

hich gives 

= 2 × 3 

− 5 
8 α2 + 

79 

88 

3 

− 7 
8 = 

1061 

2904 

× 3 

1 
8 . (7) 

t is apparent that if we only include the quadratic nonlinear term 

ηx as done in Ref. [2] , then the defocusing NLS equation cannot 

e expected. 

It is challenging to derive the cubic-quintic NLS equation from 

he full Euler equations. We do not attempt to derive the higher- 

rder NLS equation from the primitive equations or the Whitham 

ype model. Instead, we fix the parameter γ numerically by match- 

ng the amplitude of the solitary wave at the bifurcation point (i.e., 

he pentagram in Fig. 1 ). It turns out that γ ≈ 0 . 6534 for this spe-

ific problem. 

We compute progressive solutions to Eq. (4) based on the stan- 

ard pseudo-spectral method and the Newton iteration. Assume 

(x, t) = η(x − ct) , where c is the translating speed, and hence the 

overning equation takes the form (
c + 3 

− 3 
8 

)
ηξ − 3 

3 
8 

2 

H 

[ 
η − 3 

1 
2 ηξξ

] 
+ αηηξ

+ βη2 ηξ + γ η3 ηξ = p ξ , (8) 

here ξ = x − ct and p(ξ ) is an external forcing mimicking the 

onstant moving load on the ice sheet. Equation (8) is solved nu- 

erically by approximating η with its truncated Fourier series 

(ξ ) = 

N ∑ 

n = −N 

a n e 
i 2 πnξ/L , (9) 
3 
here the unknown coefficients a n satisfying a n = a −n are real for 

ymmetric solutions, and L is the length of the computational do- 

ain discretized by 2 N + 1 equally distributed grid points. By sub- 

tituting Eq. (9) into Eq. (8) and projecting the resultant equa- 

ion onto each element of the basis e i 2 πnξ/L for n = 0 , 1 , 2 , · · · , N,

ne obtains N + 1 nonlinear algebraic equations, where the Hilbert 

ransform and derivatives are computed by using the Fourier mul- 

ipliers. The translating speed c is either prescribed or considered 

n unknown and solved by adding an extra equation to the dis- 

retized system (usually by specifying the wave amplitude which is 

efined as ( max η − min η) / 2 ). The solution is considered to con- 

erge when the l ∞ −norm of the residual error is less than 10 −10 .

he bifurcation curves are computed by straightforward numerical 

ontinuation in a chosen parameter (usually the speed, unless a 

urning point is reached). 

We start with computing free bright solitary waves ( p(ξ ) = 0 ) 

elow the phase speed minimum, whose amplitudes are greater 

han a specific positive value. In contrast to the results presented 

n Ref. [11] , where only depression solitary waves are found to 

xist in potential flows coupled with the Kirchhoff-Love elastic 

odel, two types of solitary waves are found in Eq. (8) . They 

re depression solitary waves with a negative central displace- 

ent ( Fig. 2 b) and elevation solitary waves with a positive central 

isplacement ( Fig. 3 b). We follow the branches of bright solitary 

aves by increasing the translating speed. As c passes through the 

ifurcation point c min , the finite-amplitude bright solitary pulse in- 

vitably resonates with a periodic wave of similar speed, result- 

ng in a generalized solitary wave (dashed red lines in Figs. 2 a 

nd 3 a). These solutions are characterized by a solitary pulse in 

he middle and trains of ripples on both sides (see Fig. 2 c for the

epression generalized solitary wave and Fig. 3 c for the elevation 

ne). Further numerical experiments show that the algorithm con- 

erges well if we add more and more oscillations to the obtained 

rofile. It is shown in Figs. 2 c and 3 c that the profiles obtained

or L = 62 π × 3 
1 
4 (solid blue lines) are almost exactly on top of 

he profiles for L = 82 π × 3 
1 
4 (dotted red lines), which provides 

trong evidence that these solutions are true generalized solitary 

aves as the domain size approaches infinity. When the speed fur- 

her increases, the tails gradually grow and catch up with the soli- 

ary pulse in amplitude. And finally, the generalized solitary waves 

erge in a branch of periodic waves. 

