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•  Efficient calculation method is developed for elastic boundary load of film-substrate system.
•  Three types of imperfect interface models are developed and verified.
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In  this  paper,  an  efficient  calculation  method  based  on  discrete  Fourier  transformation  is
developed for  evaluating elastic  load induced elastic  deformation fields  of  film-substrate  system.
Making  use  of  2D  discrete  Fourier  transformation,  the  elastic  fields  induced  by  Hertz  load  is
harvested  in  frequency  domain,  and  the  displacement  and  stress  fields  across  the  interface  are
enforced  to  satisfy  the  elasticity  conditions  for  each  Fourier  modes.  Given  arbitrary  distributed
stress  field  at  free  surface  plane  of  the  three  types  of  film-substrate  systems,  unique  resultant
elastic field within the can be harvested. Hertz load of half space, elastic film on elastic substrate,
elastic film on rigid substrate system and elastic film-substrate system with three types of imperfect
interface  models  are  investigated:  (1)  the  spring-like  imperfect  interface  model  which  can  be
described as:  and ; (2) the dislocation-like
interface  model,  where  interface  displacement  and  stress  components  relation  can  be  described
as:  and ; (3) the force-like interface model, where interface

displacement  and  stress  components  relation  can  be  described  as:  and

 respectively.  Finally,  several  simulation  examples  are  performed  for
verification of the reliability and efficiency of the proposed semi-analytical methods.
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Mechanical  contact  induced  structural  failure  problems  are
of  critical  important  in  many  industrial  systems,  such  as:  train
wheel-rail system, transmission,  cylindrical  and planetary gear-
ing, bearing components, and coating systems. These industrial
components and systems have to endure various types of extern-
al  mechanical,  thermal  loadings,  harsh  physical  and  chemical
coupled  environments  during  their  service  lifetime,  and  classic

film-substrate design strategies are widely employed for improv-
ing their comprehensive mechanical performances. As to the in-
terface  properties  of  film-substrate  system,  bimaterial  system
and multi-layered structures, classical perfect bonding interface
model  is  employed  for  studying  the  mechanical  behaviors  of
these systems  under  external  loading,  where  the  interface  trac-
tion stress and displacement components are continuous across
the  material  interface.  Although  the  perfect  bonding  interface
model is convenient for theoretical understanding the mechan-
ical behaviors of these integrated systems, it is not precisely val-
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id for industrial  structures in service.  There are various types of
imperfect  mechanical  interfaces  during  the  service  lifetime  of
film-substrate system, and investigation of the mechanical beha-
viors  of  film-substrate  systems  under  external  boundary  load
conditions is important for understanding the durability, reliab-
ility of these structural components and systems. In reality, per-
fect  interface  mechanical  continuity  is  inadequate  for  precisely
description of interface damage (e.g. de-bonding, sliding and/or
cracking across an interface),  since it  is well-known that imper-
fect bonding  along  a  material  interface  can  significantly  influ-
ence its mechanical and thermal properties [1]. Regarding to the
relation  between  interface  displacement  and  traction  stress
components across the imperfect interface,  four types of classic
interface models are proposed for describing the interface phys-
ical properties, namely: the classical perfect bonding model, the
frictionless imperfect  interface  model,  the  dislocation-like  im-
perfect  interface  model,  and  the  force-like  imperfect  interface
model [2–12].

Exact elastic fields analytical solutions of layer-substrate sys-
tem are proposed by Chen [13]. Mixed boundary value problem
in a multilayer medium is  analyzed based upon classical  elasti-
city theory,  and comparison with classic Boussinesq problem is
performed  for  verification  [14].  Making  use  of  generalized  self
consistent  scheme  (GSCS)  model,  the  thermoelastic  properties
of unidirectional fiber composites with imperfect interface con-
ditions  are  investigated,  and  linear  relations  between  interface
tractions and displacement jumps are assumed [15]. Linear rela-
tion between displacement differences and traction stress across
the interface  are  employed  for  describing  the  imperfect  inter-
face  between  fibers  and  matrix,  and  the  initiation,  propagation
and  arrest  of  interface  cracks  of  fiber-reinforced  composite  are
analyzed  based  on  a  criterion  of  critical  strain  energy  density
[16]. The Mori–Tanaka estimate and its modification are used to
evaluate the effective modulus of composites with imperfect in-
terface  described  by  linear  spring-layer  of  vanishing  thickness
[17].  Making use of  conjugate gradient method and fast  Fourier
transform  algorithm,  the  elastic  field  and  thermal  field  of  two
heterogeneous  bodies  subjected  to  both  contact  and  frictional
heat  loads  are  investigated  [18].  Through  combining  conjugate
gradient  method  and  fast  Fourier  transform  methods,  a  novel
method  for  analyzing  the  fretting  contacts  of  multilayered  or
functionally  graded  materials  is  proposed,  where  the  frictional
contact  equations  are  divided  into  contact  pressure  and  shear
tractions  [19].  Similarly,  through  combining  conjugate  gradient
method  (CGM)  and  the  discrete  convolution  (DC)–fast  Fourier
transform  (FFT)  algorithm,  efficient  semi-analytical  solutions
are derived for analyzing the resultant electric/magnetic poten-
tials and  subsurface  stress  fields  due  to  3D  frictional  magneto-
electroelastic (MEE) contact of two multiferroic bodies [20].

