
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 1

Multi-sensor fusion on hypergraph for fault
diagnosis

Abstract— Multi-sensor information fusion techniques
based on deep learning are crucial for machinery fault
diagnosis. However, there are two major issues in previ-
ous research. First, the relationship between multi-sensor
samples is disregarded, which is important to enhance the
diagnostic performance. Second, the structure of the fu-
sion algorithm becomes extremely complex with prolonged
training when dealing with machinery equipped with a large
number of sensors. To address the above two issues, our
study proposes a new multi-sensor fusion mechanism that
fuses multi-sensor information on hypergraphs, by build-
ing a single-sensor fusion hypergraph and a multi-sensor
fusion hypergraph in the sensor space to embed the fault
samples as nodes. Additionally, a dual-branch hypergraph
neural network is designed to compute the two hypergraph-
s to obtain the feature representation of the samples and
diagnose faults. The algorithm is validated on two datasets
for its performance.

Index Terms— Multi-sensor fusion, Fault diagnosis, Hy-
pergraph neural network, Graph neural network, Informa-
tion fusion.

I. INTRODUCTION

AS industrial technology advances, rotating machinery
becomes more powerful, efficient, and precise, raising

concerns about equipment safety and making fault identifi-
cation a hot research area. The study of data-driven fault
diagnosis, which extracts useful information from machine
operating data without requiring knowledge of the structure or
dynamic characteristics of the machinery, has attracted much
attention due to the rapid development of artificial intelligence.
The quantity and quality of the operating data determine the
diagnostic accuracy; however, the limited fault samples are
available for training due to the high cost of obtaining fault
data in reality. It determines deep mining feature information
from fault samples as an important way to resolve the fault
diagnosis issue.

To mine useful information from fault samples, researchers
have attempted various strategies in past studies. The features
are extracted from multiple perspectives such as time domain,
frequency domain, and time-frequency domain to describe
faults, and information is transferred from one operating con-
dition or machine to another operating condition or machine
for fault diagnosis. Among these strategies, multi-sensor data
fusion is a key technique for mining sample features.

We define signal samples captured by a single sensor
as single-sensor samples (SSSs) and the composite samples
captured by multiple sensors at the same moment as multi-
sensor samples (MSSs). Multi-sensor fusion techniques for
fault diagnosis have been well-studied, and they are typically

classified into three levels, the data level, feature level, and
decision level, depending on the characteristics of the fused
information.

Data-level fusion approaches involve preprocessing the raw
multi-sensor data prior to feature extraction. Guan [1] comput-
ed the correlation coefficients between SSSs and treated them
as weights to combine SSSs into composite signals for fault
classification using 1D-convolutional neural network (CNN).
Wang [2] reshaped each SSS into a 2D image that was stacked
to create a multi-channel color image as fault representation
for further classification with CNN. Tong [3] calculated the
kurtosis value of each SSS as the weight to fuse SSSs into
a single 1D signal, which was then fed into a residual neural
network with an attention module to determine the category
of the faults. He [4] turned an MSS into a 2D image with
each SSS as a row and then carried out locality-preserving
projection to reduce data dimension for fault classification with
a dual residual network with various layers. Since the data-
level fusion approaches preserve enough information from the
raw signals, they have become the fundamental preprocessing
techniques for many models.

To remove noises and redundant information from the
signals and obtain more effective representations of fault
samples, the feature-level fusion approaches extract features
from SSSs separately and combine the features in a certain
way before decision-making. Tang [5] transformed SSS into
a symmetrized dot pattern (SDP) feature and then stacked
the SDPs generated from various sensors into a multi-channel
SDP, achieving fault diagnosis of drive motors using support
vector machine. Since deep neural networks have an end-to-
end learning mechanism for simultaneous feature extraction
and classification, a multi-branch neural network structure
is developed where single sensor features are first extracted
through a branch network and then multiple branches are fused
by a single network or classifier. Jalayer [6] processed the
drive-end and fan-end sensor signals of a motor using the
fast Fourier transform (FFT) and continuous wavelet transform
(CWT). Then, these FFT and CWT features were further sepa-
rately extracted using convolutional layers and long short-term
memory, along with statistical features as input to multi-layer
perceptron (MLP) for fault classification. Cui [7] developed
a multi-task CNN architecture with multi-sensor signals as
inputs and two tasks as outputs. In addition to the cross-
entropy, the intra-class dispersion of the feature values in the
middle fusion layer of the network is optimized with metric
learning to improve the effectiveness of diagnosis. Guo [8]
computed the cyclic spectra of motor current signals and fused
the covariance matrices of the corresponding modal vectors

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

in the cyclic spectra of multiple signals, and these signals
were input into an extreme learning machine to achieve fault
classification.

Similar to a voting system, decision-level fusion algorithms
integrate the results of various classifiers to make a final
decision. The signals from two sensors were independently
categorized with K-nearest neighbor (KNN), and the outcomes
are fused using a waterfall fusion model by Safizadeh [9].
Shao [10] classified SSSs with wavelet autoencoders (AEs),
and the classification accuracies were utilized as weights to
combine each classifier’s output to obtain the final result.
To achieve the failure detection of marine electric thruster
bearings, Zhang [11] performed evidential reasoning to com-
bine the outcomes of multiple 1D CNNs trained with SSSs,
where the training accuracies and the losses of the associated
branches were treated as weights and reliability. Zhong [12]
pretrained CNNs on SSSs captured by two vibration sensors
and two pressure sensors, respectively, then fused the multi-
sensor results based on Dempster-Shafer evidence theory and
assigned pseudo-labels to the unlabeled samples, attaining
the monitoring of the hydraulic valve in a semi-supervised
learning way. In those decision-based fusion algorithms, each
sensor signal is treated independently and the coupling infor-
mation between different sensors is lost in fact, leading to
degraded performance.

The categorization of the three multi-sensor fusion mecha-
nisms is not strict, and some algorithms synthesizing different
fusion techniques are available. For instance, Yan [13] chose
any two signals from five sensors to create a generalized
shaft orbit and then sent a series of orbits into a multi-branch
CNN (MB-CNN) to further extract the features and classify
the faults, accomplishing multi-sensor information fusion at
both the data level and feature level. Niu [14] integrated the
characteristic frequencies of the inner ring, outer ring, and ball
of bearing into 3-channel color images created from the raw
multi-sensor signals at both the data and feature levels, and
determined the fault types with the residual CNN.

Although these multi-sensor fusion algorithms have
achieved success in machinery fault diagnosis, they also have
two drawbacks.

