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ABSTRACT
The issue of boundary-layer transition with slight rarefaction for high-speed aircraft has recently
received increased attention. In this paper, the stability and resonant interactions of boundary-layer
waves for a Mach 5 flat plate under the slip effect are investigated using direct numerical simulation
(DNS) and linear stability theory (LST). The slip effect is modelled by slip boundary conditions within
the Navier-Stokes (NS) framework, and an LST method considering wall perturbations for both no-
slip and slip flows is established. The present numerical results indicate that the slip effect has a
consistent impact on the stability of fast and slow modes as obtained from DNS and current LST. In
addition, the DNS results show that the slip effect delays the conversion ofmode F1 tomode S led by
their resonance, and enhances the resonant interactions between fastmodewaves and fast acoustic
waves.
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1. Introduction

The study of boundary-layer transition is crucial for
the development of high-speed vehicles (Lin 2008).
When flying across the Earth’s atmosphere, the air-
crafts may encounter the laminar-turbulent transition,
leading to a significant increase in drag force and aero-
dynamic heating (Hollis 2012). Moreover, these vehi-
cles experience different flow regimes, ranging from
continuum to rarefied flows (Ivanov and Gimelshein
1998). Recent research on transition has shifted their
attention towards the flight altitude of 35–60 km
(Klothakis et al. 2022; Ou and Chen 2021; Klothakis
et al. 2021), where the flow instability and transition
are still possible (Horvath et al. 2012; Thompson et al.
1998), while rarefaction effects can affect the local
flow fields at certain locations on the aircraft surface
(Boyd, Chen, and Candler 1995). As a new arising
interest, the uncertainties of boundary-layer stability
and transition combined with rarefaction effects, espe-
cially the slip-wall effects in the slip regime, may pose
new challenges to the design of high-speed aircraft.
Although studies on flow stability and transition cou-
pled with rarefactions have received increased atten-
tion (Klothakis et al. 2022; 2021; Ou and Chen 2021;

CONTACT Zhongzheng Jiang jzhongzh@zju.edu.cn

Tumuklu, Levin, and Theofilis 2018; Sawant, Theofilis,
and Levin 2022; He, Zhang, and Cai 2019), many of
the critical mechanisms involved still require further
exploration.

In the past few decades, the high-speed boundary-
layer transition has been extensively studied (Fedorov
2011; Reed, Saric, and Arnal 1996). In the flight
environment with small disturbances, boundary-layer
transition typically undergoes three stages: (1) The
receptivity process whereby external free-stream dis-
turbances excite boundary-layerwaves. (2) Eigenmode
growth. (3) Nonlinear breakdown to turbulence. The
second stage of transition process has been widely
studied by linear stability theory (LST) (Reed, Saric,
and Arnal 1996). According to Mack (1975; 1984),
there are multiple inviscid unstable modes in high-
speed boundary layers besides the conventional vis-
cous mode (i.e. the first mode which is the counter-
parts of Tollmien-Schlichting waves). Among these
inviscid modes, the lowest-frequency one is called as
the second mode whose instability generally domi-
nates in high-speed boundary layers. Fedorov et al.
(Fedorov and Khokhlov 2001; Fedorov and Tumin
2011) attempted to propose a new terminology of
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boundary-layer waves for addressing the receptivity
process. Specifically, the discrete modes in the eigen-
value spectra originating from fast acoustic waves are
termed as ‘fast modes’, i.e. F1, F2, etc. based on the
appearance sequence. The mode tuned to slow acous-
tic waves is termed as ‘slowmode’, which is designated
S. Near the leading edge, mode S might be unstable,
which represents Mack’s first mode. Then, as mode F1
and mode S synchronise, one mode becomes unsta-
ble and the other gets stabilised, and Mack’s second
mode refers to the unstable mode after synchronisa-
tion. Generally, mode S is unstable and constitutes
Mack’s first and second mode. Further downstream,
mode S synchronises with mode F2, F3 and other
fast modes to induce Mack’s higher modes. There are
numerous studies (Park et al. 2023; Han and Cao 2019;
Liu et al. 2021; Park and Park 2023) so far devot-
ing to understanding the high-speed boundary-layer
stability based on LST.

Though these findings provide a clear understand-
ing of high-speed boundary-layer transition, conduct-
ing thorough research on the topic remains challeng-
ing. Direct numerical simulation (DNS), which cap-
tures precise details of flow by solving full Navier-
Stokes (NS) equations, has become a powerful tool for
studying boundary-layer transitions with the develop-
ments of computers. Ma and Zhong (2003a; 2003b;
2005) performed a series of studies on the receptiv-
ity of a Mach 4.5 flat plate to free-stream disturbances
by DNS and LST. They numerically studied the syn-
chronisation process and revealed that the resonant
interactions of boundary-layer waves are critical in
the receptivity of unstable modes’ excitation. Egorov
et al. (2006) have performed a 2D DNS of the Mach
6 flat-plate boundary layer with wall blowing-suction
to study the nonlinear saturation of fundamental har-
monic and rapid growth of higher harmonics. Using
LST andDNS, Knisely and Zhong (2019a; 2019b) con-
ducted the work which confirmed the existence of
supersonic mode and showed some of its overarching
characteristics. To acquire a deeper understanding into
the receptivity process, Kara et al. (2011; 2007) and
Balakumar et al. (Balakumar and Kegerise 2011; Bal-
akumar et al. 2018) performed a series of DNS of the
receptivity of blunt cones. They found that the ampli-
tudes of unstable waves induced by the slow acoustic
waves are much larger than those resulting from the
fast acoustic waves, except in the cases with cooling
walls. Wan et al. (2018; 2020) developed a strategy