Based on  the  derivation  explicit  integral  kernels  for  the  ei-
genstrain-induced elastic  fields in bi-materials,  elastic  fields in-
duced  by  eigenstrains  within  bimaterials  with  perfectly  bonded
and  frictionless  interfacial  conditions  are  derived  [21].  Making
use  of  Chen–Yao's  surface  elastic  theory,  size-dependent  semi-
analytical model (SAM) is proposed for solving the rigid friction-
less  cylindrical  indentation  contact  of  a  functionally  graded
elastic  film  [22].  Closed-form  solutions  for  the  eigenstrain-in-
duced  elastic  fields  in  bimaterials  with  coupled  dislocation-like
and force-like imperfect interface models are derived [23]. Mak-
ing  use  of  CGM  and  FFT,  an  SAM  is  developed  for  treating  the

surface electric/magnetic  potentials  and subsurface  stresses  in-
duced by the frictional MEE surface contact of a multiferroic thin
film  [24].  Elastic  fields  caused  by  pressure  and  shear  tractions
applied on  the  surface  of  such  a  layer  substrate  system  are  de-
rived based on Papkovich–Neuber potentials, where dislocation-
like, force-like,  spring-like,  and  frictionless  interfacial  condi-
tions are considered [25, 26].  Elastic  deformation in bimaterials
due to an inclusion with dilatational misfit strain is studied, and
dislocation-like interface  model  is  proposed  for  theoretical  ex-
planation  [27].  Based  on  the  multi-level  multi-summation  and
conjugate gradient  techniques,  surface  deflections  and  subsur-
face  stresses  for  real  rough  surfaces  under  contact  loading  are
solved  with  a  single-loop  alternative  numerical  method  [28].  A
thermo-mechanical  model  of  point  contact  is  established  for
studying the  influence  of  the  size,  position  and  interval  of  in-
homogeneities on  temperature  field  of  inhomogeneous  materi-
als under frictional heating [29]. Based on the closed-form solu-
tion of frequency response functions, coupled thermo-mechan-
ical  contact  problem  of  a  multilayered  material  is  solved,  and
resultant  heat  flux,  temperature,  displacement  and  stresses  at
each interface can be harvested [30]. Making use of closed-form
frequency response functions, different kinds of heat flux in mul-
tilayered  coatings  are  studied  and  the  resultant  thermal  fields
are  derived  through  thermal  conduction  equation  [31].  Elastic
fields  of  dislocations  within  isotropic,  anisotropic  half  space,
thin film,  film-substrate  and  multilayers  systems  based  on  dis-
crete  Fourier  transformation  analysis,  where  perfect-bounding,
linear spring, dislocation-like and force-like interface models are
considered, respectively [32–39].
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In this  paper,  an  efficient  calculation  method  based  on  dis-
crete  Fourier  transformation  is  developed  for  evaluating  the
elastic deformation field of half space, elastic film on elastic sub-
strate,  and  elastic  film  on  rigid  substrate  system  under  known
elastic boundary loading conditions. Firstly, the boundary load-
ing is  converted  to  the  sum  of  2D  discrete  series  through  dis-
crete fast  Fourier  transformation.  Then,  the  elastic  fields  in-
duced by  elastic  boundary  load  is  harvested  in  frequency  do-
main, and  the  displacement  and  stress  fields  continuity  are  re-
mained for perfectly bounded film substrate system. Given arbit-
rary distributed boundary stress field at free surface plane of half
space  and  film-substrate  system,  unique  resultant  elastic  field
within the system can be harvested. Afterwards, effects of inter-
face discontinuity  are studied,  and three types of  film-substrate
system with imperfect interface models are specially focused: (1)
the spring-like  imperfect  interface  model  which  can  be  de-
scribed  as:  and  

;  (2)  the dislocation-like interface model,  where interface
displacement  and  stress  components  relation  can  be  described
as:  and  ;  (3)  the  force-like
interface model,  where  interface  displacement  and  stress  com-
ponents  relation  can  be  described  as:  and

 respectively. Finally, several simulation ex-
amples  are  performed for  verifying the reliability  and efficiency
of the proposed semi-analytical methods.