As the system is forced by a load moving with constant speed, 

he solution may reach a steady state in the moving frame when 

he forcing speed is in a suitable range. To compute these steady 

olutions, we use the pressure distribution p(ξ ) = ε e −ξ2 / 9 , where 

is a parameter that controls the peak amplitude of the ap- 

lied pressure, and the results are qualitatively similar for other 

ully localized distributions. Two representative cases are shown in 

ig. 2 for ε = 0 . 02 (solid blue line) and ε = 0 . 1 (solid green line).

he results agree well with the full Euler computations shown in 

ef. [11] . The existence of the moving pressure breaks the sym- 

etry of the bifurcation, with the upper branch being the small 

erturbation of bright/generalized solitary waves and the lower 

ranch being the small perturbation of the free stream. For large 

orcing ( ε = 0 . 1 ), there is a gap between the branch of steady so-

utions and the bifurcation point, which is termed the ‘transcritical 

egime’. This range of gap will lead to interesting time-dependent 

ynamics. When the large pressure distribution moves with speed 

n this range, there is neither a steady forced solution nor a lin- 

ar mechanism to radiate energy away. Therefore the energy accu- 

ulates within the forced region and releases once in the form of 

olitary waves as the amplitude reaches a certain level. Besides the 

eriodic shedding of solitary waves due to large forcing, another 

triking phenomenon is the non-existence of transcritical regime 

or small forcing, indicating that no large responses can be gen- 
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Fig. 2. ( a ) Speed-amplitude bifurcation diagram of depression waves near the phase speed minimum c min = 1 . 3247 (vertical dotted line). The amplitude is defined as 

( max η − min η) / 2 . The forced solutions are shown by solid blue and green lines, respectively, for large and small pressure distributions. The free solution branches origi- 

nating at c min are periodic Stokes waves (magenta circles) and dark solitary waves (solid black line). The generalized solitary waves (dashed red line) and bright depression 

solitary waves (downward pointing triangles) appear along the branch of periodic waves. ( b ) A typical profile for bright solitary wave ( c = 1 . 3 ). ( c ) Typical profiles for gener- 

alized solitary wave ( c = 1 . 331 ) computed in the domains with lengths 62 × 3 
1 
4 π (solid blue line) and 82 × 3 

1 
4 π (dotted red line). ( d ) Typical profiles for dark solitary wave 

( c = 1 . 33 ) computed in the domains with lengths 103 × 3 
1 
4 π (solid blue line) and 123 × 3 

1 
4 π (dotted red line), respectively; the envelope (dotted black lines) are the NLS 

prediction. ( e ) A typical profile of multi-packet solitary wave ( c = 1 . 3187 ) arising along the branch of dark solitary waves. 

Fig. 3. ( a ) Speed-amplitude bifurcation diagram of elevation waves near the phase speed minimum c min = 1 . 3247 (vertical dotted line). The amplitude is defined as ( max η −
min η) / 2 . The forced solutions are shown by solid blue and green lines, respectively, for large and small pressure distributions. The free solution branches originating at c min 

are periodic Stokes waves (magenta circles) and dark solitary waves (solid black line). The generalized solitary waves (dashed red line) and bright elevation solitary waves 

(upward pointing triangles) appear along the branch of periodic waves. ( b ) A typical profile for bright solitary wave ( c = 1 . 3 ). ( c ) Typical profiles for generalized solitary wave 

( c = 1 . 331 ) computed in the domains with lengths 62 × 3 
1 
4 π (solid blue line) and 82 × 3 

1 
4 π (dotted red line). ( d ) Typical profiles for dark solitary wave ( c = 1 . 33 ) computed 

in the domains with lengths 103 × 3 
1 
4 π (solid blue line) and 123 × 3 

1 
4 π (dotted red line), respectively; the envelope (dotted black lines) are the NLS prediction. ( e ) A typical 

profile of multi-packet solitary wave ( c = 1 . 318 ) arising along the branch of dark solitary waves. 
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rated as relatively low-mass vehicles moving close to c min . This 

s very different from the case of pure gravity waves forced by a 

oving ship, where the transcritical regime exists regardless of the 

mplitude of the applied pressure. As shown in Fig. 3 a, similar re- 

ults can be obtained for forced elevation waves (i.e., ε = −0 . 2 for

arge forcing and ε = −0 . 02 for small forcing), which were not ob-

erved in Ref. [11] . 

