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Abstract
We analyze the Goos–Hänchen (GH) shift and longitudinal spin splitting (LSS) at a planar
interface between two optical media in the spin representation. While these optical effects have
been studied previously, we examine the direct and cross-reflected light fields, and their
interference from the spin representation to reveal the physical mechanism of the GH shift and
establish a quantitative relationship between it and LSS. Furthermore, we show that angular
asymmetric spin splitting occurs under the spin representation when linearly polarized light with a
phase difference of 180◦ and an amplitude ratio angle deviating from 45◦ impinges on the air–glass
interface at Brewster’s angle. Finally, we reveal that the spin component field of the reflected light
field for the total reflection case is different from that of the Brewster angle reflection, the most
typical manifestation is that the intensity of the two spin component fields is not equal.

1. Introduction

The Goos–Hanchen (GH) shift corresponds to the longitudinal displacement of the center of the beam
concerning its geometrically optically predicted, which occurs when a local wave packet (or beam) is totally
reflected at the interface of two uniformly transparent media. Although the first prediction of GH
displacement dates back to 1947 [1], research in this area is still very active, such as the physical mechanism
of GH shift [2–7], GH shift of various beams [8–10], and GH shift on the surface of various materials
[11–15]. Recently, the GH shift has not only been studied from the perspective of fundamental physics, but
also photonic devices for sensing based on the GH effect have been introduced [16].

The spin Hall effect (SHE) of light is an interesting optical phenomenon, which results from the
spin–orbit interactions of light. In recent years, The SHE has also been deeply studied in two kinds of
single-negative metamaterials, which would pave the way for promising integrated near-field photonics
devices [17, 18]. Just as the Imbert–Fedorov (IF) shift is closely related to the SHE of light [19–22], the GH
shift is also closely related to longitudinal spin splitting (LSS). Back in 2011, Qin et al proposed a method for
measuring the amplified LSS after the collimation lens using a position-sensitive detector [23]. Many
interesting optical phenomena have been discovered in the study of LSS of light [24–29]. To deeply reveal the
relationship between the LSS and GH shift, it is necessary to revisit the GH shift of arbitrarily polarized light
in the spin representation. Fortunately, Li’s pioneering work on GH displacement and IF displacement [5]
shows the relationship between GH displacement and the polarization parameter of incident light in spin
representation. It is important to emphasize that the concept of spin splitting does not receive attention in
Li’s paper, and the expression for the displacement of the two spin components of the reflected light is not
given. Therefore, Li’s work did not focus on the question of how GH displacement is related to LSS. Recently,
a series of interesting papers have also studied the mechanism of the SHE of light from the perspective of the
spin component of the incident light field [30–32], the methods presented by these works obviously cannot
be used to analyze the LSS and GH shift from the perspective of spin representation of incident polarized
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light. This is because the mathematical relationship between the polarization parameters of the incident light
field in the spin representation and the polarization parameters of the linear polarization basis representation
(i.e. spin-zero representation), such as amplitude ratio angle and phase difference, is not revealed. Especially,
how to define the polarization parameters of the incident light in the spin representation. In addition, how
the interference phenomenon of the spin component of the light field after the reflection process subtly
affects the LSS and GH shift is also not considered. The main purpose of this work is to fill these gaps.

The structure of this work is as follows: We first solve the general problem of arbitrarily polarized beams
in spin representations reflecting at the planar interface between two optical media. Next, we derive the
analytical expression of LSS for arbitrarily polarized light and the relation between GH shift and LSS. And
then, we consider some interesting phenomena of GH shift and LSS when the incidence angle is equal to
Brewster’s angle. In particular, from the interference cancellation effect of the spin component of the
reflected light field, we reveal the physical image of weak longitudinally symmetric spin splitting for the
incident linearly polarized light with the amplitude ratio angle approaching 45◦ and the phase difference of
180◦ in the spin representation. Finally, we discuss the relationship between GH displacement and LSS in the
case of total reflection and reveal that the spin component field of the reflected light field is different from
that of the Brewster angle reflection, the most typical manifestation is that the intensity of the two spin
component fields is not equal.