Isotropic film-substrate system with perfectly bounded inter-
face conditions is considered, where boundary elastic load is ap-
plied on the top surface plane of the film-substrate system, and
the  film-substrate  interface  displacement  and  traction  stress
components related to film normal direction should be continu-
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ous. The mechanical properties of film and substrate materials is
isotropic,  with  modulus  and  Poisson  ratio  ( )  and
( ) for the film and substrate, respectively. Based on lin-
ear  superposition  principle  of  linear  elastic  problem,  the  film-
substrate system can be divided into two coupled solid regions:
thin film and perfectly bounded substrate half  space, where the
thickness of thin film is , and  is employed for de-
scribing  the  thin  film.  Meanwhile,  is employed  for  de-
scribing  the  substrate,  with  for the  film-substrate  inter-
face. The upper symbols " " and " " stand for the film and sub-
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applied on the top plane of the thin film, interface displacement
and stress components across film-substrate system should sat-
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Normal  elastic  Hertz  load  is  employed  for  simulating  the
elastic deformation of perfectly bounding film-substrate system,
the stress distribution in the Hertz load region can be expressed
as a  function of  distance from the center  of  the Hertz  load area
[18–20]:
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The  boundary  Hertz  elastic  load  on  the  top  of  the  film-sub-
strate  system  will  induce  stress  field  within  the  film-substrate
system,  resulting  in  continuous  interface  traction  stress  fields
( ) across  the  film-substrate  interface  plane  in  Cartesian  co-
ordinate, which  will  further  generate  stress  fields  within  sub-
strate half space medium. Making use of the mathematical com-
pleteness of Fourier transformation, the resultant interface elast-
ic field can be written as the sum of Fourier series with unknown
Fourier coefficients.  The  following  interface  traction  stress  in-
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Fig. 1.   Decomposition of film-substrate system based on linear su-
perposition principle. a  Elastic load is applied on the top surface
plane of the film, and free traction boundary condition should be
satisfied  on  the  top  surface  plane  of  the  film-substrate  system.

b  Elastic  load  stress  will  induce  interface  traction  stress

 on  the  bottom  surface  of  thin  fi lm,  and

 on the top surface of substrate, continuous inter-
face displacement and interface traction stress are generated across
the film-substrate interface plane.
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λ f +µ f

A+nzC

)
sinh

(
nz z f

)
. (14)

Alternatively,  the  elastic  displacement  components  within
thin film in Eq. (13) can be written as:

u f
i

(
x, y, z f

)=∑
nx

∑
ny

û f
i

(
nx ,ny , z f

) ·exp
(
inx x + iny y

)
, (15)

and  the  resultant  stress  components  can  be  obtained  from
isotropic Hooke's law:

σ
f
i z

(
x, y, z f

)=∑
nx

∑
ny
σ̂

f
i z

(
nx ,ny , z f

) ·exp
(
inx x + iny y

)
. (16)

z f =±hWhen ,  the stress  components  are elastic  contact  stress
components  at  the  upper  surface,  and  the  interface  stress
components of the film-substrate system.

z f =±h
(A,B ,C )

(E ,F,G)

Then,  Eq. (15)  was  submitted  into  Eq. (12) , resultant  dis-
placement fields on the top surface and film-substrate interface
planes  can  be  combined  together,  and  rewritten  into
two  sets  of  equations  on  unknown  coefficients  and

, which  correspond  to  the  symmetrical  and  the  asym-
metrical displacement parts, respectively.

The symmetrical correction displacement is:

usyym = 1

2

 û f
∣∣

z f =+h
+ û f

∣∣
z f =−h

v̂ f
∣∣

z f =+h
+ v̂ f

∣∣
z f =−h

ŵ f
∣∣

z f =+h
− ŵ f

∣∣
z f =−h

= D syym ·


A

B

C


·exp

(
inx x + iny y

)
, (17)

and the asymmetrical correction displacement part is:

uassym = 1

2

 û f
∣∣

z f =+h
− û f

∣∣
z f =−h

v̂ f
∣∣

z f =+h
− v̂ f

∣∣
z f =−h

ŵ f
∣∣

z f =+h
+ ŵ f

∣∣
z f =−h

= Dassym ·


E

F

G


·exp

(
inx x + iny y

)
. (18)

The symmetrical stress is:

σsyym = 1

2

 σ
f
xz

∣∣
z f =+h

− σ
f
xz

∣∣
z f =−h

σ
f
y z

∣∣
z f =+h

− σ
f
y z

∣∣
z f =−h

σ
f
zz

∣∣
z f =+h

+ σ
f
zz

∣∣
z f =−h

= T syym ·


A

B

C


·exp

(
inx x + iny y

)
, (19)

and the asymmetrical stress is:
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σassym = 1

2

 σ
f
xz

∣∣
z f =+h

+ σ
f
xz

∣∣
z f =−h

σ
f
y z

∣∣
z f =+h

+ σ
f
y z

∣∣
z f =−h

σ
f
zz

∣∣
z f =+h

− σ
f
zz

∣∣
z f =−h

= T assym ·


E

F

G


·exp

(
inx x + iny y

)
. (20)

D syym Dassym T syym T assymThe details of , ,  and  for thin film are
given in Appendix (A3)–(A6).

x y
Lx L y

nx = 2πkx /Lx ny = 2πky /L y kx = ky = 0,
±1,±2, . . .

Similar  to  the  calculation  procedures  for  the  substrate  half
space, numerical simulations of Eqs. (12)–(20) for isotropic thin
film of  the film-substrate  system are  considered in  the  and 
directions with periodic lengths  and . The wave number is
set  to  be  and  ,  where 

.

(
nx ,ny

)
Considering  the  interface  displacement  and  traction  stress

continuity  requirements  for  the  perfect  bonding  film-substrate
system  under  elastic  contact  loading,  following  relation  should
be satisfied for each  Fourier mode.