First, in the fault diagnosis task, samples are cut from
sequential and periodic sensor signals, revealing the existence
of complex correlations between MSSs and SSSs that are
helpful in recognizing fault types. However, most multi-sensor
fusion algorithms follow the assumption of independent iden-
tically distribution (IID) and neglect the correlations between
samples. Recent publications [15] [16] describe some graph-
based multi-sensor fusion techniques that construct graphs to
consider the correlations between SSSs and mainly disregard
the correlations between MSSs as a whole. Moreover, a simple
graph can only describe the pairwise correlation between
samples, and cannot present the high-order correlation between
multiple sensor signals with common characteristics. This
results in the loss of information and limits the multi-sensor
techniques to achieve better performance.

Second, a large number of sensors are equipped in the
actual machines or engineering systems; however, most ex-
isting algorithms deal with the information fusion of a few

sensors. As the number of sensors grows, the structure of the
models will become complicated, especially for deep learning
algorithms based on feature fusion or decision fusion, leading
to overfitting and increasing the computational complexity.

To address the above two challenges, our study proposes
a novel multi-sensor fusion mechanism, i.e., fusion on the
hypergraph. Distinguishing from the traditional three fusion
mechanisms, it embeds SSSs and MSSs into the hypergraphs
as nodes, builds correlations between them individually, and
fuses the multi-sensor information during the construction
of the hypergraphs. A multi-sensor fusion hypergraph neural
network (MsfHGNN) with a dual-branch structure is designed
to learn the fault feature representation and diagnose faults by
computing the hypergraphs with multi-sensor information.

The main contributions of this paper are threefold.
1) A novel multi-sensor fusion mechanism based on hy-

pergraphs is proposed. Specific hypergraphs based on
SSSs and MSSs are generated, respectively, not only
achieving effective fusion of multi-sensor information
but also acquiring the correlation between fault samples.

2) A hypergraph learning framework MsfHGNN is de-
signed. The architecture of MsfHGNN is fixed as a dual-
branch structure that does not change with the variation
of the number of sensors, and the training process is also
efficient.

3) On two rotating machinery datasets for fault diagnosis,
the proposed model achieves superior performance as
compared with previous multi-sensor fusion methods
with multi-branch structures. Additionally, it is also
resistant to noise interference.

The rest of the paper is organized in the following manner.
Section II introduces the basic concepts and computational
principles of hypergraphs, while Section III provides the
novel multi-sensor fusion framework and the algorithm details.
Section IV presents the experimental validation, and the entire
paper is concluded in Section V.

II. THEORETICAL BACKGROUND

A. Hypergraph
A simple graph is a kind of data structure describing the

pairwise relationship between samples. As deep learning has
been applied to graph learning in recent years, graph neural
networks (GNNs) such as ChebyNet [17], graph convolutional
networks (GCN) [18], etc., break away from the assumption
of IID and efficiently accomplish graph learning tasks, such
as node classification, graph classification, and link prediction.
GNNs have led to breakthroughs in social network analysis,
protein function prediction, and intelligent transportation sys-
tems. However, simple graphs are only employed to describe
the pairwise correlations between the nodes and their neigh-
bors, and high-order relationships between multiple nodes
are not taken into account. This issue can be solved using
hypergraph G = (V,E,W), consisting of a set of nodes V ,
hyperedges E, and the weights of hyperedges W. In contrast
to simple graphs, hypergraphs allow hyperedges to connect
multiple nodes, characterizing the high-order relationships
between nodes and reflecting their shared properties.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 3

To simplify the problem, we define W = I in this work,
i.e., each hyperedge has an equal weight. The adjacent matrix
is adopted to depict the relationship between the nodes in a
simple graph, and the relationship of the nodes in a hypergraph
is represented by the incident matrix H ∈ R|V |×|E| . The rows
and columns of H correspond to the nodes and hyperedges,
respectively, with a value of 1/0 indicating whether or not the
node lies on the hyperedges. For v ∈ V , e ∈ E,

H(v, e) =

{
1, if v ∈ e
0, if v /∈ e (1)

The node degree matrix and hyperedge degree matrix are
denoted by the diagonal matrices DV ∈ R|V |×|V | and DE ∈
R|E|×|E|, respectively; their diagonal elements are specified
as follows:

de =
∑
v∈V

H(v, e) (2a)

dv =
∑
e∈E

H(v, e) (2b)

Fig. 1 lays out the differences between a simple graph
and a hypergraph. A hypergraph is composed of multiple
hyperedges. Each hyperedge can serve as both the connection
between the nodes similar to a simple graph and a group of
nodes with common characteristics along with the attribute of
the hypergraph; thus a hypergraph can be described by a series
of attributes [19]. A new attribute shared by a set of nodes
can be achieved by adding a hyperedge to the hypergraph,
i.e., adding a column to the incident matrix of hypergraph. It
implies that extra hyperedges can be added into the hypergraph
to produce more high-order correlations or fuse information
from diverse sources.

N1

N2

N3

N4

N5

N6

N7 N1
N2
N3
N4
N5
N6
N7

N1 N2 N3
0
0
0
0
0
1
1

0
0
0
0
0
0
1

0
0
0
1
0
0
1

N1

N2

N3

N4

N5

N6

N7 N1
N2
N3
N4
N5
N6
N7

E1 E2 E3
1
1
0
0
1
0
0

0
0
1
0
0
1
1

0
0
1
1
1
0
0

0
0
1
0
1
0
0

0
0
0
1
0
1
0

1
0
0
0
1
0
0

N4 N5 N6 N7
1
1
1
0
0
0
0

E1
E2

E3

(a) Simple graph and adjacent matrix (b) Hypergraph and incident matrix

Fig. 1: Comparison of simple graph and hypergraph.

B. Hypergraph Learning
Based on graph-cut theory, Zhou [20] proposed a hyper-

graph learning framework with both empirical loss and the
smoothness of the label distribution as the optimization targets.
Feng [21] designed hypergraph neural network (HGNN) and
implemented hypergraph convolution based on the hypergraph
Laplace transform, generalizing hypergraph learning into a
deep learning framework. Bai [22] focused on the weights
of the nodes on the hyperedges and presented an attention
technique for hypergraph convolution. Yadati [23] transformed
the hypergraph into a simple graph in a certain way and
performed GCN to learn the node representations. Gao [24]
expanded the spectral analysis of hypergraph convolution into
the spatial domain and assigned trainable group weights to the
hyperedges, which achieved the multi-modal fusion.