2. Theory andmodel

The paraxial beam propagates at an θi angle between the center wave vector and the z axis, and is reflected at
the z = 0 plane separated by two media, as shown in figure 1. We assume that the incident beam is a
uniformly polarized paraxial Gaussian beam with the waist at the interface z = 0, so that the electric field of
the incident polarized light field in the laboratory coordinate system (oxiyizi) can be written as [9]:

∣∣∣Ẽi〉=

(
aiP
aiS

)
φ̃ i

0 =
[
aiP |P〉+ aiS |S〉

]
φ̃ i

0, φ̃
i
0 = exp

(
−
kix

2
+ kiy

2

4w−2
0

)
(1)

where kix = ki · x̂i, kiy = ki · ŷi with
∣∣∣ki∣∣∣= ∣∣∣kic∣∣∣, |P〉= (1,0)†LPB and |S〉= (0,1)†LPB, the superscript † and

subscript LPB are conjugate transpose operators and two-dimensional row vectors in linear polarization
basis respectively. (aiP,a

i
S)

† can be regarded as the Jones matrix under the linearly polarized representation
(i.e. spin-zero representation), aiP = cosα0, aiS = sinα0 exp(i∆ϕ 0), with α0 denotes the amplitude ratio
angle, and∆ϕ 0 is the phase difference between horizontal polarization and vertical polarization components
of the electric field of the incident light beam, w0 is the waist radius of the incident beam, which reflects the
collimation of the incident beam.

According to equation (1), it is not difficult to derive the electric field expression of the incident light in
the spin representation as:

∣∣∣ẼiS〉= C0

(
aiR
aiL

)
φ̃ i

0 ∼
[
aiR |R〉+ aiL |L〉

]
φ̃ i

0, (2)

where C0 = (1+ sin2α0 sin∆ϕ 0)
1/2/[cosα0 + i sinα0 exp(−i∆ϕ 0)] can be understood as a constant factor

resulting from the normalization of polarization parameters.|R〉= (1,0)†CPB and |L〉= (0,1)†CPB, the subscript
CPB is two-dimensional row vector in circular polarization basis respectively. (aiR,a

i
L)

† can be regarded as the
Jones matrix under the circularly polarized representation (i.e. the spin representation), aiR = cosαC,
aiL = sinαC exp(i∆ϕC), with αC denotes the amplitude ratio angle, and∆ϕC is the phase difference between
right-handed components and left-handed components of the electric field of the incident light beam. The
relationship between the polarization parameters of the incident light beam in the circular polarization basis
(αC,∆ϕC) and those in the linear polarization basis (α0,∆ϕ 0) can be expressed as:

cosαC =
(1+ sin2α0 sin∆ϕ 0)

1/2

√
2

;

sinαC =

(
cos22α0 + sin22α0cos2∆ϕ 0

)1/2
[2(1+ sin2α0 sin∆ϕ 0)]

1/2
(2a)

∆ϕC = tan−1 (tan2α0 cos∆ϕ 0) . (2b)
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Figure 1. Schematic illustration of the LSS of an arbitrarily polarized light beam in spin representation.∆xr
R/L

andΘxr
R/L

represent reflected light beam undergoing an spatial and angular LSS, respectively. Where∆xr
R/L

=∆xR/L/cosθr,

θr=arccos(ẑr · ẑ).

According to the spin representation transformation and coordinate transformation rules, the electric
field of reflected light in the local laboratory coordinate system can be obtained (see appendix for detailed
derivations) as ∣∣∣ ẼrS〉= M̂ r

S

∣∣∣ ẼiS〉 ,
M̂ r

S = V̂Û†
θr⊥ (θr,kr) V̂

†ŜrF̂ r
SV̂Ûθi⊥ (θi,ki) V̂

†. (3)

With

V̂=
1√
2

(
1 −i
1 i

)
, Ûθi⊥ (θi,ki) =

(
1

kiy
ki cotθi

− kiy
ki cotθi 1

)
,

Ŝr
∣∣∣ Ẽr(kix,kiy)〉=

∣∣∣ Ẽr(−krx,k
r
y

)〉
, Ûθr⊥ (θr,kr) = Ûθi⊥ (θi 7→ θr,ki 7→ kr)

F̂ r
S =

(
rRR rRL
rLR rLL

)
, rRR = rLL =

rP + rS
2

; rLR = rRL =
rP − rS

2
.