Through  the  comparison  between  Eqs. (5)  and  (16) ,  elastic
Hertz boundary load stress on the top plane of the perfect bond-
ing film-substrate system should be satisfied the following equa-
tion:

σ
f
i z

(
x, y, z f

)
z f =+h

= σ
f
i z

∣∣
load

. (21)

Interface  traction  stress  and  displacement  continuity  across
the interface plane of the perfect bonding film-substrate system
should be satisfied:

σi z

(
x, y, z f

) f

z f =−h
=σi z

(
x, y, z s

)s

zs=0
, (22)

ui

(
x, y, z f

) f

z f =−h
= ui

(
x, y, z s

)s

zs=0
. (23)

(
nx ,ny

)
After  submitting  the  boundary  Hertz  load  in  Eq. (5) , result-

ant  elastic  fields  in  Eqs. (10)  and  (11)  for  substrate  and  Eqs.
(17)–(20) for  thin film into Eqs. (21)–(23)  for film-substrate  sys-
tem,  the  following  relations  stand  for  each  Fourier
mode. (

nx ,ny

)(1)  Elastic  contact  stress  equilibrium  should  be  satisfied  on  the
top surface plane of the thin filmfor each  Fourier mode:

T syym


A

B

C

+T assym


E

F

G

=

 σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

 . (24)

(
nx ,ny

)(2)  Interface  traction  stress  should  be  continuous  for  each
 Fourier mode:

Ki j ·

−T syym


A

B

C

+T assym


E

F

G


= T s


P s

1

P s
2

P s
3

 , (25)

Ki j = diag{1,1,−1}in which  is a 3×3 diagonal matrix.(
nx ,ny

)(3)  Interface  displacement  should  be  continuous  for  each
 Fourier mode:

Ki j ·

D syym


A

B

C

−Dassym


E

F

G


= D s


P s

1

P s
2

P s
3

 . (26)

In summary, Eqs. (24)–(26) can be written together as:

 T syym T assym 0

−Ki j ·T syym Ki j ·T assym −T s

Ki j ·D syym −Ki j ·Dassym −D s

 ·



A

B

C

E

F

G

P s
1

P s
2

P s
3



=



σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

0

0

0

0

0

0



.

(27)

(A,B ,C ,E ,F,G)
(
P s

1 ,P s
2 ,P s

3

)
Then,  unknown  coefficient  and  

of  thin  film  and  substrate  displacement  can  be  solved  from
Eq. (27) ,  and  the  resultant  elastic  field  within  the  film  medium
and substrate medium can be generated.

(
nx ,ny

)
As to film on rigid substrate special  case,  zero displacement

requirements at the interface plane of perfect bonding film-sub-
strate  system  should  be  satisfied,  and  following  relation  stands
for each  Fourier mode.

Elastic contact stress on the top plane of the perfect bonding
film-substrate system should be satisfied:

{σ̂i z } f

z f =+h
= σ

f
i z

∣∣
load

. (28)

Interface displacement continuity and zero displacement re-
strictions across the interface plane of the perfect bonding film-
substrate system should be satisfied:

{ûi } f

z f =−h
= {ûi }s

zs=0 = 0. (29)

(
nx ,ny

)
After  submitting  boundary  Hertz  load  Eq. (5) ,  the  resultant

elastic  fields  Eqs. (10)  and  (11)  for  substrate  and  Eqs. (17)–(20)
for  thin  film  into  Eqs. (28)  and  (29) ,  the  following  relations
should be satisfied for each  Fourier mode.(

nx ,ny

)(1) Elastic contact boundary condition should be satisfied on the
top surface plane of the thin film for each  Fourier mode:

T syym


A

B

C

+T assym


E

F

G

=

 σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

 . (30)

(
nx ,ny

)
(2)  Interface  displacement  should  be  zero  for  each 
Fourier mode:

Ki j ·

D syym


A

B

C

−Dassym


E

F

G


= 0. (31)
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In summary, Eqs. (30) and (31) can be written together as:

[
T syym T assym

−Ki j ·T syym Ki j ·T assym

]
·



A

B

C

E

F

G


=



σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

0

0

0


. (32)

(A,B ,C ,E ,F,G)Then,  unknown  coefficient  can  be  solved
from Eq. (32), and the resultant elastic field within the film medi-
um can be generated.

When  considering  the  problem  of  isotropic  film-substrate
system with linear spring-like imperfect interface conditions, the
elastic  field  on  the  interface  plane  will  be  modified  due  to  the
stiffness  mismatch  and  interface  imperfection.  In  this  linear
spring-like  model,  the  interfacial  tractions  become  continuous,
the displacements across the interface plane are discontinuous,
and the displacement jump is linearly proportional to interfacial
traction stress components:

u f
k

∣∣
z f =−h

− us
k

∣∣
zs=0

= KTσkz , k = 1,2, (33)

u f
z

∣∣
z f =−h

− us
z

∣∣
zs=0

= KNσzz , (34)

σ
f
i z

∣∣
z f =−h

= σs
i z

∣∣
zs=0

, (35)

KT KNin which, the linear-spring interface related matrixes  and 
are  constant,  demonstrating  that  the  interface  traction  stress  is
continuous, while the displacement jump across the interface is
related to the interface shearing and normal stress components.