Benefiting from their capabilities, hypergraphs can be uti-
lized in 3D object retrieval [25], behavior recognition [26], and
histopathological image analysis [27]. Due to the periodicity
and the continuity of signals, complex relationships between
fault samples potentially exist; hence, hypergraphs have been
applied to fault diagnosis of rotating machinery. Yan [28] built
hypergraphs by decomposing the signals into sub-signals under
various resolutions and then concatenated the hypergraphs to
approximate the data structure hidden in the fault samples.
Shi [29] designed a hypergraph convolutional layer in AE,
causing the hidden representation of the AE to capture high-
order corrections between the unlabeled fault samples.

C. Hypergraph Neural Network
The hypergraph learning problem can be summarized [20]

as
arg min

f
{Remp(f) + Ω(f)} (3)

where f(·) is the classifier, Remp(f) denotes the empirical
loss, and Ω(f) = fT∆f is a regularization item. ∆ = ΦTΛΦ
is the Laplacian matrix where Φ = [φ1, φ2, ..., φN] are eigen-
vectors and Λ = diag(λ1, λ2, ..., λN) is a diagonal matrix
consisting of eigenvalues. Hence, the spectral convolution of
the hypergraph can be written as:

h ∗ x = Φ((ΦTh)� (ΦTx)) = Φh(Λ)ΦTx (4)

where � represents the element-wise product.
Since Φ requires eigendecomposition of the matrix, the

computation of hypergraph convolution needs much more
memory and is more time-consuming. Leveraging the idea
of simplifying the spectral convolution of simple graph in
ChebyNet and GCN, the hypergraph convolution is directly
simplified [21] as:

h ∗ x = θD
−1/2
V HWD−1E HTD

−1/2
V x (5)

where D−1E and D
−1/2
V are viewed as normalization items,

and θ is the convolution parameter.
HGNN consists of a stack of hypergraph convolutional

layers (as in Fig. 2), each of which can be defined as:

Xl+1 = σ(D
−1/2
V HWD−1E HTD

−1/2
V XlΘl) (6)

where the input feature is Xl ∈ RN×C1 and the output is

Node
convolution

Linear
Layer

Activation
function

Hyperedge
convolution

HConv HConv

Node Representation

Incident Matrix
 H

Hypergraph

X
Node Label

Y

HGNN

Fig. 2: HGNN

Xl+1 ∈ RN×C2 , with only one learnable parameter Θl ∈
RC1×C2 .

Similar to GNNs, as the number of hypergraph convolu-
tional layers increases, HGNN suffers from over-smoothing,
leading consistent features of all nodes. Consequently, the
number of layers of HGNN used in this paper is set to 2.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Sensor 1

Signal acquiring and sampling

Sensor 2

Sensor 3

Node representation

1x

11x

13x
12x

21x

22x

23x

2x

31x

32x

3x

33x

41x

42x

4x

43x

5x

51x

52x

53x

E1 E2
1x

2x

3x

4x

5x

E3
1
0
1
0
1

0
1
1
1
0

1
0
1
1
0

0
1
1
0
1

1
0
0
1
1

0
1
1
0
1

E4 E5 E6

E6
E5
E4
E3
E2
E1

s-Hypergraph

Construction of s-Hypergraph

1x

2x

3x

4x

5x

sfH

1x

2x

3x 4x

5x

E1 E2
1x

2x

3x

4x

5x

1

0

1

1

0

0

1

1

0

1

m-Hypergraph
mfH

Construction of m-Hypergraph

X

Fault Diagnosis

Concat

MsfHGNN

Y

HconvHconv

HconvHconv

mfH

sfH

Fig. 3: The pipeline of the proposed algorithm.

III. THE PROPOSED ALGORITHM

The framework of our proposed algorithm is depicted in
Fig. 3 and mainly consists of four parts: multi-sensor raw
signal acquisition and sampling samples for MSSs and SSSs,
node representation, hypergraphs construction for multi-sensor
fusion, and hypergraph computation for fault diagnosis. In this
section, the basic hypergraph generation strategy is introduced
first, followed by the construction methods for two hyper-
graphs from SSSs and MSSs, respectively. Then MsfHGNN
for computing the two hypergraphs is detailed, and finally
some discussion and analysis are provided.

A. Hypergraph generation

In contrary to social networks, there is no explicit hyper-
graph structure among fault samples. Therefore, the correla-
tions between samples needs to be established manually, i.e.
representing nodes and creating hyperedges.

Due to the limited characterization capability of the raw
signals, the fault samples cut from the signals are transformed
into the frequency domain by FFT as node representations,
which are constrained to [0,1] by maximum-minimum nor-
malization as:

xFFT = FFT(xraw) (7a)

x =
xFFT −min(xFFT)

max(xFFT)−min(xFFT)
(7b)

where x is used as the node representation with strong noise
resistance compared to the raw signals.

Assuming there are N samples considered as nodes, we
calculate the Euclidean distance between nodes based on the
KNN to construct hyperedges, and the incident matrix of the
hypergraph H ∈ RN×N is

Hij =

{
1 xi ∈ KNN(xj) or i = j
0 others

(8)

where xi denotes the node representation of the ith sample,
and KNN(xj) stands for the K nearest nodes of xj in the
feature space, with the distance of nodes calculated as d =
‖xi − xj‖2. The generated hypergraph has N hyperedges with
the same number of nodes.

B. Single-sensor fusion hypergraph
The multi-sensor fault dataset X = {X1,X2, ...,XS}

contains S SSS datasets, where Xi is captured by the ith
sensor, i = 1, 2, ..., S. For each Xi, we apply the hypergraph
generation method described in Section III-A to construct
a single-sensor hypergraph with the incident matrix Hi. To
attain multi-sensor fusion, the hypergraphs are concatenated
to create a single-sensor fusion hypergraph, defined as s-
Hypergraph, whose incident matrix is

Hsf = concat(H1,H2, ...,HS) (9)

where Hsf ∈ RN×NS and ”concat” denotes matrix concate-
nation operation.

Fig. 4 depicts the construction of the s-Hypergraph. The
construction of s-Hypergraph can be summarized in two
steps. First, single- sensor hypergraphs are created from SSSs
respectively, and the relationship between the SSSs captured
by the same sensor is then acquired. Second, multiple single-
sensor hypergraphs are concatenated to achieve information
interaction and fusion between SSSs from various sensors.

It is worth noting that the concatenation operation of
multiple hypergraphs for multi-sensor fusion is only suitable
to hypergraphs; moreover, it cannot be performed in simple
graphs and usually requires a multi-branch network to fuse
multiple graph information. In essence, the hypergraph can
aggregate more information by adding additional hyperedges.
Each SSS in the samples can be regarded as a type of
feature of samples and the corresponding single-sensor hy-
pergraph describes high-order correlations between samples
in the feature space, hence the concatenation of hypergraphs
is equivalent to adding groups of hyperedges generated in
various feature spaces. The s-Hypergraph takes advantage
of this characteristic of the hypergraph and stacks a series
of hyperedges representing different sensor information, and
the node representations can be updated with multi-sensor
information through s-Hypergraph learning.