It should be noted that Aiello and Bliokh have given detailed derivation of V̂matrix and Ûθi⊥(θi,ki)
matrix in their pioneering work on GH displacement and IF displacement [33–35]. By performing the
inverse Fourier transform of equation (3), the coordinate representation of the electric field for the reflected
light beam can be written as:

|ErS〉= (ErRR + ErRL) |R〉+(ErLR + ErLL) |L〉 . (4)

With ErRR = rRR(1+ x̃RRξ xr + ỹRRξ yr)aiRφ
r
0, E

r
RL = rRL(1+ x̃RLξ xr)aiLφ

r
0, E

r
LR = rLR(1+ x̃LRξ xr)aiRφ

r
0,

ErLL = rLL(1+ x̃LLξ xr + ỹLLξ yr)aiLφ
r
0.

Where x̃ij =
i∂rij

krrij∂θi
(ij = RR,RL,LR,LL), ỹRR =−ỹLL =

2
kr cotθi, ξ xr =− krxr

zR+izr , ξ yr =− kryr

zR+izr ,

φ r
0 = exp

(
− kr

2
xr2+yr2

zR+izi

)
, zR = krw2

0/2.

Here ErRR and ErLR are the right-handed and left-handed polarization components of the reflected light
field caused by the right-handed polarization component of the incident light field respectively, while ErRL
and ErLL are the right-handed and left-handed polarization components of the reflected light field caused by
the left-handed polarization component of the incident light field respectively. It is not difficult to find that
the right-handed polarization component of the incident light field not only contributes to the right-handed
field of the reflected light field, but also contributes to the left-handed field of the reflected light field. For the
convenience of the following discussion, ErRR and ErLL are called directly reflected fields, and ErLR and ErRL are

3



New J. Phys. 26 (2024) 073004 Z Chen et al

called cross-reflected light fields. On the one hand, the spin shifts come from the self-intensity of the reflected
spin light fields ErRR and ErRL (E

r
LR and ErLL), and on the other hand from the interference of the cross-reflected

spin light field ErRL (E
r
LR) and the directly reflected spin light field ErRR (E

r
LL). The latter is crucial for the

analysis of the GH shift generation mechanism in spin representation. For example, does it increase or
decrease the intensity of the spin component of the total reflected light field, and how does it further affect
the LSS behavior? Then, the expressions of the longitudinal spatial and angular spin shifts for the reflected

light beam using defined spin shifts formulas∆xrR/L(z
r = 0) =

〈ErR/L|xr|ErR/L〉⟨
Er
R/L| ErR/L

⟩ ,ΘxrR/L =
∂∆xrR/L

∂zr are given as:

∆xrR =
−w2

0Re(x̃R)

w2
0 + |x̃R|2 + |ỹR|2

, ∆xrL =
−w2

0Re(x̃L)

w2
0 + |x̃L|2 + |ỹL|2

, (5)

ΘxrR =
1

zR

−w2
0 Im(x̃R)

w2
0 + |x̃R|2 + |ỹR|2

, ΘxrL =
1

zR

−w2
0 Im(x̃L)

w2
0 + |x̃L|2 + |ỹL|2

. (6)

With

x̃R = i
1

ki

∂rRR
∂θi

aiR + ∂rRL
∂θi

aiL
rRRaiR + rRLaiL

, x̃L = i
1

ki

∂rLR
∂θi

aiR + ∂rLL
∂θi

aiL
rLRaiR + rLLaiL

, ỹR =
1

ki
2rRRaiR

rRRaiR + rRLaiL
cotθi, ỹL =

1

ki
−2rLLaiL

rLRaiR + rLLaiL
cotθi.