Finally, according to the linear spring-like interface model in
Eqs. (33)–(35) ,  the  displacement  and  traction  stress  across  the
film-substrate interface plane should satisfy:
(1) elastic contact stress on the top plane of the perfect bonding
film-substrate system should be satisfied:

σ̂i z

(
x, y, z f

) f

z f =+h
= σ̂

f
i z

∣∣
load

; (36)

(2)  interface  traction  stress  continuity  and  displacement  jump
across the interface plane of the linear spring-like film-substrate
system should be satisfied:

ûi

(
x, y, z f

) f

z f =−h
= ûi

(
x, y, z s

)s

zs=0
+K t ·σ̂i z

(
x, y, z s

)s

zs=0
, i = 1,2,

(37)

ûi

(
x, y, z f

) f

z f =−h
= K N · ûi

(
x, y, z s

)s

zs=0
, (38)

σ̂i z

(
x, y, z f

) f

z f =−h
= σ̂i z

(
x, y, z s

)s

zs=0
, i = 1,2. (39)

(
nx ,ny

)
After  submitting  boundary  Hertz  load  Eq. (5) ,  the  resultant

elastic  fields  Eqs. (10)  and  (11)  for  substrate  and  Eqs. (17)–(20)
for thin film into Eqs. (36)–(39), the following relations stand for
each  Fourier mode.

(
nx ,ny

)(1) Elastic contact boundary condition should be satisfied on the
top surface plane of the thin film for each  Fourier mode:

T syym


A

B

C

+T assym


E

F

G

=

 σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

 . (40)

(
nx ,ny

)(2)  Interface  traction  stress  should  be  continuous  for  each
 Fourier mode:

Ki j ·

−T syym


A

B

C

+T assym


E

F

G


= T s


P s

1

P s
2

P s
3

 , (41)

Ki j = diag{1,1,−1}in  which,  is  a  3×3  diagonal  matrix,  and  the
constant matrix. (

nx ,ny

)(3)  Interface  displacement  jump  should  satisfy  the  following
linear-spring  displacement-stress  relations  for  each 
Fourier mode:

Ki j ·

D syym


A

B

C

−Dassym


E

F

G




= D s


P s

1

P s
2

P s
3

+K s ·T s


P s

1

P s
2

P s
3

 . (42)

In summary, Eqs. (40)–(42) can be written together as: T syym T assym 0

−Ki j ·T assym Ki j ·T assym −T s

Ki j ·D syym −Ki j ·Dassym −D s −K s ·T s



·



A

B

C

E

F

G

P s
1

P s
2

P s
3



=



σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

0

0

0

0

0

0



.
(43)

(A,B ,C ,E ,F,G)
(
P s

1 ,P s
2 ,P s

3

)
Then,  unknown  coefficient  and  

of correction displacement can be solved from Eq. (43), and the
resultant elastic field within the film medium and substrate me-
dium can be generated.

In this  dislocation-like  imperfect  interface  model,  the  trac-
tion stress  is  continuous  while  the  displacement  is  discontinu-
ous across the interface plane:

u f
i

∣∣
z f =−h

= k u
i j us

i

∣∣
zs=0

, (44)

W.W. Wu et al. / Theoretical & Applied Mechanics Letters 10 (2020) 390-404 395



σ
f
i z

∣∣
z f =−h

= σs
i z

∣∣
zs=0

, (45)

K u = k u
i j

k u
i j

where  the  constant  matrix  describes  the  bonding
condition  at  the  interface  plane  of  dislocation-like  interface
model.  The  constant  matrix  is  diagonal,  where  the  first  two
elements on the diagonal are related to the interface conditions
in the tangential directions and the third one to the condition in
the normal direction of the interface.

(
nx ,ny

)
Finally,  according  to  the  dislocation-like  interface  model  in

Eqs. (44)  and  (45) ,  the  displacement  and  traction  stress  across
the  interface  plane  of  film-substrate  system  should  satisfy  the
following conditions for each  Fourier mode.

Elastic  contact  stress  on  the  top  plane  of  the  film-substrate
system with dislocation-like interface condition should satisfy:

σ̂i z

(
x, y, z f

) f

z f =+h
= σ̂

f
i z

∣∣
load

. (46)

Interface traction  stress  continuity  and  interface  displace-
ment jump  across  the  interface  plane  of  the  film-substrate  sys-
tem with dislocation-like interface condition should satisfy:

σ̂i z

(
x, y, z f

) f

z f =−h
= σ̂i z

(
x, y, z s

)s

zs=0
, (47)

ûi

(
x, y, z f

) f

z f =−h
= K u · ûi

(
x, y, z s

)s

zs=0
. (48)

(
nx ,ny

)
After  submitting  boundary  Hertz  load  Eq. (5) ,  the  resultant

elastic  fields  Eqs. (10)  and  (11)  for  substrate  and  Eqs. (17)–(20)
for thin film into Eqs. (46)–(48), the following relations stand for
each  Fourier mode. (

nx ,ny

)(1) Elastic contact boundary condition should be satisfied on the
top surface plane of the thin film for each  Fourier mode:

T syym


A

B

C

+T assym


E

F

G

=

 σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

 . (49)

(
nx ,ny

)(2)  Interface  traction  stress  should  be  continuous  for  each
 Fourier mode:

Ki j ·

−T syym


A

B

C

+T assym


E

F

G


= T s


P s

1

P s
2

P s
3

 , (50)