C. Multi-sensor fusion hypergraph
As a whole, MSS xi = {xi1, xi2, ..., xiS} consists of a

series of SSSs captured simultaneously and contains multi-
sensor coupling information that is helpful to enhance perfor-
mance but not considered in most previous studies. To mine

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

AUTHOR et al.: TITLE 5

Single-sensor Hypergraph Construction

2X
Sensor 1 Sensor 2 Sensor 3

11x 13x

21x 22x 23x

31x 32x

41x 42x

51x 52x

12x1x

2x

3x

4x

5x

33x

43x

53x

1X

3X

E1

E2

11x

21x

31x

41x

51x

E3

E4

22x

32x

42x

52x

12x

E5

E6

13x

23x

33x

43x
53x

E1 E2

1

0

1

0

1

0

1

1

1

0

11x
21x
31x

41x

51x

1H

E3 E4

1

0

1

1

0

0

1

1

0

1

22x
32x
42x
52x

12x
2H

E5 E6

1

0

0

1

1

0

1

1

0

1

13x

23x
33x
43x

53x

3H

11x

21x

31x

41x

51x

22x

32x

42x

52x

12x

13x

23x

33x

43x

53x

KNN

KNN

KNN

Hypergraph Concatenation

s-Hypergraph

E6

E5

E4

E3

E2

E1
1x

2x

3x

4x

5x

E1 E2

1x

2x

3x

4x

5x

E3

1

0

1

0

1

0

1

1

1

0

1

0

1

1

0

0

1

1

0

1

1

0

0

1

1

0

1

1

0

1

E4 E5 E6
sfH

Fig. 4: The generation of s-Hypergraph.

the information from MSSs, we establish a sensor space RS

with each dimension representing one sensor. MSS can be
viewed as a point xi = (xi1, xi2, ..., xiS) while the coordinate
value xij ∈ Rd is the feature vector of the jth SSS in MSS.

Define the distance between MSSs in RS as

d(xi, xj) =

S∑
s=1

‖xis − xjs‖2 (10)

which is used as the distance metric in KNN. A multi-sensor
fusion hypergraph with incident matrix Hmf ∈ RN×N , de-
fined as m-Hypergraph, is constructed based on the method in
Section III-A. Fig. 5 presents the generation of m-Hypergraph.
The m-Hypergraph is generated by projecting MSS into the
sensor space and redefining the distance metric in RS . This
allows it to incorporate not only the correlations between
MSSs but also the coupling relationships between multiple
sensors. It is worth noting that the dimension of Hmf does
not depend on the number of sensors but only on the quantity
of samples.

Moreover, the nodes in s-Hypergraph/m-Hypergraph are
consistent, and the difference is the hyperedges. Each hy-
peredge in s-Hypergraph is built from the SSSs of a single
sensor, reflecting the correlation between SSSs. There are a
total of NS hyperedges proportional to the number of sensors,
and the dimension of the incident matrix is N × NS. For
m-Hypergraph, each hyperedge is constructed based on the
distance between MSSs, representing the correlation between
MSSs as a whole, with a total of N hyperedges that are
independent of the number of sensors.

D. MsfHGNN

After obtaining s-Hypergraph and m-Hypergraph, the hy-
pergraph computation framework MsfHGNN is designed to
compute the two hypergraphs individually and fuse their
results for fault diagnosis as shown in Fig. 6. First, let X =
concat(X1,X2, ...,XS), i.e., xi = concat(xi1, xi2, ..., xiS) ,
which means the node representation of s-Hypergraph and
m-Hypergraph is the concatenation of SSS features. Then,
s-Hypergraph neural network (s-HGNN) and m-Hypergraph
neural network (m-HGNN), as two branches of MsfHGNN,
are both set up with two hypergraph convolutional layers:

Zsf = HConv(HConv(X,Hsf),Hsf) (11a)
Zmf = HConv(HConv(X,Hmf),Hmf) (11b)

where HConv represents hypergraph convolution. The com-
puted results of s-Hypergraph and m-Hypergraph Zsf , Zmf

are joined and input into an MLP:

Y = MLP(concat(Zsf ,Zmf)) (12)

where Y denotes the prediction of the fault sample labels. The
cross-entropy is employed as the loss function.

E. Summary

The entire algorithm can be summarized as follows:

1) An MSS dataset is created by splitting up the operating
data of a machine installed with S sensors into N sam-
ples, where each MSS comprises S SSSs. The dataset
is divided into training and testing portions.

2) Extract FFT features from all SSSs. Build node feature
representations X by combining all SSS features.

3) Construct s-Hypergraph and m-Hypergraph from SSSs
and MSSs separately, and obtain the corresponding
incident matrices Hsf and Hmf , acquiring two types
of high-order corrections between SSSs captured by a
single sensor and between MSSs as a whole in the sensor
space.

4) Train MsfHGNN model by feeding X, Hsf and Hmf

into MsfHGNN, and only the labels of the training
samples are known. During the training process, multi-
sensor fusion is implemented in three ways. First, the
initial node representation is made by combining FFT
features of SSSs from different sensors. Second, s-
Hypergraph is generated by concatenating single-sensor
hypergraphs. In s-Hypergraph learning, the node in-
formation is aggregated to the hyperedges constructed
by different sensors and then aggregated to the center
node; multi-sensor information is fused into the updated
node representation. Third, the coupling information of
multiple sensors in the sensor space is revealed by the
m-Hypergraph with MSSs as the nodes.