to separately study different receptivity routes for the
blunt cone. They revealed that due to the interaction
between the slow acoustic wave and the bow shock,
the fast acoustic wave is generated near the nose while
the generated slow acoustic wave is transmitted down-
stream. In addition, Chen et al. (2021) investigated the
receptivity of the second mode for the Mach 6 flow
over a bluntwedge throughDNS. The results show that
the nonmodal disturbances in the entropy layer play a
leading role in the excitation of the secondmode.With
broadband frequency disturbance spectra considered,
He and Zhong (2021) used LST and DNS to study the
receptivity of flow over aMach 10 cone. It is found that
the planar fast acoustic pulse is proven to much more
readily excite modal waves other than the primary
second mode. Recently, Ba et al. (2023) numerically
investigated the hypersonic boundary-layer receptivity
to planar and axisymmetric freestream slow acoustic
waves for a Mach 6 flow over a circular cone with
three different ellipsoidal/spherical noses. The recep-
tivitymechanisms for both unstablemodeswere found
to be similar to those for the sphere-nosed cone, and
the variation of the receptivity coefficient with the
frequency was also obtained. More DNS research on
the receptivity, stability and transition of high-speed
boundary layers can refer to the review paper of Zhong
et al. (Zhong and Wang 2012).

Previous studies in the continuum regime have
provided a foundation for the current research on
high-speed boundary-layer transition with slight rar-
efactions. When the flows in different regimes are
involved, however, it is necessary to adjust the compu-
tational approach accordingly. The choice of numer-
ical method depends on the flow regime, which is
typically classified by the Knudsen number Kn. This
parameter represents the ratio of the molecular mean
free path to a characteristic length (Moss and Bird
2003) and determines the level of rarefaction. The NS
equations with no-slip boundary conditions are com-
monly used to simulate the flow in the continuum
regime of Kn < 0.001. In the slip regime of 0.001 <
Kn < 0.1, where the effects of both the slip veloc-
ity and temperature jump occur near the wall, the
Maxwell-Smoluchowski boundary models (Maxwell
1879; von Smoluchowski 1898) are widely adopted
with the NS equations to solve for the flow. For highly
rarefied gas flows (Kn > 0.1) in the transition and free
molecular regimes, methods based on kinetic theory
or high-order moment equations (Yang et al. 2022;
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Jiang et al. 2021; Zhong, MacCormack, and Chap-
man 1993; Guo, Li, and Xu 2023; Myong and Xu
2021; Ragta, Srinivasan, and Sinha 2017) are required
beyondNS framework. The kinetic theory can be used
in all flow regimes and has been applied to study flow
stability at the molecular levels (Klothakis et al. 2022;
Tumuklu, Levin, and Theofilis 2018; Sawant, Theofilis,
and Levin 2022; Manela and Zhang 2012). However,
due to their high computational cost, the methods
based on NS equations with slip boundary are pre-
ferred for the slip-regime flows. Figure 1(a) illustrates
the schematic of the present physical problem. Based
on the definition of Knudsen number, the rarefaction
effects can also be classified into two categories. One is
related to the free-stream rarefaction effect that takes
effect in front of shock preceding the leading edge, rep-
resenting the insufficient interactions between the gas
molecules. The other is about the slip effect occur-
ring at wall inside the viscous sublayer of boundary
layer. The latter is induced by the insufficient colli-
sion of gas and solid molecules subject to the local
small characteristic length of leading-edge configura-
tion, as shown in Figure 1(b). It is inferred that the
free-stream rarefaction has a strong connection with
the receptivity mechanisms, whereas the slip effect at
the wall mainly affects the development process of
boundary-layer waves. In this study, the impact of
slip wall on the boundary-layer waves is the primary
object.