Ki j = diag{1,1,−1}in which,  is a 3×3 diagonal matrix.(
nx ,ny

)(3)  Interface  displacement  jump  across  the  interface  plane
should  satisfy  the  following  relation  for  each  Fourier
mode:

Ki j ·

D syym


A

B

C

−Dassym


E

F

G




= K u ·D s


P s

1

P s
2

P s
3

 . (51)

In summary, Eqs. (49)–(51) can be written together as: T syym T assym 0

−Ki j ·T syym Ki j ·T assym −T s

Ki j ·D syym −Ki j ·Dassym −K u ·D s



·


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=



σ̂
f
xz
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load
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f
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∣∣
load
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load

0

0

0

0

0

0
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. (52)

(A,B ,C ,E ,F,G)
(
P s

1 ,P s
2 ,P s

3

)
Then,  unknown  coefficient  and   of
resultant  displacement  can  be  solved  from  Eq. (52) ,  and  the
resultant  elastic  field  within  the  film  medium  and  substrate
medium can be generated.

In  force-like  imperfect  interface  model,  the  displacement
vector is  continuous  while  the  traction  stress  vector  is  discon-
tinuous across the interface of the film-substrate system:

u f
i

∣∣
z f =−h

= us
i

∣∣
zs=0

, (53)

σ
f
i z

∣∣
z f =−h

= k t
i j σ

s
i z

∣∣
zs=0

, (54)

K t = k t
i j

k t
i j

where  the  constant  matrix  describes  the  bonding
condition  at  the  interface  plane.  Similar  to  the  dislocation-like
model,  if  the  constant  matrix  is  diagonal,  then  the  first  two
elements on the diagonal are related to the interface conditions
in the tangential directions and the third one to the condition in
the normal direction of the interface.

(
nx ,ny

)
Finally,  according  to  the  force-like  interface  model  in  Eqs.

(53) and  (54) ,  the  displacement  and  traction  stress  across  the
film-substrate interface  plane  should  satisfy  the  following  rela-
tion stands for each  Fourier mode.
(1) Elastic contact stress on the top plane of the perfect bonding
film-substrate system should be satisfied:

σ̂i z

(
x, y, z f

) f

z f =+h
= σ̂

f
i z

∣∣
load

. (55)

(2)  Interface  displacement  continuity  and  traction  stress
discontinuity  across  the  interface  plane  of  the  film-substrate
system should be satisfied:

σ̂i z

(
x, y, z f

) f

z f =−h
= K t · σ̂i z

(
x, y, z s

)s

zs=0
, (56)

ûi

(
x, y, z f

) f

z f =−h
= ûi

(
x, y, z s

)s

zs=0
. (57)

(
nx ,ny

)
After  submitting  boundary  Hertz  load  Eq. (5) ,  the  resultant

elastic  fields  Eqs. (10)  and  (11)  for  substrate  and  Eqs. (17)–(20)
for thin film into Eqs. (56) and (57), the following relations stand
for each  Fourier mode.
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(
nx ,ny

)(1) Elastic contact boundary condition should be satisfied on the
top surface plane of the thin film for each  Fourier mode:

T syym


A

B

C

+T assym


E

F

G
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 σ̂
f
xz

∣∣
load

σ̂
f
y z

∣∣
load

σ̂
f
zz

∣∣
load

 . (58)

(
nx ,ny

)(2)  Interface  traction stress  should satisfy  the  following relation
for each  Fourier mode:

Ki j ·

−T syym
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A

B

C
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F
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= K t ·T s
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P s

1

P s
2

P s
3

 , (59)

Ki j = diag{1,1,−1}
K t = k t

i j

in  which,  is  a  3×3  diagonal  matrix,  and  the
constant matrix  describes the bonding condition at the
interface plane.(
nx ,ny

)(3)  Interface  displacement  should  be  continuous  for  each
 Fourier mode:

Ki j ·
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A

B

C
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G
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= D s
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P s

1

P s
2

P s
3

 . (60)

In summary, Eqs. (58)–(60) can be written together as: T syym T assym 0

−Ki j ·T syym Ki j ·T assym −K t ·T s

Ki j ·D syym −Ki j ·Dassym −D s



·
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. (61)

(A,B ,C ,E ,F,G)
(
P s

1 ,P s
2 ,P s

3

)
Then,  unknown  coefficient  and  

of correction displacement can be solved from Eq. (61), and the
resultant elastic field within the film medium and substrate me-
dium can be generated.