According to equations (5) and (6), the spatial and angular GH displacement expressions in the spin
representation can be expressed as

∆r
GH =

∣∣rRRaiR + rRLaiL
∣∣2∆xrR +

∣∣rLRaiR + rLLaiL
∣∣2∆xrL∣∣rRRaiR + rRLaiL

∣∣2 + ∣∣rLRaiR + rLLaiL
∣∣2 , (7)

Θr
GH =

∣∣rRRaiR + rRLaiL
∣∣2ΘxrR +

∣∣rLRaiR + rLLaiL
∣∣2ΘxrL∣∣rRRaiR + rRLaiL

∣∣2 + ∣∣rLRaiR + rLLaiL
∣∣2 . (8)

Equations (7) and (8) describe the quantitative relationship between GH shift and LSS, and can clearly
reflect the influence of the spin component of the arbitrarily polarized incident light on the LSS of the
reflected light. This is why it is interesting to analyze GH shifts in spin representations. It is worth noting that
equations (7) and (8) are valid for partial or total reflection of two transparent media, such as air–glass
interface, and for reflection of transparent and absorbent media interface, such as an air–metal interface.

3. Brewster’s angle incidence and total reflection

In this section, we focus on the relationship between GH shift and LSS in spin representation. When the
αC = α0 − 45◦,∆ϕC = 180◦ and αC = 45◦,∆ϕC = 2α0, which correspond to elliptically polarized light
with∆ϕ 0 = 90◦ and linearly polarized light in the spin-zero representation. Interestingly, the αC of
elliptically polarized light with∆ϕ 0 = 90◦ changes 45◦ and∆ϕC changes 90◦ from the spin-zero
representation to the spin representation, whereas the αC of linearly polarized light changes from a variable
angle to a fixed angle of 45◦, the∆ϕC changes from a fixed angle of 0◦ to a variable angle of 2α0.

In the spin representation, if the angle of incidence is equal to Brewster angle (θi = θB), and∆ϕC = 180◦,
then x̃R, x̃L, ỹR and ỹL expressions can be reduced to:

x̃R = i
1

ki

(
− ∂rP
rS∂θi

∣∣∣∣θi=θB

sin(αC + 45◦)

sin(αC − 45◦)
+

∂rS
rS∂θi

∣∣∣∣θi=θB

)
, (9)

x̃L =−i
1

ki

(
− ∂rP
rS∂θi

∣∣∣∣θi=θB

sin(αC + 45◦)

sin(αC − 45◦)
− ∂rS

rS∂θi

∣∣∣∣θi=θB

)
, (10)

ỹR =
1

ki
2cosαC cotθB
cosαC − sinαC

, ỹL =
1

ki
2sinαC cotθB
cosαC − sinαC

. (11)

From equations (9) to (11), the following relation can be easily obtained:∆xrR =∆xrL = 0. According to
equation (4), it is easy to obtain that the intensity of right-handed and left-handed light fields is equal

(IR = IL =
∣∣rS(aiR − aiL)/2

∣∣2) in Brewster angle incidence. Therefore, when linearly polarized light in the spin
representation impinges on the transparent medium interface, the spatial LSS of reflected light completely
disappears, while the angular LSS at the αC away from 45◦ shows an asymmetric LSS. The above result is
because the (∂rP/∂θi) |θi=θB is on the same order of magnitude as the (∂rS/∂θi) |θi=θB [36], and cannot

4
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Figure 2. Angular LSS and GH shift in spin representation (∆ϕC = 180◦ at θi = θB = 56.485◦) at air–glass interface (n1 = 1,
n2 = 1.5).

satisfy that the former is much larger than the latter. For the αC approaching 45◦, the last term ( ∂rS
rS∂θi

) |θi=θB

in equations (9) and (10) can be ignored. Then, equation (6) can be simplified as:

ΘxrL =−ΘxrR. (12)

This indicates that the angular LSS is a symmetric spin splitting. Therefore, the angular GH shift is zero.
It is worth emphasizing that angular spin splitting of reflected light is usually an asymmetric spin splitting.
Only when the elliptically polarized light with∆ϕ 0 of 90◦ and α0 of the near-zero in the spin-zero
representation impinges on the air–glass interface at Brewster angle, angular LSS can be viewed as a
symmetrical distribution about the origin of coordinates. The detailed behavior evolution of the spin optical
effects is shown in figure 2.

