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a b s t r a c t 

Two kinds of analytical solutions are derived through Laplace transform for the equation that governs 

wave-induced suspended sediment concentration with linear sediment diffusivity under two kinds of 

bottom boundary conditions, namely the reference concentration (Dirichlet) and pickup function (Nu- 

mann), based on a variable transformation that is worked out to transform the governing equation into 

a modified Bessel equation. The ability of the two analytical solutions to describe the profiles of sus- 

pended sediment concentration is discussed by comparing with different experimental data. And it is 

demonstrated that the two analytical solutions can well describe the process of wave-induced suspended 

sediment concentration, including the amplitude and phase and vertical profile of sediment concentra- 

tion. Furthermore, the solution with boundary condition of pickup function provides better results than 

that of reference concentration in terms of the phase-dependent variation of concentration. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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Sediment transport induced by waves is an advanced subject 

n coastal hydrodynamics, which is of great significance to coastal 

ngineering. Suspended sediment transport is of particular impor- 

ance for the design and maintenance of waterway and harbors. 

There have been a few researches on the analytical solution 

f the vertical distribution of suspended sediment concentration 

ased on advection-diffusion equation for steady flows [1–6] or 

eriodical averaged advection-diffusion equation for waves [ 7 , 8 ]. 

hese previous works are based on steady or quasi-steady concept 

nd are of course unable to reveal the unsteady characteristics of 

ave-induced suspended sediment concentration. 

Therefore, some investigators turned to pay attention on the 

nsteady characteristics of wave-induced suspended sediment con- 

entration based on unsteady advection-diffusion equation [9–12] . 

hese researches either present analytical solutions of advection- 

iffusion equation with constant diffusion coefficient, or directly 

odel the process by numerical approach for the case of vari- 

ble diffusion coefficient. In the present study, analytical solutions 

f time-dependent suspended sediment concentration induced by 
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aves is derived for the case of variable diffusion coefficient that 

aries linearly in the vertical direction. 

In general, the horizontal gradients of sediment concentration 

re negligible because it is much smaller relative to the vertical 

radients [10] . Based on the gradient transport hypothesis, the ver- 

ical distribution of instantaneous suspended sediment concentra- 

ion induced by waves is generally given by the following equation 

13] 

∂c 

∂t 
− w s 

∂c 

∂z 
= 

∂ 

∂z 

(
ε s 

∂c 

∂z 

)
, (1) 

here t is the time, and z is the vertical coordinate (positive 

pward from the bottom of computational domain, as shown in 

ig. 1 ), c is the suspended sediment concentration, w s is the set- 

ling velocity of sediment, ε s is the sediment diffusion coefficient. 

Fig. 1 presents three expressions of sediment diffusivity for 

aves, which are commonly used for waves propagating over rip- 

led and rough sand bed, including constant, three layered and 

inear distributions [14] . It is easy to get the analytical solution 

or suspended sediment equation when the sediment diffusivity is 

onstant [9] . Moreover, the expression of three layered sediment 

iffusivity can be deemed as the combination of constant and lin- 

ar distributions, and the analytical solution can be easily achieved 

ased on the solutions for constant and linear expressions. There- 
ty of Theoretical and Applied Mechanics. This is an open access article under the 
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Fig. 1. Schematic representation of sediment diffusivity, sediment concentration profile and near-bed boundary. 
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ore, the linear sediment diffusivity for waves is chosen to study 

he suspended sediment concentration, which is expressed [ 8 , 15 ] 

s 

 s = βκu ∗Z, (2) 

here u ∗ is the mean value of periodic bottom friction velocity, 

 > 0 is the vertical coordinate of the origin at actual bed, as shown

n Fig. 1 , β reflects the efficiency of entraining sediment into sus- 

ension and is an adjustable parameter. As shown in Fig. 1 , the 

lane bed is generally adopted even if the actual bed is rough or 

ippled. Through parameterization, a ripple bed can also be dealt 

s plane bed. Furthermore, the bottom of computational domain 

iffers from the actual bed by a reference height ( Z ref ), where Z ref is

requently set to 0.01 m [ 16 , 17 ]. For the sake of discussion, the sed-

ment diffusivity is rewritten as ε s = az + b, where a = βκu ∗ and 

 = βκu ∗Z re f . 

Initially, the clear water is considered and the initial sediment 

oncentration is set to zero. For boundary conditions, the sediment 

oncentration at the top boundary is zero as employed by [1] . And 

he reference concentration (Dirichlet) and pickup function (Neu- 

ann) are considered at the bottom boundary, respectively. 