We now turn to the branch of free dark solitary waves. The 

efocusing nature of the cubic NLS equation for the present 

fi

4 
roblem predicts the existence of dark solitary waves bifurcating 

rom infinitesimal periodic waves. The dark soliton solution for 

q. (6) takes the form 

 (X, τ ) = 

√ 

88 

79 

3 

9 
8 � tanh 

(
X 

√ 

3 

− 7 
8 �

)
e −i �τ , (10) 

here � is an arbitrary positive constant. For the free-surface pro- 

le, to leading order, one obtains 
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Fig. 4. ( a ) Speed-amplitude bifurcation diagram for free depression lumps (downward pointing triangles), generalized lumps (dashed red line), and periodic waves (pink 

circles). ( b ) Typical profile of depression lump at c = 1 . 3 . ( c ) Typical profile of generalized depression lump at c = 1 . 3336 . 
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(x, t) ≈ ±2 ε

√ 

88 

79 

3 

9 
8 � tanh 

[ 
ε( x − c min t ) 

√ 

3 

− 7 
8 �

] 
× sin 

[
k ∗

(
x − c min t −

�

k ∗
ε2 t 

)]
, (11) 

ecalling that k ∗ = 3 −
1 
4 and c min = 2 × 3 −

3 
8 . To search for dark soli-

ary waves in Eq. (8) , as suggested by Ref. [12] , we usually choose

 = (2 n + 1) π/k ∗ to avoid the Newton-Raphson iteration converg- 

ng to the Stokes wave, where n is a positive integer. For small- 

mplitude solutions, two types of dark solitary waves are found 

ccording to the phase at the center: concave-up ( Fig. 2 d) and con-

ave down ( Fig. 3 d). The NLS prediction (11) (dotted black lines in

igs. 2 d and 3 d) provides excellent approximations for envelopes. 

he solutions computed with n = 51 (solid blue lines) are almost 

xactly on top of the solutions with n = 61 (dotted red lines), indi-

ating that more and more Stokes waves can be added to the tails, 

ence strongly suggesting the existence of true dark solitary waves. 

ollowing the bifurcation curve of dark solitary waves by increas- 

ng the wave amplitude, a turning point appears (see solid black 

ines in Figs. 2 a and 3 a), through which the solution transits from

ark solitary waves to multi-hump generalized solitary waves. Af- 

er crossing over the bifurcation point from supercritical to sub- 

ritical, the solution ultimately becomes multi-packet bright soli- 

ary waves, which are characterized by two depression/elevation 

avepackets placed side by side (see typical profiles in Figs. 2 e 

nd 3 e). Although the distance between the packets in the reduced 

odel is larger than that in the Euler equations, these multi-packet 

olutions are qualitatively similar to the full Euler solution shown 

t the top of Fig. 1 . 

It is also possible to generalize Eq. (4) to the three-dimensional 

ydroelastic wave problem. Let the x -axis be the wave propaga- 

ion direction, and the y -axis be the horizontal transverse direc- 

ion. Following Ref. [2] , we expand the linear dispersion relation 

bout (±k ∗, 0) and continue to use the existing nonlinear terms 

y assuming unidirectional wave propagation with slight inhomo- 

eneity in the transverse direction. One eventually obtains 

t − 3 

− 3 
8 ηx − 3 

3 
8 

2 

H 

[ 
η − 3 

1 
2 ηxx − 2 · 3 

− 1 
2 ηyy 

] 
+ αηηx + βη2 ηx + γ η3 ηx = 0 . (12) 
5 
he underlying ‘2+1’ NLS equation for Eq. (12) is of defocusing 