In order to thoroughly reveal the generation mechanism of GH shift and LSS in spin representation, it is
necessary to analyze the interference effect between the cross reflection field and the direct reflection field.
The GH shift and LSS can be understood as three sources: one is the self-intensity of the spin component of
the direct reflected light field, the other is the self-intensity of the cross-reflected light field, and the last is the
interference effect of the direct reflected light field and the cross-reflected light field spin component.
Specifically, for an incident linearly polarized light with an∆ϕC = 180◦ and αC =−44.5◦, the self-intensity
of the spin component of the directly reflected light field exhibits a tiny GH shift, and the GH shift is of the
same magnitude and direction, that is, spin-independent splitting, as shown in figures 3(c) and (d). The GH
shift of the self-intensity of the spin component of the cross-reflected light field almost disappears, as shown
in figures 3(e) and (f). It is worth emphasizing that the interference effects of direct and cross-reflected light
fields play a weakening role in the total intensity of the spin component of the reflected light field, as shown
in figures 3(g) and (h). That is, the intensity of interference is a negative value, which is called negative
interference. It is because of this interference phenomenon that the light intensity is very weak but large
symmetric LSS, as shown in figures 3(a) and (b).

To more clearly show the physical meaning of the light field intensity represented in figure 3, the
expression of the intensity of each sub-light field and the expression of the interference intensity between the
direct reflected light field and the cross-reflected light field can be written as:

ErRR
∗ErRR =

∣∣∣rRRaiR∣∣∣2 [1+ |x̃RR|2
kr2

zR2 + zr2
xr2 + |ỹRR|2

kr2

zR2 + zr2
yr2 + 2Re

(
x̃RRξ xr + ỹRRξ yr

)]
× exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
(13)

ErLL
∗ErLL =

∣∣∣rLLaiL∣∣∣2 [1+ |x̃LL|2
kr2

zR2 + zr2
xr2 + |ỹLL|2

kr2

zR2 + zr2
yr2 + 2Re

(
x̃LLξ xr + ỹLLξ yr

)]
× exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
, (14)

ErRL
∗ErRL =

∣∣∣rRLaiL∣∣∣2 [1+ |x̃RL|2
kr2

zR2 + zr2
xr2 + 2Re(x̃RLξ xr)

]
exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
, (15)
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Figure 3. The intensity distribution of the spin components of the reflected light field from the air–glass interface at θi = θB for
the incident polarization state with αC =−44.5◦ and∆ϕC = 180◦. (a) R and (b) L components for the total reflected light field;
(c) R and (d) L components for the direction reflected light field; (e) R and (f) L components for the cross reflected light field; (g)
R and (h) L components of the negative of the interference for the direct reflected light field and the cross reflected light field.

ErLR
∗ErLR =

∣∣∣rLRaiR∣∣∣2 [1+ |x̃LR|2
kr2

zR2 + zr2
xr2 + 2Re(x̃LRξ xr)

]
exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
, (16)

2Re
(
ErRL

∗ErRL
)
= 2Re

[
rRR

∗rRLa
i
R
∗aiL

(
1+ x̃∗RR

kr2

zR2 + zr2
xr2x̃RL + x̃RLξ xr + x̃∗RRξ xr

∗ + ỹ∗RRξ yr
∗ + ỹ∗RRξ yr

∗x̃RLξ xr

)]
· exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
, (17)