5) The labels of the test samples in X are predicted by
inputting X, Hsf and Hmf into the trained MsfHGNN
model.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

yanxs
高亮

yanxs
高亮

yanxs
高亮

yanxs
高亮

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

m-Hypergraph
1S

Sensor 1 Sensor 2 Sensor 3

11x 13x

21x
22x 23x

31x
32x

41x 42x

51x 52x

12x1x

2x

3x

4x

5x

33x

43x

53x

1 11 12 13

2 21 22 23

3 31 32 33

4 41 42 43

5 51 52 53

(, ,)

(, ,)

(, ,)

(, ,)

(, ,)

x x x x

x x x x

x x x x

x x x x

x x x x

E1 E2

1x

2x

3x

4x

5x

1

0

1

1

0

0

1

1

0

1

mfH

MSSs Point coordinates

1x

11x

13x

2S

3S

1x

2x

3x
4x

5x

2S

3S

Sensor space
1S

12x

KNN

Fig. 5: The generation of m-Hypergraph.

s-Hypergraphm-Hypergraph

HConv

Concat

s-HGNNm-HGNN

MLP

sfHmfH

HConv

HConv

HConv

Label Y

1 2concat(, ,...,)SX X X X
Node Representation

Fig. 6: MsfHGNN

IV. EXPERIMENTS

A. Datasets
The Paderborn dataset and AMB-S5 dataset are adopted to

verify the effectiveness of the proposed algorithm.
The Paderborn dataset is a benchmark widely used in rolling

bearing fault diagnosis, designed by Paderborn University
team [30], which is collected from a horizontal test rig (shown
in Fig. 7) equipped with vibration, current, and torque sensors.
The signals captured by the two current sensors are chosen for
our study. The dataset contains three types of faults: normal,
inner bearing ring, and outer bearing ring, collected from 15
bearings, corresponding to five bearings per type of fault (see
TABLE I). Each bearing is subjected to 20 tests at a speed of
1500 rpm, a load torque of 0.1 N.m, and a radial force of 1000
N. There are 14996 samples in total, with a 64 kHz sampling
rate and a length of 5120 points. The training and testing data
come from various tests, accounting for 80% of the training
data.

Fig. 7: The platform of Paderborn dataset [30].

TABLE I: Paderborn dataset setting

Fault Type Sample number Bearings for test
normal 5000 K001,K002,K003,K004,K005
inner ring fault 4999 KI04,KI14,KI16,KI18,KI21
outer ring fault 4997 KA04,KA15,KA16,KA22,KA30

The AMB-S5 dataset is collected by our team through a
series of manually designed experiments, obtained from a
vertical rig (shown in Fig. 8) supported by active magnetic
bearings (AMB) with five displacement sensors. In addition
to being used as feedback for rotor suspension control, the
signals acquired by the displacement sensors are employed
as vibration quantity for monitoring. The dataset primarily
focuses on four types of mechatronics system-level faults,
including normal, unbalance, misalignment, and rub-impact.
Each type of fault is tested twice and a total of 4356 samples
with a length of 5000 points and a sampling rate of 25 kHz are

collected (see TABLE II). Moreover, the training and testing
data are selected at random from different tests.

There is no overlap between samples in the two datasets,
and the data for testing and training come from different
tests, which increases the within-class scatter and raises the
challenge of the datasets. It is worth noting that all samples
in the two datasets have corresponding tagged labels, and
the labels of testing samples are masked during the training
process. The accuracy, the ratio of correctly identified samples
among testing samples, is utilized to evaluate how effective
the algorithm is. All experiments are conducted 10 times with
randomly chosen training and testing data and the average
accuracy is acquired.

Our experiments are carried out on a computer with
a Central Processing Unit of Intel(R) Xeon(R) E5-2697
v4@2.30GHz and a Graphics Processing Unit (GPU) of N-
VIDIA GeForce GTX 3090Ti. The GPU is used to acceler-
ate the execution of algorithms. The softwares used include
Python 3.9.7, Sk-learn 1.1.1, Pytorch 1.10.1, and DeepHyper-
graph Toolbox [21].

(a) AMB test rig (b) The layout of sensors

Fig. 8: Test rig for AMB-S5 dataset and the layout of sensors.

TABLE II: AMB-S5 dataset setting

Fault Type Test1 sample number Test2 sample number
normal 856 372
rotor unbalance 968 740
misalignment 476 500
rub-impact 152 292

B. Parameters setting

MsfHGNN is compared with five other multi-sensor fu-
sion algorithms, each of which selects FFT as features. SSS

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

yanxs
高亮

yanxs
高亮

yanxs
高亮

AUTHOR et al.: TITLE 7

features are directly concatenated as the node representation
of HGNN+ [24] with a two-layer structure. The number of
branches is consistent with the number of sensors in multi-
branch ChebyNet (MB-ChebyNet) [16], multi-branch GCN
(MB-GCN) [15], MB-CNN [13], and multi-branch HGNN
(MB-HGNN) [31], all of which have a multi-branch structure
shown in Fig. 9. Each branch cascades two graph convolution-
al/convolutional/hypergraph convolutional layers as the branch
backbone, with MLP to fuse multiple branches. In MB-CNN,
three fully connected layers are included in the MLP, while
all other algorithms have two fully connected layers. Predefine
K = 10 to generate graphs or hypergraphs in HGNN+, MB-
ChebyNet, MB-GCN, MB-HGNN, and MsfHGNN, and then
set the output dimension of graph/hypergraph convolutional
layers to 512 and 32. The epoch number is 2000 and 1000 in
Paderborn and AMB-S5, respectively.

Feature
Extractor

MLPConcat

…
…

Sensor 1
Data

Sensor 2
Data

Sensor S
Data

Label Y

…
…

Fig. 9: Multi-branch multi-sensor fusion algorithm framework.

C. Comparison
TABLE III presents the performance of the six multi-

sensor fusion algorithms on the two datasets. It can be
seen that MsfHGNN has the highest accuracy among the
six multi-sensor fusion algorithms. In comparison to MB-
CNN, MsfHGNN acquires additional information about the
correlation between samples due to breaking the IID assump-
tion. As opposed to MB-ChebyNet and MB-GCN, MsfHGNN
captures the high-order correlation between samples beyond
the pairwise relationship. Specifically, HGNN+ and MB-
HGNN are feature-level fusion algorithms and capture only
the relationship between SSSs, while MsfHGNN takes the
relationship between MSSs/SSSs into account simultaneously
and achieves multi-sensor fusion on hypergraphs.

In terms of training time, MsfHGNN only exceeds MB-
CNN on Paderborn, but on AMB-S5, it trains faster than MB-
ChebyNet, MB-CNN, and MB-HGNN. This result roughly
shows that as the number of sensors increases, the advantage
of the proposed algorithm in training time grows, and a more
thorough analysis is provided in Section IV-E.

D. Ablation experiment
MsfHGNN primarily consists of two branches, s-HGNN,

and m-HGNN, computing s-Hyergraph and m-Hypergraph that
fuse multi-sensor information from different aspects. There-
fore, we conduct ablation experiments testing both s-HGNN
and m-HGNN, to confirm the impact of each on the overall
algorithm. In the last hypergraph convolutional layer of s-
HGNN and m-HGNN, the output dimension is adjusted to

TABLE III: Comparison of six multi-sensor fusion algorithms

Algorithms Paderborn AMB-S5

Accuracy/% Training time/s Accuracy/% Training time/s

HGNN+ 92.09±2.01 117.65 99.52±0.26 37.20
MB-ChebyNet 94.44±1.61 298.20 99.05±0.48 223.52

MB-GCN 92.96±1.76 52.49 98.45±0.71 61.26
MB-CNN 93.17±4.23 13307.26 96.60±0.82 3326.03

MB-HGNN 96.59±2.00 350.78 99.47±0.20 175.28
MsfHGNN 97.07±2.28 465.68 99.53±0.24 138.04

match the number of fault types, and the activation function
is changed to the Softmax function.