In fact, numerous studies have investigated the
impacts of slip velocity on the boundary-layer stability
(Liu and Zhang 2020; Chai and Song 2019), partic-
ularly over hydrophobic/super-hydrophobic surfaces
(Choi, Westin, and Breuer 2003; Abu Rowin, Hou,
and Ghaemi 2017; Samaha and Gad-el Hak 2021) in
incompressible flows. However, in recent years, there
has been growing interest in studying the boundary-
layer stability of compressible slip flows. He et al.
(2019) initially investigated the impact of slip veloc-
ity on the supersonic flat-plate boundary-layer stability
by LST, and reported that the second mode is sta-
bilised by the slip velocity. Subsequently, Klothakis
et al. (2022) utilised LST to obtain the eigenvalue spec-
trum for rarefied compressible flat-plate boundary lay-
ers at an altitude of 55 kmbased on the steady solutions
computed by direct simulation Monte Carlo (DSMC).
They found that the slip velocity and temperature
jump could stabilise the discrete eigenmode. However,

previous analyses of LST did not consider wall per-
turbations of temperature and velocity induced by the
slip boundary. By considering different wall perturba-
tion boundary conditions in LST, Ou and Chen (2021)
systematically studied linear stability of Mack modes
for a slightly rarefied supersonic boundary layer under
the NS framework. The influence of slip perturbation
boundary on the stability is discussed and their results
shed a light on the compressible slip boundary-layer
stability from a macroscopic point of view. These pio-
neering LST studies provide us inspirations and pre-
liminary insights into the boundary-layer stability of
compressible slip flows.

Given that the LST method has certain limita-
tions, e.g. it is based on the parallel-flow assumption
and cannot resolve modal interactions, there remain
many unanswered questions regarding the slip effect
on boundary-layer stability. For instance, it is unclear
whether the previous findings are still valid under
a more realistic numerical or experimental environ-
ment, as they have not been supported by numeri-
cal simulations or experiments yet. Additionally, the
impact of slip effect on the interactions between
wave modes is unknown but these interactions are
crucial factors in the study of receptivity (Ma and
Zhong 2003a; 2003b; 2005). Answering these ques-
tions would provide important insights into the funda-
mental mechanisms of slip flows and contribute to the
development for predicting and controlling boundary-
layer transitions.

Accordingly, we aim to investigate the linear stabil-
ity and resonant interactions of boundary-layer waves
for a Mach 5 flat plate in the slip regime by both DNS
and LST in this paper. Unlike previous pure LST stud-
ies, DNS offers the advantage of making fewer limit-
ing assumptions and can resolve interactions between
modes. The effects of slip velocity and temperature
jump are both considered andmodelled by slip bound-
ary conditions within the NS framework. The NS
equations with both no-slip and slip boundary con-
ditions are accurately solved to obtain steady flows.
Subsequently, unsteady direct numerical simulations
are carried out to show the spatial developments of
mode F and mode S under various degrees of the slip
effect. As it is difficult to produce mode S or mode F
in experiments, numerical simulations offer the advan-
tage of using puremode to simplify the problem. These
unsteady simulations reveal the impact of slip wall
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Figure 1. (a) The diagram of the process from receptivity to boundary-layer instability for a supersonic flat-plate flow at relatively high
altitudes (35∼ 60 km). (b) The schematic of slip effects at the wall.

on both the linear stability and the resonant inter-
actions of boundary-layer waves. Moreover, the LST
analysis that considers the perturbations of both no-
slip and slip wall is conducted and compared with the
numerical solutions.

This paper is arranged as follows. Section 2 presents
the description of DNS, wall boundary models, LST
with no-slip and slip wall perturbation boundary
conditions and the computational setup. In Section
3, the slip effect on the linear stability and reso-
nant interactions of boundary-layer waves is analysed
using DNS and LST. Finally, conclusions are given in
Section 4.

2. Problem Formulation andMethodology

2.1. Governing Equations and Numerical Methods

The governing equations are the three-dimensional
(3D) nondimensional compressibleNavier-Stokes (NS)

equations expressed as
∂

∂t
U + ∂

∂x
F1 + ∂

∂y
F2 + ∂

∂z
F3 = ∂

∂x
V1

+ ∂

∂y
V2 +

∂

∂z
V3 (1)

where U = [ρ, ρu, ρv, ρw,E]T is a vector of conser-
vative variables. F1, F2 and F3 are inviscid flux vectors,
which can be written as

F1 =

⎡⎢⎢⎢⎢⎣
ρu

ρu2 + p
ρuv
ρuw

u(E + p)

⎤⎥⎥⎥⎥⎦ , F2 =

⎡⎢⎢⎢⎢⎣
ρv
ρuv

ρv2 + p
ρvw
v(E + p)

⎤⎥⎥⎥⎥⎦ ,

F3 =

⎡⎢⎢⎢⎢⎣
ρw
ρuw
ρvw
ρw2 + p
w(E + p)

⎤⎥⎥⎥⎥⎦ . (2)
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The viscous and diffusive flux vectors V1, V2 and
V3 are expressed as.

V1 = 1
Re∞

⎡⎢⎢⎢⎢⎢⎢⎣

0
τ11
τ21
τ31

uτ11 + vτ21 + wτ31 + k
∂T
∂x

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V2 = 1
Re∞

⎡⎢⎢⎢⎢⎢⎢⎣

0
τ12
τ22
τ32

uτ12 + vτ22 + wτ32 + k
∂T
∂y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V3 = 1
Re∞

⎡⎢⎢⎢⎢⎢⎢⎣

0
τ13
τ23
τ33

uτ13 + vτ23 + wτ33 + k
∂T
∂z

⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where ρ denotes the density; u, v and w are the veloc-
ity components in the Cartesian coordinates; T is the
temperature; E is the total energy; Re∞ denotes the
freestream Reynolds number; and p, τ are the pressure
and the stress tensor, respectively, calculated as follows:

p = ρT
γMa2∞

,

τij =

⎧⎪⎪⎨⎪⎪⎩
μ

(
∂ui
∂xj

+ ∂uj
∂xi

)
, i �= j.