In the following, Hertz elastic boundary load on isotropic Cu-
Nb film-substrate system is investigated. The elastic modulus of
Cu and Nb is shown in Table 1 [40], and the isotropic equivalent
shear modulus and Poisson's ratio are treated with Voigt isotrop-
ic model [41].

a = 5 P0 = 5

The elastic  Hertz  boundary load on the top surface plane of
half space is assumed, as described by Eq. (4), the contact radius
is  nm, and Hertz stress amplitude  GPa. The materi-
al of half space is Nb, with its Voigt isotropic modulus shown in
Table. 1. The stress field within the cross-section of half space is

x Lx = 60
z z0 = 40

nx = ny = 30

σxz σzz ux uz

plotted  with  physical  scale  along  direction   nm  and
physical  scale  along  direction   nm,  and  the  periodic
Fourier  transformation  wave  number  is: . The  pro-
duced  stress  fields  under  normal  Hertz  boundary  load  are:
Fig. 2a for , Fig. 2b for , Fig. 2c for  and Fig. 2d for , re-
spectively.

a = 5
P0 = 5

h

x Lx = 60
z z0 = 60

kx = ky = 30

σxz σzz ux uz

Hertz  load  acting  on  top  surface  plane  of  isotropic  elastic
film-substrate  system  is  simulated,  as  described  by  Eq. (4),
where  the  contact  radius  nm,  and Hertz  stress  amplitude

 GPa.  The  material  of  thin  film  is  Cu  and  the  substrate  is
Nb,  with  their  Voigt  isotropic  modulus  shown  in Table  1.  The
geometrical parameters of thin film are: thickness: =20 mm, the
stress  field  within  the  cross-section  of  film-substrate  system  is
plotted  with  physical  scale  along  direction   nm  and
physical  scale  along  direction   nm,  including  20  nm
thin  film  and  40  nm  substrate  along  z  direction.  The  periodic
Fourier  transformation  wave  number  is . The  pro-
duced stress fields under normal traction Hertz load are: Fig. 3a
for , Fig.  3b for  , Fig.  3c for  and Fig.  3d for  , respect-
ively. Comparisons  of  interface  traction  and  displacement  pro-
files  along x  direction in  the xz  plane (y=0)  are  shown in Fig.  4.
Afterwards,  in  order  to  verify  the  reliability  of  our  proposed
method,  we  made  comparisons  with  Ref.  [42],  where  the  same
film-substrate under same loading condition is considered. The
resultant  film-substrate  interface  stress  profiles  are  shown  in
Fig. 5,  it  can be concluded from Fig. 5 that our method are reli-
able for calculating the elastic fields.

a = 10 P0 = 5

h
x

Lx = 100 z
z0 = 20

kx = ky = 30
σxz σzz ux

uz

Hertz load acting on top surface plane of isotropic elastic film
on rigid substrate is simulated, as described by Eq. (4), where the
contact  radius  nm,  and  Hertz  stress  amplitude 
GPa. The material of thin film is Cu, with its Voigt isotropic mod-
ulus shown in Table 1.  The geometrical  parameters  of  thin film
is: thickness =20 mm, and the stress field within the cross-sec-
tion  of  elastic  film  space  is  plotted  with  physical  scale  along 
direction  nm  and  physical  scale  along  direction

 nm.  The  periodic  Fourier  transformation  wave  number
is . The  produced  stress  fields  under  normal  trac-
tion Hertz load are: Fig. 6a for , Fig. 6b for , Fig. 6c for 
and Fig. 6d for , respectively.

a = 5 P0 = 5

x Lx = 100
z z0 = 40

KT = DIA[ 0.2 0.2 ] KN = 0.2

Hertz  load  acting  on  top  surface  plane  of  isotropic  elastic
film-substrate  system  with  imperfect  linear-spring  interface
model  is  simulated,  as  described  by  Eq. (4) ,  where  the  contact
radius  nm,  and  Hertz  stress  amplitude  GPa.  The
material  of  thin  film  is  Cu  and  the  substrate  is  Nb,  with  their
Voigt isotropic modulus shown in Table 1. The stress field with-
in the cross-section of film-substrate system is plotted with phys-
ical  scale  along  direction   nm  and  physical  scale
along  direction   nm,  including  10  nm  thin  film  and
30  nm  substrate  along z  direction.  The  linear-spring  interface
related  matrixes  and   are  set  as

Table 1   Elastic properties of Cu and Nb

Mater
ials

C11

(GPa)

C12

(GPa)

C44

(GPa)
Voigt shear

modulus (GPa)

Voigt
Poison's

ratio

Cu 168.4 121.4 75.4 54.64 0.3241

Nb 240.2 125.6 28.2 39.84 0.3875
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kx = ky = 30

σxz σzz ux uz

constant for describing the interface imperfection. The periodic
Fourier  transformation  wave  number  is . The  pro-
duced stress fields under normal traction Hertz load are: Fig. 7a
for , Fig.  7b for , Fig.  7c for  and Fig.  7d for , respect-
ively. Comparisons  of  interface  traction  and  displacement  pro-
files along x direction in the xz plane (y=0) are shown in Fig. 8.

Hertz load cting on top surface plane of isotropic elastic film-

a = 5 P0 = 5

x Lx = 100 z

substrate system with imperfect dislocation-like interface model
is  simulated,  as  described  by  Eq. (4) ,  where  the  contact  radius

 nm, and Hertz  stress  amplitude  GPa.  The material
of thin  film  is  Cu  and  the  substrate  is  Nb,  with  their  Voigt  iso-
tropic  modulus  shown  in Table  1.  The  stress  field  within  the
cross-section  of  film-substrate  system  is  plotted  with  physical
scale along  direction  nm and physical  scale  along 
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Fig. 3.   Resultant stress (unit: GPa) of elastic film-substrate system under Hertz load: a , b  and resultant displacement (unit: nm): c ,
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z0 = 40