According to Fig. 10, on Paderborn, m-HGNN achieves
approximate performance with MsfHGNN; however, s-HGNN
has poorer performance, and the opposite conclusion is drawn
on AMB-S5. It is demonstrated that under the circumstances
of different datasets with a various numbers of sensors, the
multi-sensor information acquired by s-Hypergraph and m-
Hypergraph separately plays different roles in diagnosis.

Paderborn AMB-S5
Dataset

88

90

92

94

96

98

100

A
cc

ur
ac

y(
%

)

m-HGNN
s-HGNN
MsfHGNN

Fig. 10: Ablation experiment on two datasets.

Two Venn diagrams are shown in Fig. 11 to illustrate the
quantities of samples successfully identified by the corre-
sponding algorithms. The circle intersection denotes that two
or three corresponding algorithms properly categorize the sam-
ples. Clearly, s-HGNN and m-HGNN each have advantages
and drawbacks of their own. On Paderborn, 188 samples are
correctly categorized by m-HGNN and incorrectly classified
by s-HGNN. 14 samples, however, that m-HGNN is unable
to accurately classify, are successfully classified by s-HGNN.
MsfHGNN effectively identifies 189 out of the 202 samples
by integrating the characteristics of s-HGNN and m-HGNN.

On AMB-S5 with varied numbers of sensors, we further
analyze s-HGNN, m-HGNN, and MsfHGNN. In this experi-
ment, 2/3/4/5-sensor data combinations are randomly select-
ed from AMB-S5 for training, corresponding to 10/10/5/1

MsfHGNN

s-HGNN m-HGNN

85 5

6

1809

2720

(a)

MsfHGNN

s-HGNN m-HGNN

13 2

0

423

1706

(b)

Fig. 11: Venn diagrams (a) Paderborn (b)AMB-S5.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

2 3 4 5
Number of sensors

95

96

97

98

99

100
A

cc
ur

ac
y/

%

m-HGNN
s-HGNN
MsfHGNN

(a)

2 3 4 5
Number of sensors

40

60

80

100

120

140

T
ra

in
in

g
tim

e/
s

m-HGNN
s-HGNN
MsfHGNN

(b)

Fig. 12: Ablation experiment under various number of sensors.

combinations. The average of accuracies corresponding to the
combinations with the same number of sensors is utilized as
the final result.

In most cases, the more hyperedges there are, the more
information in the hypergraph there is. More information will
be brought to the s-Hypergraph as more sensors are added
since the number of hyperedges NS is linearly associated
with the number of sensors S. Since the sensor space RS

used to build the m-Hypergraph has a higher dimensionality
and contains more multi-sensor coupling information as S ex-
pands, m-Hypergraph always maintains N hyperedges but can
gather richer information. As a result, as shown in Fig. 12(a),
the accuracy of both s-HGNN and m-HGNN significantly
increases with S.

According to [22], the computational complexity of the
hypergraph convolution is O(2N2E+ 2E2N) which depends
on the number of nodes N and the number of hyperedges
E. In m-Hypergraph, N and E are constant as S rises, the
dimension of Hmf remains N ×N ; hence the computational
cost for m-HGNN remains almost constant. In s-Hypergraph,
the hyperedge number is NS and the training time of s-HGNN
should grow quadratically with S but it does not because
all operations involve matrix multiplications, which can be
executed in parallel on the computer’s GPU. The experiments
support the findings of the study in Fig. 12(b).

Since m-Hypergraph and s-Hypergraph extract information
from multiple sensors in different perspectives, both s-HGNN
and m-HGNN have advantages in terms of recognition accu-
racy or training time and can complement each other. As seen
in the aforementioned experiments, MsfHGNN successfully
unifies the two within a single computational framework and
further enhances the recognition performance.

E. The effect of sensor number on training time growth
Similar to the experiment setting in Section IV.D, we further

analyze the relationship between the increase of sensors and
the growth of the algorithms training time on AMB-S5. The
algorithms with multi-branch structure and MsfHGNN are
selected for comparison. To explicitly compare the growth rate
of training time as S increases, define the relative training time
t̄a as:

t̄a =
ta
t2

(13)

where ta is the training time of the algorithm when S = a.
In Fig. 13, the experimental results show that the multi-

2 3 4 5
Number of sensors

0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
tr

ai
ni

ng
 ti

m
e

MB-GCN
MB-CNN
MB-HGNN
MsfHGNN

Fig. 13: Relative training time under various sensors.

branch structure algorithms’ training time quickly climbs
as S increases meanwhile the complexity of the network
structure increases. MsfHGNN’s training time growth is the
slowest. Three main factors account for this: first, MsfHGNN’s
network structure always maintains two branches and does
not grow with S, keeping the structure simple; second, the
computational cost of m-HGNN stays constant, flattening the
overall growth trend of MsfHGNN’s training time; and third,
because matrix multiplication is the primary operation and can
be more readily accelerated in parallel on the GPU, its training
time growth is noticeably slower than that of other multi-
branch algorithms. Therefore, MsfHGNN is more suitable
for diagnosing machinery equipped with a large number of
sensors.

F. Influence of Hyperparameters
In the MsfHGNN framework, there are two key hyper-

parameters: the K in KNN employed in the generation of
hypergraphs, and the number of layers of HGNN. We test on
the Paderborn dataset and discuss the selection of these two
parameters.

1) Evaluation of K in KNN: The performance of MsfHGNN
is evaluated as K varies, and the results are presented in
Fig. 14(a). The results show that the performance of the
algorithm improves as K rises initially, but when K exceeds a
certain value, the algorithm’s performance no longer improves
and instead fluctuates within a narrow range. Thus, it indicates
that the nodes on the same hyperedge have common attributes;
when K is small, the nodes with common features but rela-
tively far away from the center node may be lost, resulting
in an information loss. When K is too large, all nodes that
share common attributes with the central node are laid on the
hyperedge without sacrificing information; however, the nodes
without common attributes shared with the center node can
potentially be introduced. Therefore, a compromised K value
is adopted to achieve a balance, and the above analysis is
presented in Fig. 14(b).