2μ
∂ui
∂xi

− 2
3
μ∇ · u, i = j.

(i, j = 1, 2, 3)

(4)

The heat conductivity coefficient k = Cpμ/Pr is
computed with Pr = 0.72. Ma∞ is the freestream
Mach number and γ is the specific heat ratio. The
dynamic viscosity μ is calculated by the Sutherland’s
law. The flow variables are normalised by the corre-
sponding freestream parameters with the subscript∞.
The length variable is scaled by the reference length
L∗, with time by L∗/u ∗∞. Hereinafter, the superscript
∗ denotes the dimensional variables, and the dimen-
sionless variables are denoted with no superscript.
In this paper, our work primarily focuses on inves-
tigating two-dimensional (2D) planar waves, while
also conducting simulated analyses of specific 3D
oblique waves. To optimise computational resources,

we primarily utilise the 2D NS equations. However,
when studying the streamwise development of oblique
waves, we employ the 3D NS equations. The 2D
governing equations can be derived by disregarding
the spanwise-direction variables in the 3D governing
equations.

The fifth-order weighted essentially non-oscillatory
scheme is used for the discretisation of inviscid flux
derivatives, and the sixth-order central scheme is used
for viscous flux derivatives. Moreover, a third-order
Runge–Kutta method is applied for time marching.
The current DNS code has been widely used to simu-
late high-speed boundary-layer transition and turbu-
lence (Li, Fu, andMa 2010; Liang and Li 2013; Qi et al.
2021).

2.2. Wall BoundaryModel

Under theNS framework, conventional no-slip isother-
mal wall boundary conditions are used to simulate the
no-slip flow. To simulate the slip flow, the Maxwell-
Smoluchowski (M-S) slip boundary model (Maxwell
1879; von Smoluchowski 1898) is adopted to depict the
slip velocity and temperature jump at the wall and can
be expressed as

V∗
slip = 2 − σu

σu
λ∗ ∂V∗

∂n

∣∣∣∣
wall

,

T∗
slip = T∗

wall +
2 − σT

σT

2γ
γ + 1

λ∗

Pr
∂T∗

∂n

∣∣∣∣
wall

, (5)

and

λ∗ = μ∗

ρ∗

√
π

2R∗T∗ , (6)

where V∗
slip and T∗

slip are the slip velocity and jump
temperature, respectively; V∗ represents the velocity
component tangent to the wall; n represents the wall-
normal direction; λ∗ is the mean free path of gas
molecules;R∗ is the gas constant;T∗

wall denotes thewall
temperature; σu and σT are the tangential momentum
accommodation coefficient and the thermal accom-
modation coefficient, respectively. The specific values
of the surface accommodation coefficients depend on
gas composition and surface properties such as surface
roughness and contamination (Zhang, Meng, andWei
2012). Many studies have been carried out to obtain
σu and σT for the certain gas-surface interaction (Trott
et al. 2011; Graur et al. 2009). The results indicate that
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theymay differ from each other. In general, the accom-
modation coefficients are close to 1, but lower values
are also possible when the surface is smoother or the
incoming velocity is higher. In this study, σu and σT
are assumed equal and are uniformly symbolised by σ .
Moreover, σ varies as 1.0 and 0.4 to model different
degrees of slip wall, respectively.

2.3. Linear Stability Theory for no-slip and Slip
Flows

The LST is used to analyse the stability of boundary-
layer waves. The disturbance in LST is assumed to
be a wave ansatz. The instantaneous variable φ =
[ρ, u, v, w, T] and disturbance φ′ = [ρ′, u′, v′,w′,T′]
with the parallel-flow assumption are described as

φ = φ + φ′, (7)

and

φ′ = φ̂(y)exp[i(αx + βz − ωt)], (8)

where the overbars ‘−’ and ‘∧’ represent the mean
quantity and the complex eigenfunction, respectively;
α and β are the streamwise wavenumber and span-
wise wavenumber, respectively, and ω is the circular
frequency. The wavenumber and circular frequency
are normalised by 1/L∗ and u∗∞/L∗, respectively. Sub-
stituting Equation (8) and steady base flow into the
linearised compressible NS equations, an ordinary dif-
ferential equation (ODE) system is obtained as(

A
d2

dy2
+ B

d
dy

+ C
)
φ̂ = 0 , (9)

where the flow variables are scaled by the correspond-
ing quantities at the boundary-layer edge. The coeffi-
cientsA, B andC are 5 × 5 complexmatrixes andmore
details could be referred toMalik’s paper (Malik 1990).
The reference length is given byL∗ = √

μ∗∞x∗/ρ∗∞u∗∞,
and theReynolds number based onL∗ is generally used
and defined as

ReL = ρ∗∞u∗∞L∗

μ∗∞
. (10)

For the no-slip flow, the perturbation boundary
conditions of Equation (9) are commonly given as

y = 0: û = v̂ = ŵ = T̂ = 0 , (11)

y → ∞: û, v̂, ŵ, T̂ → 0 . (12)

Here, Equation (11) denotes the perturbation
boundary condition of the no-slip wall, which assumes
the disturbance of both velocity and temperature to be
zero at the wall.