2Re
(
ErLL

∗ErLL
)
= 2Re

[
rLL

∗rLRa
i
L
∗aiR

(
1+ x̃∗LL

kr2

zR2 + zr2
xr2x̃LR + x̃LRξ xr + x̃∗LLξ xr

∗ + ỹ∗LLξ yr
∗ + ỹ∗LLξ yr

∗x̃LRξ xr

)]
· exp

[
−kr

xr2 + yr2

zR2 + zi2
zR

]
(18)

where the superscript ∗ denotes the complex conjugation. Equations (13) and (14) represent the simulated
intensity distribution in figures 3(c) and (d), respectively. The GH shift of the two spin component fields ErRR
and ErLL of the direct reflected light field comes from the contribution of the 2Re(x̃RRξ xr) and 2Re(x̃LLξ xr)
respectively, so the GH shift of the two spin component light fields is a spin-independent shift along the
−x direction. Equations (15) and (16) represent the simulated intensity distribution in figures 3(e) and (f),
respectively. From 2Re(x̃RLξ xr) = 2Re(x̃LRξ xr), it can also be concluded that the GH shift of the two spin
components of the cross-reflected light field is a spin-independent shift along the+x direction and its

6
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magnitude is almost negligible, as shown in figures 3(e) and (f). Interestingly, the interference intensity
distributions described by equations (17) and (18) are shown in figures 3(g) and (h), respectively. According
to Re(x̃RLξ xr + x̃∗RRξ xr

∗) = Re(x̃LRξ xr + x̃∗LLξ xr
∗), it is easy to see that the GH shift of the two spin

components of the interference field is still a spin-independent shift, and its magnitude is about half that of
the GH shift of the directly reflected light field. It is worth emphasizing that the relative magnitude
relationship between the GH shifts of the direct reflected light field, the cross-reflected light field, and the
interference field is determined by 2Re(x̃RRξ xr)+ 2Re(x̃RLξ xr) = 2Re(x̃RLξ xr + x̃∗RRξ xr

∗). However, this raises
a new question: why does the spin component field of the total reflection field exhibit symmetric LSS when
all three exhibit spin-independent GH shifts?

First, the longitudinal GH shifts of the right-handed and left-handed components of the total reflected
light field can be expressed as:

∆xrR =∆xrRRP
r
RR +∆xrRLP

r
RL +∆xrRIP

r
RI (19)

∆xrL =∆xrLLP
r
LL +∆xrLRP

r
LR +∆xrLIP

r
LI. (20)

Here∆xrRR,∆xrRL and∆xrRI represent GH shifts shown in figures 3(c), (e) and (g), respectively, while
∆xrRR,∆xrRL and∆xrRI represent GH shifts shown in figures 3(d), (f) and (h), respectively. PrRR, P

r
RL and PrRI

(PrLL, P
r
LR and PrLI) represent the specific gravity factors of the GH shift terms∆xrRR,∆xrRL and∆xrRL (∆xrLL,

∆xrLR and∆xrLI) respectively. Three points need to be highlighted about the characteristics of the specific
gravity factor at Brewster angle of incidence: (1) the specific gravity factors of the GH shift caused by the
interference term is negative because the interference intensity is negative, and the GH shift of the direct
reflected light field and the GH shift of the cross-reflected light field respectively correspond to the specific
gravity factor is obviously positive; (2) the relationship between specific gravity factors is as follows:
PrRR 6= PrLL, P

r
RL 6= PrLR and PrRI = PrLI; (3) the relationship between GH shift of direct reflected light field,

cross-reflected light field and GH shift of interference field is as follows:∆xrRR +∆xrRL = 2∆xrRI and
∆xrLL +∆xrLR = 2∆xrLI. In addition, the superposition of the negative interference intensity, the self-intensity
of the direct reflected light field and the self-intensity of the cross-reflected light field leads to the weak
intensity of the total reflected light field, and further leads to the specific gravity factor of the order of 10 to
the third power. Such a large specific gravity factor is the main reason why the GH displacement of the total
reflected light field is enhanced. At Brewster angle incidence, the right-handed and left-handed components
of the total reflected light field subtly appear as a huge LSS by adjusting the amplitude ratio angle αC to
change the specific gravity factors. The conditions under which this interesting phenomenon of symmetric
LSS occurs are extremely strict.