K u = DIA[ 0.5 0.5 0.5 ]

kx = ky = 30
σxz

σzz ux uz

direction  nm, including 10 nm thin film and 30 nm sub-
strate  along  z  direction.  The  dislocation-like  interface  related
matrixes  are set  as  constant  for  de-
scribing the  interface  imperfection.  The  periodic  Fourier  trans-
formation  wave  number  is .  The  produced  stress
fields under normal  traction Hertz  load are: Fig.  9a for  , Fig.
9b for , Fig. 9c for  and Fig. 9d for , respectively. Compar-
isons of interface traction and displacement profiles along x dir-
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Fig. 4.   Comparisons of Hertz load induced interface elastic profiles
within elastic film-substrate system: a stress and b displacement.
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Fig. 5.   Verification of our methods with classic method in Ref. [42]
for film-substrate system under Hertz load, interface elastic profiles
within elastic film-substrate system: a stress and b displacement.
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Fig. 6.   Resultant stress (unit: GPa) of thin film within elastic film rigid substrate system under normal Hertz load: a , b  and resultant dis-
placement (unit: nm): c , d  within elastic film space.
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ection in the xz plane (y=0) are shown in Fig. 10.

a = 5 P0 = 5

x Lx = 100 z
z0 = 40

K t = DIA[ 0.5 0.5 0.5 ]

kx = ky = 30
σxz σzz

ux uz

Hertz  load  acting  on  top  surface  plane  of  isotropic  elastic
film-substrate  system  with  imperfect  force-like  interface  model
is  simulated,  as  described  by  Eq. (4) ,  where  the  contact  radius

 nm, and Hertz  stress  amplitude  GPa.  The material
of thin  film  is  Cu  and  the  substrate  is  Nb,  with  their  Voigt  iso-
tropic  modulus  shown  in Table  1.  The  stress  field  within  the
cross-section  of  film-substrate  system  is  plotted  with  physical
scale along  direction  nm and physical  scale  along 
direction  nm, including 10 nm thin film and 30 nm sub-
strate along z direction. The force-like interface related matrixes

 are set as constant for describing the
interface  imperfection.  The  periodic  Fourier  transformation
wave number is: .  The produced stress fields under
normal traction Hertz load are: Fig. 11a for , Fig. 11b for ,
Fig.  11c for  and Fig.  11d for  ,  respectively.  Comparisons  of
interface traction and displacement profiles along x  direction in
the xz plane (y=0) are shown in Fig. 12.
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Based on  discrete  Fourier  transformation  of  elastic  bound-
ary  load  fields,  efficient  calculation  methods  for  analyzing  the
deformation fields  of  half  space,  film-substrate  system and film
on rigid  substrate  systems  are  explored.  Classic  Hertz  load  ex-
amples are performed for verification. Afterwards, the method is
extend for  film-substrate  system  with  imperfect  interface  con-
tinuity cases, and three classic interface models are considered:
(1) the  spring-like  imperfect  interface  model  which  can  be  de-
scribed  as:  and  

;  (2)  the dislocation-like interface model,  where interface
displacement  and  stress  components  relation  can  be  described
as:  and  ;  (3)  the  force-like
interface model,  where  interface  displacement  and  stress  com-
ponents  relation  can  be  described  as:  and

, respectively.  The  proposed  novel  calcula-
tion methods can be further developed for anisotropic film-sub-
strate systems, functionally graded systems.
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Fig. 7.   Resultant stress (unit: GPa) of elastic film-substrate system with linear spring-like interface under normal Hertz load: a , b  and
resultant displacement (unit: nm): c , d  within thin film-substrate space.
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b displacement.
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Fig. 9.   Resultant stress (unit: GPa) of film-substrate system with dislocation-like interface under normal Hertz load: a , b  and resultant
displacement (unit: nm): c , d  within thin film-substrate space.
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b displacement.
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Fig. 11.   Resultant stress (GPa) of film-substrate system with force-like interface under normal Hertz load: a , b  and resultant displace-
ment (unit: nm): c , d  within thin film-substrate space.
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

2µ f nx

[
nz h cosh(nz h)− µ f

λ f +µ f
sinh(nz h)

]
µ f ny nz sinh(nz h) 2iµ f nx nz sinh(nz h)

2µ f ny

[
nz h cosh(nz h)− µ f

λ f +µ f
sinh(nz h)

]
−µ f nx nz sinh(nz h) 2iµ f ny nz sinh(nz h)

2iµ f

[
λ f +2µ f

λ f +µ f
nz cosh(nz h)−n2

z h sinh(nz h)

]
0 2µ f n2

z cosh(nz h)


, (A5)
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T assym =



2µ f nx

[
nz h sinh(nz h)− µ f

λ f +µ f
cosh(nz h)

]
−µ f ny nz cosh(nz h) 2iµ f nx nz cosh(nz h)

2µ f ny

[
nz h sinh(nz h)− µ f

λ f +µ f
cosh(nz h)

]
µ f nx nz cosh(nz h) 2iµ f ny nz cosh(nz h)

2iµ f

[
λ f +2µ f

λ f +µ f
nz sinh(nz h)−n2

z h cosh(nz h)

]
0 2µ f n2

z sinh(nz h)


. (A6)
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