However, in the slip-regime flow, there exist pertur-
bations of both velocity and temperature at the wall
due to the existence of velocity slip and temperature
jump. These perturbations should therefore be mod-
elled because they are not trivial. Since the instanta-
neous flow can still be deemed as fulfilling theM-S slip
model, perturbation boundary conditions at the wall
can be derived by linearising Equation (5). This leads
to the ‘slip-wall perturbation boundary conditions’
stated as

y = 0 : û = 2 − σu

σu

(
λ
∂ û
∂y

+ ∂u
∂y
λ̂

)
,

ŵ = 2 − σu

σu

(
λ
∂ŵ
∂y

+ ∂w
∂y
λ̂

)
,

T̂ = 2 − σT

σT

2γ
(γ + 1)Pr

(
λ
∂T̂
∂y

+ ∂T
∂y
λ̂

)
. (13)

Here, the fluctuation of molecular mean free path λ̂
can be obtained by differentiating Equation (6) and is
given as

λ̂ = ∂λ

∂ρ
ρ̂ + ∂λ

∂T
T̂ + ∂λ

∂μ
μ̂

= Ma
ReL

√
πγ

2

(
1

ρ
√
T
μ̂− μ

ρ2
√
T
ρ̂ − μ

2ρ
1

T
3
2
T̂

)
.

(14)

Here μ̂ = (dμ/dT)̂T. Equation (13) shows that for
slip flow, each perturbation for velocity and tempera-
ture at the wall consists of two terms. The first term
represents the contribution of the perturbation gra-
dient and the mean free path of gas molecules near
the wall. The second term denotes the product of
the gradient of base flow and the fluctuation of mean
free path, which is non-negligible in high-speed com-
pressible flows, particularly with rarefaction. As shown
in Equation (14), the fluctuation of mean free path
gets significant as compressibility effects or rarefac-
tion degrees are strengthened, i.e. Ma increases or Re
decreases. It is evident that Equation (13) automati-
cally transforms to the conventional no-slip perturba-
tion boundary condition when Kn ∝ Ma/Re is small
enough.
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Table 1. Flow conditions of the free stream.

Ma∞ p∗∞(Pa) T∗∞(K) Re∗∞(m−1) ρ∗∞(kg · m−3) γ

5.0 135.3 65.15 1.34 × 106 7.23 × 10−3 1.4

Accordingly, Equations (9), (11) and (12) consti-
tute an eigenvalue problem for no-slip flows, whereas
Equations (9), (12) and (13) constitute the eigenvalue
problem for slip flows. In the spatial LST, ω and β
are real while α = αr + iαi is a complex eigenvalue. If
αi < 0, the flow is unstable with the spatial growth
rate −αi. The present purpose is to solve the com-
plex dispersion relation expressed asα = α(ReL,ω,β).
For the discretisation of the ODE system, both the
single domain Chebyshev spectral collocation method
and the fourth-order compact difference method are
utilised in our in-house code. The validation of our
LST code is given in the Appendix.

2.4. Computational Setup

A flat-plate boundary layer with Ma∞ = 5 is consid-
ered, and the fluid is the perfect gas with constant
specific heat. The details of free-stream conditions are
given in Table 1, and the free-stream density and pres-
sure are corresponding to flight at an altitude around
40 km. The Reynolds number in the table is the unit
Reynolds number with Re∗∞ = ρ∗∞u∗∞/μ∗∞. The wall
temperature T∗

w is set as 300K, which is about 0.88
times the recovery temperature T∗

r defined as T∗
r =

T∗∞
[
1 + (γ − 1)

√
PrMa2∞/2

]
.

For each no-slip and slip flow scenario, the investi-
gation process consists of two steps. First, the steady
solution is calculated to provide the base flow, and
the LST analysis with corresponding wall perturbation
boundary conditions is carried out. Second, unsteady
simulations are performed by introducing waves of
mode F1, F2 and S, respectively, to study their spatial
evolutions.