In the spin representation, if the angle of incidence is equal to Brewster’s angle (θi = θB), and αC = 45◦,
∆ϕC = 2α0, then x̃R, x̃L, ỹR and ỹL expressions can be reduced to:

x̃R = i
1

ki

(
∂rP
rS∂θi

∣∣∣∣θi=θB

i sin∆ϕC

1− cos∆ϕC
+

∂rS
rS∂θi

|θi=θB

)
, (21)

x̃L =−i
1

ki

(
∂rP
rS∂θi

∣∣∣∣θi=θB

i sin∆ϕC

1− cos∆ϕC
− ∂rS

rS∂θi
|θi=θB

)
, (22)

ỹR =
1

ki
1− cos∆ϕC + i sin∆ϕC

1+ cos∆ϕC
cotθB, ỹL =−ỹ∗R. (23)

Obviously, the spatial LSS is an symmetric spin splitting, while the angular LSS completely disappears,
i.e.∆xrR =−∆xrL,ΘxrR =ΘxrL. According to equations (7) and (8), it is not difficult to conclude that spatial
GH shift is zero and angular GH shift occurs.

Finally, from the perspective of spin representation, we discuss the relationship between GH
displacement and LSS in the case of total reflection from equations (7) and (8). As shown in figure 4(a), the
magnitude of the two components of spatial LSS differs significantly except for the amplitude ratio angle
αC = 0◦ and αC =±45◦. We can clearly see that the variation characteristics of GH displacement are
determined by the variation characteristics between the two components of the spatial LSS, and this result is
completely consistent with the results obtained from the spin-zero representation reported previously [37].
More interestingly, angular LSS does not exhibit perfect symmetric spin splitting, although angular GH
displacement always disappears, as shown in figure 4(b). It is also revealed that this interesting optical effect
is mainly caused by the unequal ratio of the two spin components of the reflected light field (The variation
trend of intensity ratio with amplitude ratio angle αC is shown in figure 5). This is in stark contrast to the
recently reported polarization-independent SHE for non-zero IF displacement by designing an interface
structure with Fresnel coefficients satisfying rP = rS (rPS = rSP = 0) [38]. In particular, in the spin-zero
representation, the incident circularly polarized light retains only one spin component light field after
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Figure 4. The spatial and angular LSS and GH in the spin representation when the light impinges on the glass–air interface for
total reflection (∆ϕC = 180◦, θiC = 45◦, n1 = 1.5, n2 = 1.0).

Figure 5. The relationship between the intensity ratio of the right-handed component and the left-handed component of the
reflected light field under the condition of total reflection (∆ϕC = 180◦, θiC = 45◦, n1 = 1.5, n2 = 1.0).

reflection, which means that the SHE of circularly polarized light completely disappears at this time. It is
worth emphasizing that the occurrence of the SHE of light predicted by Bliokh is closely related to IF
displacement being zero [4]. From this perspective, it is obvious that the so-called polarization-independent
SHE cannot occur. Therefore, the relationship between spatial IF displacement and transverse spin splitting
derived from our theory also play an important role in analyzing the difference and connection between SHE
and transverse symmetric spin splitting of light.

4. Conclusion

In summary, we have described the GH shift and LSS of arbitrarily polarized light in spin representation by
polarization representation transformation. We have also revealed the mechanism of GH shift from the
interference effect of direct and cross-reflected light fields, and established the relationship between GH shift
and LSS in spin representation. Remarkably, we have strictly proved that angular symmetric spin splitting of
reflected light is generally impossible to occur when linearly polarized light in the spin representation strikes
the air–glass interface at Brewster angle. Finally, from the perspective of spin representation, we also reveal
the physical mechanism of the optical effect that angular GH displacement always disappears but angular LSS
does not exhibit perfect symmetric spin splitting in the case of total reflection.
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Appendix. Transformationmatrix between the incident and reflected light fields in the
spin representation

According to the electric field expression equation (2) of the incident beam in the spin representation, the
spin representation of the electric field of the incident light beam in the local coordinate system can be
expressed as: ∣∣∣Ẽi ′S 〉= V̂Ûθi⊥ (θi,ki) V̂

†
∣∣∣ẼiS〉 , (A1)

with V̂= 1√
2

(
1 −i
1 i

)
, Ûθi⊥(θi,ki) =

(
1

kiy
ki cotθi

− kiy
ki cotθi 1

)
.