2) Evaluation of the Number of Layers: Generally,
graph/hypergraph neural networks are designed with a
few layers to avoid over-smoothing. A generalized residual
learning strategy presented in Ref. [32] is introduced for
comparison. Due to the distinct structure from the classical
residual network, it was designed to handle the over-
smoothing issue of GNN. To evaluate the influence of the
number of hypergraph convolutional layers comprehensively,

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

yanxs
高亮

yanxs
高亮

AUTHOR et al.: TITLE 9

5 10 15 20

K

90

92

94

96

98

100
A

cc
ur

ac
y/

%

(a)

N1

N2

N3

N4

N5

N6

N7

K=5
K=2

(b)

Fig. 14: Hyperparameter K influence on MsfHGNN (a) Ex-
periment on Paderborn (b) Intuitive explanation

we redesign the HGNN with residual learning in MsfHGNN
as shown in Fig. 15, and compare MsfHGNN and MsfHGNN
with residual learning at various depths.

HConv HConv HConv Concat……

Fig. 15: The algorithm structure of HGNN with residual
learning.

The experimental results are shown in Fig. 16. The accuracy
of the algorithms only slightly improves with more layers, and
does not depend on whether residual learning is used, and
MsfHGNN with residual learning performs a little worse than
MsfHGNN without residual learning. Despite a 1% gain in
accuracy, both algorithms exhibit a considerable increase in
training time as depth increases, with 6-layer HGNN taking
twice the time as long as two-layer HGNN. From the perspec-
tive of balancing accuracy and training time, it is a reasonable
choice to set the number of hypergraph convolutional layer to
2.

G. Influence of Noise Interference
The performance of the multi-sensor method suffers when

the sensors are interfered with noise. In a multi-branch net-
work, the branches with interfered signals as input are the only
branches affected by noise, isolating the influence of noise on

2 3 4 5

Number of layers in HGNN

95

96

97

98

99

100

A
cc

ur
ac

y/
%

MsfHGNN
MsfHGNN with Residual Learning

(a)

2 3 4 5

Number of layers in HGNN

0

200

400

600

800

1000

T
ra

in
in

g
tim

e/
s

MsfHGNN
MsfHGNN with Residual Learning

(b)

Fig. 16: Evaluation of the number of hypergraph convolutional
layers on MsfHGNN.

the other branches. Although some influences are presented
during the fusion step, this network structure improves the
algorithm’s overall robustness. Therefore, the multi-sensor
algorithms with multi-branch structure have strong anti-noise
ability. However, for MsfHGNN, the dual-branch utilizes all
sensor signals. In s-Hypergraph, a portion of the hyperedges
are affected during creation if one sensor is noise-affected, but
for m-Hypergraph, all hyperedges are affected. We evaluate the
performance of several multi-branch algorithms and MsfHGN-
N to assess their anti-noise ability on Paderborn where one of
the two sensors is set to interfere with noise.

Let x = xs + xn as the signal interfered by noise in our
study, where xs and xn are the raw signal and additional
Gaussian noise respectively. Consider the signal-to-noise ratio
(SNR) as a gauge of how much a signal is impacted by noise:

SNR = 10 log(
S

N
) (14)

where S and N are the average power of xs and xn.
According to the experimental findings in Fig. 17,

MsfHGNN has anti-noise capability comparable to those of
other multi-branch structure algorithms and can retain more
than 80% accuracy until SNR = 5dB. There are primarily two
reasons for this. First, since all hyperedges in m-Hypergraph
are influenced by noise, the accuracy of m-HGNN declines
sharply as SNR decreases. In s-Hypergraph, half of the hy-
peredges are created from SSSs taken by the sensor that is
not impacted by noise, ensuring that the accuracy of s-HGNN
is maintained at nearly 80%. Therefore, when MsfHGNN
aggregates the two branches, it inherits the characteristics of s-
HGNN and maintains sufficient performance under noise inter-
ference. Second, MB-HGNN outperforms other multi-branch
structure algorithms, demonstrating that hypergraphs are more
effective at expressing data correlations than simple graphs.
Therefore, although only keeps a portion of hyperedges with-
out noise interference, MsfHGNN can achieve performance
comparable to other graph-based multi-branch algorithms.

30 25 20 15 10 5
SNR

50

60

70

80

90

100

A
cc

ur
ac

y/
%

MsfHGNN
MB-GCN
MB-ChebyNet
MB-HGNN
MB-CNN
s-HGNN
m-HGNN

Fig. 17: Evaluation of anti-noise ability of algorithms on
Paderborn.

H. Experiment Conclusions
Through a series of experiments, the following conclusions

can be drawn.
1) Compared to other fusion algorithms, MsfHGNN ac-

quires the high-order relationship between SSSs/MSSs
and hence achieves the best accuracy in our experiments.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

yanxs
高亮

yanxs
高亮

yanxs
高亮

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

2) Due to the straightforward structure and parallel com-
putation on the computer’s GPU, the training time of
MsfHGNN grows considerably much slower than that
of other multi-branch structure algorithms as the number
of sensors increases.

3) The two branches of MsfHGNN, s-HGNN and m-
HGNN, capture diverse types of information, hence
their performance differs on various datasets. MsfHGNN
joins the two branches and strikes a balance in terms of
accuracy, training time, and model complexity.

4) The K of KNN and the number of layers of HGNN
affect the performance of MsfHGNN to a certain extent.
The selection of the two hyperparameters requires a
compromise between information loss and information
redundancy, or between accuracy and training time.

5) When some sensors are interfered by noise, MsfHGNN
can still guarantee a certain recognition accuracy be-
cause s-Hypergraph still retains a portion of the hyper-
edges that are not affected by noise.

V. CONCLUSION

In this paper, we propose MsfHGNN with a dual-branch
network structure to achieve the fusion of multi-sensor data
on two hypergraphs. Due to breaking the IID constraint, the
suggested algorithm not only fuses the sensor information on
the hypergraphs but also captures the correlation between SSSs
or MSSs, such that the MsfHGNN algorithm obtains more
sample information and achieves excellent results on both
experimental datasets.

In future research, we will investigate applying this novel
multi-sensor fusion framework to monitor machinery with
heterogeneous sensors.

REFERENCES

[1] Y. Guan, Z. Meng, D. Sun, J. Liu, and F. Fan, “2mnet: Multi-sensor and
multi-scale model toward accurate fault diagnosis of rolling bearing,”
Reliab. Eng. Syst. Safe., vol. 216, p. 108017, 2021.

[2] H. Wang, S. Li, L. Song, and L. Cui, “A novel convolutional neural
network based fault recognition method via image fusion of multi-
vibration-signals,” Comput. Ind., vol. 105, pp. 182–190, 2019.