The rectangular computational domain of steady
simulations is set as 0 ≤ x∗ ≤ 2.0 m and 0 ≤ y∗ ≤
0.1 m. Totally 8001 grid nodes are distributed in the
streamwise direction, and there are adequate nodes
near the leading edge to depict the shock wave. In the
wall-normal direction, an exponential grid stretching
function is used with 201 grid nodes to cluster more
points inside the boundary layer. In the unsteady sim-
ulations, a 2D computational domain is utilised for all
cases, except when simulating the evolution of oblique

mode S waves with a fixed spanwise wavenumber, for
which a 3D computational domain is employed. The
2D unsteady computational domain is prolonged to
x∗ = 2.3 m and the gird scale is the same as that of the
steady simulations. To suppress disturbances reflected
from the outlet boundary, the buffer region extends
from x∗ = 1.95 m to x∗ = 2.3 m with aggressive grid
stretching. The 3D unsteady computational domain
is set as 0.1 ≤ x∗ ≤ 1.5 m, 0 ≤ y∗ ≤ 0.1 m and 0 ≤
z∗ ≤ 0.07392 m, and the buffer region extends from
x∗ = 1.2 m to x∗ = 1.5 m. The spanwise computa-
tional length corresponds to a spanwise wavelength of
the oblique wave with the given disturbance param-
eters. In 3D computations, the grid resolution in the
streamwise and wall-normal directions is consistent
with that of the 2D unsteady simulation. In the span-
wise direction, there are 120 grid nodes equally spaced.
The study of computational reliability and grid inde-
pendence is provided in the Appendix.

In both steady and unsteady simulations, no-slip
isothermal and M-S slip boundary conditions are
imposed at the wall, respectively, to simulate flows
under different degrees of the slip effect. For the two
lateral boundaries in 3D unsteady simulations, peri-
odic boundary conditions are employed. In addition,
special treatment of the inlet and outlet boundary is
used. In steady simulations, the inlet boundary is des-
ignated as free-stream conditions and the supersonic
outlet is adopted. In unsteady simulations, the non-
reflection boundary conditions are used at the outlet.
At the inlet of unsteady simulations, disturbances cor-
responding to mode S or mode F are superimposed on
the steady base flow, i.e.

φ(xinlet, y, z, t)

= φ(xinlet, y, z)+ εφ̂(xinlet, y)

× exp[i(αrxinlet − ωt − βz)] + c.c. , (15)

where xinlet is the streamwise location of inlet, and
c.c. is the complex conjugate. The disturbance ampli-
tude ε is assigned as 1 × 10−5 in this study to ensure
the linear evolution of disturbances. For mode waves
at a fixed frequency and spanwise wavenumber, the
wavenumber αr and the eigenfunction φ̂(xinlet, y) are
obtained from LST. This way of introducing directly
fast mode waves or slowmode waves has been adopted
by some previous DNS studies (Ma and Zhong 2003a;
Wang and Zhong 2012) to study the mechanism of
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Figure 2. The contour of gradient-length local Knudsen number over the plate for the slip flow σ = 1.0.

boundary-layer waves. Moreover, it has been stud-
ied that the development of boundary-layer waves
induced by this way is similar to that in the case where
the disturbances are generated through the leading-
edge receptivity to free-stream acoustic waves (Ma
and Zhong 2003b). The frequency in unsteady simu-
lations is characterised by a dimensionless frequency
F defined as

F = ω∗μ∗∞
ρ∗∞u∗∞2 . (16)

The relationship between ω and F is

ω = F × ReL . (17)

3. Results and Discussions

3.1. Steady Flow Analysis

(1) Base flows

This section presents the steady solutions of the
Mach 5 flow for no-slip and slip cases. Figure 2
shows the contour of the gradient-length local Knud-
sen number KnGLL near the leading edge for the slip
flow with σ = 1.0. The KnGLL was proposed by Boyd
et al. (1995) to quantify the degree of rarefaction in the
local region of flow field, which is defined as

KnGLL = λ

Q

∣∣∣∣dQdl
∣∣∣∣ , (18)

where Q denotes a flow property, e.g. the density, and
l represents the distance between two certain flow-
field points, which should be taken along the direc-
tion of the steepest gradient of flow properties. In
this study, the local Knudsen number near the lead-
ing edge is used to assess the degree of rarefaction
in the flow, which affects the slip velocity and tem-
perature jump at the wall. As depicted in in Figure 2,

the global flow is continuous, but the local Knudsen
number varies significantly along the flow direction,
especially near the leading edge and the wall, where
KnGLL is basically in the range of [0.001, 0.05], indi-
cating the presence of slip effects. Given that the local
flow is predominantly in the slip regime, it is reason-
able to investigate the boundary-layer stability with the
inclusion of slip effects under the NS framework. This
approach enables us to model the flow behaviour over
a range of Knudsen numbers and provides a founda-
tion for understanding the impact of slip velocity and
temperature jump on the boundary-layer stability.