where V̂ is the transformation matrix of the incident light field from spin representation to spin-zero
representation, Ûθi⊥(θi,ki) is the transformation matrix of the incident light field from the incident
laboratory coordinate system to the incident local coordinate system. According to the Fresnel equation in
the spin representation, the electric field of the reflected light in the local coordinate system can be written as:∣∣∣Ẽr ′S 〉= ŜrF̂ r

S

∣∣∣Ẽi ′S 〉 , (A2)

with F̂ r
S =

(
rRR rRL
rLR rLL

)
, rRR = rLL =

rP+rS
2 ; rLR = rRL =

rP−rS
2 .

The operator Ŝr in equation (A2) can be regarded as a coordinate transformation operator from (kix,k
i
y)

to (krx,k
r
y), i.e. Ŝ

r
∣∣∣Ẽr(kix,kiy)〉=

∣∣∣Ẽr(−krx,k
r
y)
〉
. It is worth emphasizing that the appearance of the Fresnel

non-zero matrix elements (rRL = rLR 6= 0) in the spin representation clearly indicates that the eigenbasis of
the reflected light fields is the linearly polarized basis rather than the circularly polarized basis. rRR, rLL and
rLR, rRL are similar to the direct Fresnel reflection coefficients and cross Fresnel reflection coefficients of
anisotropic interface reflection. Interestingly, the cross-Fresnel reflection coefficient is due to the polarization
representation transformation. Next, we give a simple derivation of the Fresnel equation for the reflected
light field in spin representation.

Fresnel equation for the reflected light field in a spin-zero representation can be expressed as:∣∣∣Ẽr ′〉= F̂ r
∣∣∣Ẽi ′〉 , (A3)

with F̂ r =

(
rP 0
0 rS

)
.

Multiply the right side of the Fresnel reflection matrix F̂ r in equation (A3) by the identity matrix
Î= V̂†V̂, the following relation is obtained: ∣∣∣Ẽr ′〉= F̂ rV̂†V̂

∣∣∣Ẽi ′〉 . (A4)

Then multiply both sides of the equation (A4) left by the transformation operator V̂ of the spin
representation to obtain the important expression that follows

V̂
∣∣∣Ẽr ′〉= V̂F̂ rV̂†V̂

∣∣∣Ẽi ′〉 . (A5)

By using the relation: V̂
∣∣∣Ẽr ′〉=

∣∣∣Ẽr ′S 〉, V̂ ∣∣∣Ẽi ′〉=
∣∣∣Ẽi ′S 〉, Thus, the Fresnel equation of the reflected light

beam in spin representation can be written as:∣∣∣Ẽr ′S 〉= F̂ r
S

∣∣∣Ẽi ′S 〉 , (A6)

with F̂ r
S = V̂F̂ rV̂†.
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On the basis of equation (A6) and considering the mirror symmetry of the coordinate transformation of
reflection process, equation (A2) is obtained. For the convenience of calculating the GH displacement next,
the first-order Taylor expansion of the Fresnel coefficient in the spin representation is performed at
(kix = 0,kiy = 0):

r̃ij
(
θi,k

i
)
= r̃ij

∣∣∣kix=0;kiy=0 + ∂kix r̃ij
∣∣∣kix=0;kiy=0 k

i
x, ij = RR,RL,LR,LL. (A7)

Therefore, the electric field of reflected light in the local laboratory coordinate system can be obtained as:∣∣∣ẼrS〉= V̂Û†
θr⊥ (θr,kr) V̂

†
∣∣∣Ẽr ′S 〉 . (A8)

So far, we have obtained the relationship between the electric field of incident light and the electric field
of reflected light in the spin representation, that is:∣∣∣ẼrS〉= M̂ r

S

∣∣∣ẼiS〉 ,
M̂ i 7→r

S = V̂Û†
θr⊥ (θr,kr) V̂

†ŜrF̂ r
SV̂Ûθi⊥ (θi,ki) V̂

†. (A9)
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