The Dirichlet bottom condition is 

 ( t, 0 ) = c a ( t ) , (3) 

here c a (t) is the time-dependent reference concentration, which 

s a function of bottom shear stress, following Ref. [17] 

c a = 

0 . 015 ·d 
Z re f 

[
d 

(
( ρs −ρw ) g 

ρs ν2 

)1 / 3 
]−0 . 3 (

θu 

θc 
− 1 

)3 / 2 
, θu ≥ θc , (4) 

here c a is set to zero when θu <θ c , d is sediment diameter, ρw 

s water density, ρs = 2650 kg / m 

3 is the sediment density, g is 

he acceleration of gravity, ν is the kinematic viscosity coefficient, 

 s is the sediment settling velocity in the vertical direction [18] , 

c is the critical shields number for incipient motion [18] , θu = 

/ [ ( ρs − ρw 

) gd · ( 1 − πηr / λr ) 
2 
] is the Shields number and ηr is the 

ipple height, λr is the ripple length. τ is the bottom shear stress 

hich can be referred to Ref. [19] for specific calculated method. 

As an alternative of the Dirichlet condition, the pickup function 

s adopted to specify the vertical gradient of sediment concentra- 

ion at the reference height, serving as the Numann condition as 

ollows [20] 

−ε s 
∂c 

∂z 

)
z=0 

= w s c a . (5) 

Then, let us solve Eq. (1) with linearly varying sediment diffu- 

ion coefficient under bottom boundary conditions of Eqs. (3) and 

 5 ), respectively. Hereafter, the problems with bottom boundary 

onditions of Eqs. (3) and ( 5 ) are referred to Type I and Type II,

espectively. 
2 
Via applying Laplace transform to Eqs. (1) –( 3 ), a second-order 

rdinary difference equation is obtained 

 

az + b ) 
d 

2 c ( p, z ) 

d z 2 
+ ( a + w s ) 

d c ( p, z ) 

d z 
− pc ( p, z ) = 0 , (6) 

ith the boundary condition c( p, 0 ) = L [ c a (t) ] , where p is the pa-

ameter generating by Laplace transform and L [ •] is the Laplace 

ransform operator. 

To solve Eq. (6) , a variable transformation is worked out, which 

eads 

 = 

a x 2 

4 p 
− b 

a 
, c ( p, z ) = ( x/ 2 ) 

− w s 
a · U ( p, x ) , (7) 

here U ( p , x ) is the transformed function, and x is the transformed

ariation. Inserting Eq. (7) into Eq. (6) leads to the following mod- 

fied Bessel equation 

 

2 d 

2 U ( p, x ) 

d x 2 
+ x 

d U ( p, x ) 

d x 
− x 2 U ( p, x ) = 0 , (8) 

ith the boundary condition 

 ( p, x ) | 
x = 

√ 

4 pb 

a 2 

= 

(
pb 

a 2 

) w s 
2 a 

L [ c a ( t ) ] . (9) 

Hence, the solution of Eq. (6) can be obtained in terms of the 

econd-kinds Bessel functions 

 ( p, x ) = 

(
b 

az + b 

) w s 
2 a 

L [ c a ( t ) ] ·
K 

(√ 

4 p ( az+ b ) 
a 2 

)

K 

(√ 

4 pb 
a 2 

) . (10) 

In Eq. (10) , the inverse Laplace transform is difficult to acquire 

ecause of the complexity of Bessel function. Hence, the zeroth- 

rder asymptotic expression of Bessel function is employed 

 ( x ) → 

√ 

π

2 x 
e −x . (11) 

After submitting Eq. (11) into Eq. (10) and applying the inverse 

aplace transform, the final solution of Type I is 

 ( t, z ) = 

(
b 

az + b 

) w s 
2 a + 1 4 ξ ( z ) √ 

π

t 

∫ 
0 

[
c a ( t − τ ) · τ− 3 

2 e 
−
(

ξ ( z ) √ 
τ

)2 ]
d τ, (12) 

here ξ (z) = ( 
√ 

az + b −
√ 

b ) / ( a 
√ 

π) . 

Similarly, the solution of Eqs. (1) and (5) with the linearly vary- 

ng sediment diffusion coefficient is studied. And applying Laplace 

ransform to Eq. (5) , the bottom boundary condition becomes 

d 

d z 
c ( p, z ) | z=0 = − 1 

ε 
L [ w s c a ( t ) ] . (13) 
s 
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Table 1 

Summary of experiment parameters 

Test h /m H /m T /s U c (m/s) d /mm λr /m ηr /m Condition 

N1 0.5 0.12 2 – 0.125 0.069 0.014 Laboratory-scale wave flume 

C2 4.5 1.11 5 – 0.329 0.43 0.05 Field-scale wave flume 

R1 – – 7.2 1.7 0.21 – – Oscillatory flow 

Here, h is the water depth; H the wave height; T the wave period; U c the amplitude of wave velocity. 