Figure 3 shows the slip velocity and temperature
jump along the plate surface of slip base flows. In
slip flows, the distributions of slip velocity and jump
temperature exhibit similar traits. Specifically, the slip
velocity reaches maximum at the leading edge and
decreases monotonously downstream, since the slip
degree gradually weakens as x∗ increases. The tem-
perature, however, sharply rises at the leading edge,
and then gradually declines downstream. This figure
clearly illustrates that the slip effect would enhance as
σ decreases. The wall-normal profiles of streamwise
velocity and temperature at x∗ = 0.18 m for no-slip
and slip base flows are compared in Figure 4(a). As
σ decreases, both the temperature jump and the slip
velocity at the wall increase, while the boundary layer
thickness δ decreases. This reduction of δ might be
due to the increasing wall velocity, which is consistent
with the principle of boundary-layer mass flow con-
servation. It can be inferred that the slip effect might
increase the second-mode most unstable frequency,
as the wavelength of the most unstable second-mode
disturbance is roughly twice the boundary-layer thick-
ness (Dash and Papp 2002). Figure 4(b) illustrates the
impact of slip wall on the profiles of generalised inflec-
tion points (GIPs), which are crucial to the inviscid
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Figure 3. The distribution of (a) slip velocity and (b) temperature jump on the plate surface for slip base flows.

Figure 4. The profiles of (a) streamwise velocity and temperature and (b) GIPs defined as ∂(ρ∂u/∂y)/∂y for no-slip and slip base flows
at x∗ = 0.18m.

instability in compressible flows. It can be seen that
two GIPs exist in the boundary layer for both no-slip
and slip cases, but the location of both GIPs moves
closer towards the wall as the slip effect becomes more
pronounced. The above differences in the mean flow
indicate that the slip wall may have an effect on the
boundary-layer stability.

(2) Linear stability analysis

This section presents the stability characteristics of
modes F1, F2 and S for no-slip and slip cases analysed
by LST. Figure 5(a) shows the distributions of phase
velocity (cr = ω/αr) of modes F1, F2 and S in no-slip
and slip cases at a frequencyF = 3.2 × 10−4. The three
horizontal dashed lines correspond to the phase veloc-
ities of fast acoustic waves, entropy/vorticity waves,
and slow acoustic waves, respectively. The figure shows

that the trajectories of phase velocity of boundary-
layer waves in no-slip and slip flows are similar. Specif-
ically, modes F1 and F2 originate from fast acoustic
waves, while mode S originates from slow acoustic
waves. As x∗ increases, the phase velocities of fast
modes decrease. The fast modes will synchronise with
mode S when their curves intersect. At the synchroni-
sation point, phase velocities of fast and slow modes
are identical, and their eigenfunctions have a very
similar profile as shown in Figure 6.

From Figure 5(a), the effect of slip boundary on
the phase velocity of fast and slow modes can be
observed. The phase velocities of fast modes drop
more slowly in slip flows than in no-slip flows. In con-
trast, the phase velocity of mode S is almost unaffected
by the slip boundary. Consequently, the synchronisa-
tion points between fast and slow modes are shifted
downstream as the slip effect increases. Given that
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Figure 5. The slip effect on the phase velocity of modes F1, F2 and S (β∗ = 0) at (a) a fixed frequency F = 3.2 × 10−4 and (b) a fixed
streamwise location of x∗ = 0.746m.

Figure 6. Eigenfunctions of streamwise velocity and pressure of mode F1 and mode S (β∗ = 0) at the synchronisation point in the slip
flow (σ = 1.0).

the synchronisations of fast and slow modes induce
Mack’s second and higher modes, it is evident that
the onset of these modes would be postponed in slip
flows. Additionally, Figure 5 indicates that the slip
effect also delays the synchronisation of fast modes
and the entropy/vorticity waves but has little effect
on the synchronisation of fast modes and fast acous-
tic waves. When the frequency or streamwise location
is changed, above trends are still valid. For instance,
Figure 5(b) shows the distribution of phase velocity at

a fixed streamwise location, and the same tendency can
be found. The synchronisation between above differ-
ent waves can lead to their resonant interactions (Ma
and Zhong 2003a), which will be further discussed in
the next section.

The eigenfunctions of modes F1, F2 and S for no-
slip and slip cases are compared in Figure 7, where
the magnitude of disturbances of streamwise veloc-
ity and pressure at x∗ = 0.746 m is shown. In this
paper, the profiles of eigenfunctions are normalised by
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Figure 7. Comparisons of the eigenfunctionmagnitudes of streamwise velocity and pressure at x∗ = 0.746m between the no-slip and
slip flows obtained by LST (ω = 0.26, β∗ = 0): (a) tangential velocity and (b) pressure ofmode S; (c) tangential velocity and (d) pressure
of modes F1 and F2.

the pressure perturbation at the wall. Figure 7 indi-
cates that the slip boundary has little impacts on the
eigenfunctions of fast and slow modes near the wall.
However, the slip effect can generate the wall perturba-
tion in both velocity and temperature, and this would
affect the boundary-layer stability. These wall pertur-
bations would amplify as the slip effect becomes more
pronounced. Moreover, disturbances both inside and
outside the boundary layer are indeed affected by the
slip boundary. In general, as the slip effect enhances,
the magnitudes of disturbances for mode S decline
while the ones for bothmode F1 and F2 increase. These
observations highlight the complex and multifaceted
nature of slip flows, as well as the importance of accu-
rately modelling and characterising their behaviour.