ype, which rules out small-amplitude lumps (i.e., spatially con- 

ned traveling waves in three dimensions) in Eq. (12) . However, 

s shown in Ref. [16] for interfacial capillary-gravity waves, lump 

olutions can still exist in a fully nonlinear model in this situa- 

ion but bifurcate from a non-zero amplitude. In the subsequent 

omputations, we seek lump solutions with symmetry in both x - 

nd y -directions in Eq. (12) based on the standard pseudo-spectral 

ethod similar to Eq. (9) (the details of the numerical scheme are 

mitted, and the interested readers are referred to Refs. [2,16] for 

eference). The bifurcation diagrams and typical profiles of lumps 

re shown in Figs. 4 a, 4 b, 5 a and 5 b. As indicated by the defo-

using NLS equation, no small-amplitude lumps can be found be- 

ow the minimum of the phase speed. The key observation is that 

oth elevation and depression lumps, which feature oscillatory de- 

aying tails in the propagation direction but monotonic decaying 

ails in the transverse direction, are found to exist at finite ampli- 

ude. However, as the translating speed increases and reaches the 

upercritical regime, the resonance mechanism results in general- 

zed lumps akin to a lump embedded in a periodic plane wave (see 

igs. 4 c and 5 c). The branches of generalized lumps ultimately join 

n the branch of Stokes waves; see the bifurcation curves in Fig. 4 a

or depression waves and Fig. 5 a for elevation waves, similar to 

heir two-dimensional counterparts. 

In the present paper, we have proposed a phenomenological 

odel for describing the bifurcation mechanism of deep-water hy- 

roelastic waves by generalizing the Whitham equation. The fun- 

amental idea is to fix the coefficients of the quadratic and cu- 

ic terms by matching the cubic NLS equation derived from the 

odel with that from the full Euler equations and determine 

he coefficient of the quartic nonlinearity by matching the am- 

litude of the solitary wave at the bifurcation point. The newly 

roposed model can capture the primary features of the bifur- 

ation mechanism in the vicinity of the phase speed minimum. 

his approach can easily be generalized to include the effects due 

o inertia, vorticity, and viscoelasticity for the problem of moving 

oads on ice sheets. More generally, this idea can be extended to 

ther nonlinear wave problems in fluid dynamics, such as interfa- 

ial gravity-capillary waves, surface waves with constant vorticity, 

lectrocapillary-gravity waves, etc. 

Finally, we should point out that much remains to be improved 

or the Whitham type models. Particularly, the selection of non- 
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Fig. 5. ( a ) Speed-amplitude bifurcation diagram for free elevation lumps (upward pointing triangles), generalized lumps (dashed red line), and periodic waves (pink circles). 

( b ) Typical profile of elevation lump at c = 1 . 3 . ( c ) Typical profile of generalized elevation lump at c = 1 . 3336 . 

Fig. 6. ( a ) Solution diagrams for free elevation waves (solid dark line) and periodic waves (dotted red line) in the quadratic-cubic-quintic model. The free-surface amplitude 

η(0) is plotted against wave speed. ( b ) Bright solitary waves at c = 1 . 26 corresponding to the intersection points from top to bottom between the left-hand vertical dashed 

line and the elevation branch shown in ( a ). ( c ) Generalized solitary waves at c = 1 . 33 corresponding to the intersection points from top to bottom between the right-hand 

vertical dashed line and the elevation branch shown in ( a ). 
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inear terms is artificial in Eq. (4) to some extent, though the ap- 

roach adopted in the paper has certain rationality and feasibility. 

or example, we can choose quadratic, cubic, and quintic nonlinear 

erms and fix the coefficients based on the method mentioned. It 

s not difficult to obtain 

t − 3 

− 3 
8 ηx − 3 

3 
8 

2 

H 

[ 
η − 3 

1 
2 ηxx 

] 
+ αηηx + βη2 ηx + ̃

 γ η4 ηx = 0 , 

(13) 

here α and β are the same as Eq. (4) , and 

˜ γ ≈ −0 . 6935 . This

odel can capture most features near the bifurcation point; how- 

ver, in contrast to the full Euler equations, the branch of dark 

olitary waves in this model does not lead to multi-packet bright 

olitary waves. Nevertheless, the quadratic-cubic-quintic model 

hows good agreement with the Euler equations in some other 

spects away from the bifurcation point. For example, the eleva- 

ion branch in Eq. (13) exhibits the characteristic ‘snake-like be- 

avior’ shown in Fig. 6 a: the speed-amplitude bifurcation curves 

how a zigzag behavior with multiple turning points. The most 

triking phenomenon is that the bifurcation curve is trans-regional. 

s it reaches the supercritical regime, non-decaying wavetrains ap- 

ear on wave profiles; see the comparison between bright soli- 

ary waves ( Fig. 6 b) and generalized solitary waves ( Fig. 6 c). This

henomenon was also observed for hydroelastic waves with con- 

tant vorticity [7] . Overall, it is of great interest to find a system-

tic/rigorous method to choose nonlinear terms for the Whitham 

ype equations, which we leave for future investigations. 
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