Fig. 2. Comparison between analytical (line) and experimental (circle) results of os- 

cillatory flow. 
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Fig. 3. Comparison between analytical (line) and experimental (circle) results ob- 

served from laboratory-scale wave flume. 

Fig. 4. Comparison between analytical (line) and experimental (circle and square) 

results observed from field-scale wave flume. 
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With Eqs. (6) –( 8 ) and (13), the following solution can be de-

ived 

 ( p, z ) = 

w s √ 

b 

(
b 

az + b 

) w s 
2 a 

· pL [ c a ( t ) ] 

p 
3 
2 + 

(
a 

4 
√ 

b 
+ 

w s 

2 
√ 

b 

)
p 

·
K 

(√ 

4 p ( az+ b ) 
a 2 

)

K 

(√ 

4 pb 
a 2 

) . (14) 

Applying Eq. (11) to Eq. (14) and using the inverse Laplace 

ransform, the complete solution of Type II can be reduced as 

 ( t, z ) = 

(
b 

az+ b 
) w s 

2 a + 1 4 

√ 

b 

∫ t 

0 

{
w s c a ( t − τ ) 

[
1 √ 

πt 
e −

n 1 
2 

4 τ

−m e m 1 
2 τ+ m 1 n 1 erfc 

(
n 1 

2 

√ 

τ
+ m 1 

√ 

τ

)]}
d τ, (15) 

here m 1 = a/ ( 4 
√ 

b ) + w s / ( 2 
√ 

b ) , n 1 = 2( 
√ 

az + b −
√ 

b ) /a. 

Next, the ability of the two analytical solutions of the sus- 

ended sediment concentration equation with two types of bottom 

oundary conditions are discussed by comparing with different ex- 

erimental data. The parameters of the experiments are presented 

n Table 1 , where Test R1 is an oscillatory flow, Test N1 and Test

2 were conducted in laboratory-scale wave flume and field-scale 

ave flume, respectively. 

Fig. 2 shows the comparison between the analytical results of 

eriodic averaged suspended sediment concentration and experi- 

ental data [21] of Test R1, where Fig. 2 a and b represents the

esults of Types I and II, respectively. As shown in Fig. 2 , the re-

ults of Types I and II for the vertical profile of periodic averaged 

uspended sediment concentration are all in good accordance with 

he experimental data. Moreover, the results of Type I are slightly 

igger than that of Type II for the same value of β . Similarly, in Fig.

 , the comparison between the analytical results and experimen- 

al data [7] of Test N1 is presented. It shows that both the results

f Types I ( Fig. 3 a) and II ( Fig. 3 b) have a good agreement with

xperimental data for a particular value of β . The comparison of 

he analytical results and experimental data [22] of Test C2 is pro- 
3 
ided in Fig. 4 , where Exp (1) and (2) represents the experimen- 

al data obtained from an acoustic backscatter system (ABS) and a 

ide wall mounted pump sample system, respectively. As shown in 

ig. 4 , the results of Types I ( Fig. 4 a) and II ( Fig. 4 b) are still well

onsistent with experimental data. 

The comparison of the periodic variation of sediment concen- 

ration between the two analytical solutions and experimental data 

21] of Test R1 is shown in Fig. 5 , where Subfigs. 5a–c represent

he time-dependent sediment concentration at z = 2.1 cm, z = 1.1 cm 

nd z = 0.5 cm, respectively. It is observed that the results of Types 

 agree well with experimental data when β= 0.45 and the results 

f Types II accord better with experimental data when β= 1/3 com- 

aring with Type I, including amplitude and phase. The results of 

ype I are slightly smaller than that of experiment for the same 

alue of β . Moreover, the phases of the concentration of Type II 

re more consistent with experimental data than that of Type I. 

Conclusionly, two analytical solutions for suspended sediment 

quation with linear sediment diffusivity under two kinds of bot- 

om boundary conditions are derived through Laplace transform, 

ased on a variable transformation that is worked out to transform 

he governing equation into a modified Bessel equation. 

Comparison with experimental data for different conditions has 

emonstrated evidently that the analytical solutions are capable of 

escribing the time-dependent suspended sediment concentration 

nduced by waves, including the amplitude, phase and vertical pro- 
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Fig. 5. Comparison of periodic variation of sediment concentration between the an- 

alytical results (line) of the two conditions and experimental data (circle) observed 

from oscillatory flow. 
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le. In addition, the solution obtained by specifying the bottom 

oundary condition with pickup function can provide better peri- 

dic variation of sediment concentration than with reference con- 

entration. 
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