[3] J. Tong, C. Liu, J. Zheng, and H. Pan, “Multi-sensor information
fusion and coordinate attention-based fault diagnosis method and its
interpretability research,” Eng. Appl. Artif. Intel., vol. 124, p. 106614,
2023.

[4] D. He, Z. Lao, Z. Jin, C. He, S. Shan, and J. Miao, “Train bearing
fault diagnosis based on multi-sensor data fusion and dual-scale residual
network,” Nonlinear Dynam., vol. 111, no. 16, pp. 14 901–14 924, 2023.

[5] Y. Tang, X. Zhang, S. Huang, G. Qin, Y. He, Y. Qu, J. Xie, J. Zhou,
and Z. Long, “Multisensor-driven motor fault diagnosis method based
on visual features,” IEEE Trans. Ind. Inform., vol. 19, no. 4, pp. 5902–
5914, 2023.

[6] M. Jalayer, C. Orsenigo, and C. Vercellis, “Fault detection and diagnosis
for rotating machinery: A model based on convolutional LSTM, fast
fourier and continuous wavelet transforms,” Comput. Ind., vol. 125, p.
103378, 2021.

[7] J. Cui, P. Xie, X. Wang, J. Wang, Q. He, and G. Jiang, “M2FN: An end-
to-end multi-task and multi-sensor fusion network for intelligent fault
diagnosis,” Measurement, vol. 204, p. 112085, 2022.

[8] J. Guo, Q. He, D. Zhen, F. Gu, and A. D. Ball, “Multi-sensor data fusion
for rotating machinery fault detection using improved cyclic spectral
covariance matrix and motor current signal analysis,” Reliab. Eng. Syst.
Safe., vol. 230, p. 108969, 2023.

[9] M. S. Safizadeh and S. K. Latifi, “Using multi-sensor data fusion for
vibration fault diagnosis of rolling element bearings by accelerometer
and load cell,” Inform. Fusion, vol. 18, pp. 1–8, 2014.

[10] H. Shao, J. Lin, L. Zhang, D. Galar, and U. Kumar, “A novel approach
of multisensory fusion to collaborative fault diagnosis in maintenance,”
Inform. Fusion, vol. 74, pp. 65–76, 2021.

[11] X. Zhang, C. Sheng, W. Ouyang, and L. Zheng, “Fault diagnosis
of marine electric thruster bearing based on fusing multi-sensor deep
learning models,” Measurement, vol. 214, p. 112727, 2023.

[12] Q. Zhong, E. Xu, Y. Shi, T. Jia, Y. Ren, H. Yang, and Y. Li, “Fault
diagnosis of the hydraulic valve using a novel semi-supervised learning
method based on multi-sensor information fusion,” Mech. Syst. Signal
Pr., vol. 189, p. 110093, 2023.

[13] X. Yan, C.-A. Zhang, and Y. Liu, “Multi-branch convolutional neural
network with generalized shaft orbit for fault diagnosis of active mag-
netic bearing-rotor system,” Measurement, vol. 171, p. 108778, 2021.

[14] G. Niu, E. Liu, X. Wang, P. Ziehl, and B. Zhang, “Enhanced discriminate
feature learning deep residual cnn for multitask bearing fault diagnosis
with information fusion,” IEEE Trans. Ind. Inform., vol. 19, no. 1, pp.
762–770, 2023.

[15] S. Bao, J. Feng, X. Xu, P. Hou, Z. Zhang, J. Meng, and F. Steyskal,
“Multi-input parallel graph neural network for semi-supervised rolling
bearing fault diagnosis,” Meas. Sci. Technol., vol. 34, no. 5, 2023.

[16] C. Yang, J. Liu, K. Zhou, X. Jiang, and X. Zeng, “An improved multi-
channel graph convolutional network and its applications for rotating
machinery diagnosis,” Measurement, vol. 190, p. 110720, 2022.

[17] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2017.

[19] Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou, “Hypergraph
learning: Methods and practices,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 5, pp. 2548–2566, 2022.

[20] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Proc. Adv. Neural Inf.
Process. Syst., 2007.

[21] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” in Proc. AAAI Conf. Artif. Intell., 2019.

[22] S. Bai, F. Zhang, and P. H. S. Torr, “Hypergraph convolution and
hypergraph attention,” Pattern Recogn., vol. 110, p. 107637, 2021.

[23] N. Yadati, P. Yadav, A. Louis, M. Nimishakavi, V. Nitin, and P. Talukdar,
“Hypergcn: A new method of training graph convolutional networks on
hypergraphs,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[24] Y. Gao, Y. Feng, S. Ji, and R. Ji, “HGNN+: General hypergraph neural
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp.
3181–3199, 2023.

[25] L. Nong, J. Wang, J. Lin, H. Qiu, L. Zheng, and W. Zhang, “Hypergraph
wavelet neural networks for 3d object classification,” Neurocomputing,
vol. 463, pp. 580–595, 2021.

[26] X. Hao, J. Li, Y. Guo, T. Jiang, and M. Yu, “Hypergraph neural network
for skeleton-based action recognition,” IEEE Trans. Image Process.,
vol. 30, pp. 2263–2275, 2021.

[27] D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, and Y. Gao, “Generating
hypergraph-based high-order representations of whole-slide histopatho-
logical images for survival prediction,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 5, pp. 5800–5815, 2023.

[28] X. Yan, Y. Liu, and C.-A. Zhang, “Multiresolution hypergraph neural
network for intelligent fault diagnosis,” IEEE Trans. Instrum. Meas.,
vol. 71, pp. 1–10, 2022.

[29] M. Shi, C. Ding, R. Wang, Q. Song, C. Shen, W. Huang, and Z. Zhu,
“Deep hypergraph autoencoder embedding: An efficient intelligent ap-
proach for rotating machinery fault diagnosis,” Knowl.-Based Syst., vol.
260, p. 110172, 2023.

[30] C. Lessmeier, J. Kimotho, D. Zimmer, and W. Sextro, “Condition
monitoring of bearing damage in electromechanical drive systems by
using motor current signals of electric motors: A benchmark data set
for data-driven classification,” in Eur. Conf. Progn. Health Manag. Soc.,
2016.

[31] J. Zhu, X. Zhao, H. Hu, and Y. Gao, “Emotion recognition from
physiological signals using multi-hypergraph neural networks,” in Proc.
Int. Conf. Multi. Expo, 2019.

[32] K. Xu, C. Li, Y. Tian, T. Sonobe, K. I. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proc. Int. Conf. Mach. Learn., 2018.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2024.3393137

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