Figure 8(a) compares the growth rate −αi of 2D
modes F1, F2 and S at the streamwise location of x∗ =
0.746 m for no-slip and slip flows. It shows that the
fast modes are always stable in slip flows, but their
decay rates are lower than those of the no-slip flow.

Depending on the area upstream or downstream of its
synchronisation point with mode F1, mode S is either
termed as the first mode or second mode as marked
in the figure. The figure shows that the the first-mode
growth rate is increased whereas the second-mode
growth rate is slightly decreased due to the impact of
slip wall. The maximum growth rate of 2D mode S at
different streamwise locations for no-slip and slip cases
is given in Figure 8(b). It is evident that the slip velocity
and temperature jump stabilise the second mode but
destabilise the first mode, which is consistent with the
finding of Ou and Chen (2021). Furthermore, Figure
8(a) shows that the second-mode most unstable fre-
quency increases as σ decreases, which is related to the
decrease of boundary-layer thickness.

Given that the oblique first-mode instability is
also important in high-speed boundary layers (Mack
1984), the stability of oblique mode S waves is inves-
tigated. Figure 9 presents the distribution of growth
rate for 3D mode S waves at different wave angles
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Figure 8. The slip effect on the (a) growth rates of boundary-layer waves at x∗ = 0.746m and (b) maximum growth rates of two-
dimensional mode S (β∗ = 0) at different streamwise locations.

Figure 9. The variation of growth rate with angular frequency at x∗ = 0.746m of three-dimensional mode S waves at different wave
angles in the σ = 1.0 slip flow.

ψ = arctan(β/αr) in the σ = 1.0 slip flow. The results
clearly indicate that the oblique wave with a specific
wave angle is the most unstable for the first mode,
whereas the 2D wave (ψ = 0◦) is the most unsta-
ble for the second mode. Moreover, the 2D second-
mode instability dominates under the current condi-
tions of Mach 5 flows. These results are consistent
with previous observations in conventional no-slip
flows (Mack 1984). To further investigate the impact
of the slip wall on the oblique first- and second-mode

waves, Figure 10 illustrates the growth rate of 3D
mode S with different wave angles at x∗ = 0.746 m
for no-slip and slip cases. It can be observed that
the slip effect decreases the maximum growth rate of
the oblique second mode, while increasing the max-
imum growth rate of the oblique first mode. This
observation aligns with the finding obtained for 2D
waves.

Figure 11(a) depicts the impact of slip boundary
on the neutral stability curves for the 2D mode S. As
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Figure 10. The variation of the growth rate with angular frequency at x∗ = 0.746m for three-dimensional mode S waves at various
wave angles in the no-slip and different slip flows.

Figure 11. The neutral stability curves of (a) two-dimensional mode S and (b) three-dimensional mode S (β∗ = 85m−1) for the no-slip
and slip flows.

the slip effect becomes more significant, the occur-
rence of unstable first mode shifts upstream and the
first-mode unstable region expands. In contrast, the
second-mode unstable region is delayed downstream
in slip flows, which is caused by the delayed synchro-
nisation between mode S and mode F1 (Figure 5).
For oblique mode S waves, the slip boundary exhibits

similar impacts on their neutral stability curves, as pre-
sented in Figure 11(b). However, the first-mode unsta-
ble region only experiences a slight upstream shift due
to the slip effect.

According to LST, disturbances keep growing
within their unstable region. At a specific streamwise
location x∗, the amplification factor of the disturbance
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Figure 12. The maximum N-factor distribution of different frequency disturbances for (a) three-dimensional first mode and (b) two-
dimensional second mode.

is usually defined as.

N(f ∗, x∗) =
∫ x∗

x∗
0

−α∗
i dx

∗, (19)

where f ∗ denotes a specific frequency, and x∗
0 corre-

sponds to the location where the disturbance initially
enters the unstable region. To examine the slip effect
on the integral growth of the unstable first and sec-
ond modes, the streamwise distribution of maximum
N factor for mode S in no-slip and slip cases is given
in Figure 12. Here, the maximum N is determined
by obtaining the envelope of the N factor curves for
disturbances at different frequencies. As depicted in
Figure 12(a), the slip effect enhances the growth of
the first mode with various spanwise wavenumbers.
In contrast, Figure 12(b) illustrates that the second-
mode growth is suppressed due to the slip bound-
ary. This could be attributed to the fact that the slip
wall decreases the second-mode local growth rate
and delays the onset of the second-mode instability.
These results further confirm that the slip boundary
destabilises the first mode while stabilising the sec-
ond mode. They also indicate that the slip wall could
be detrimental to the low-Mach supersonic boundary-
layer transition triggered by the first-mode waves,
which are typically the dominant instability under this
circumstance (Mack 1984).

3.2. Unsteady Simulations

Unsteady simulations are carried out to study the slip
effect on the spatial evolution of boundary-layerwaves.

To quantify the magnitude of disturbances, unsteady
computations have been conducted for one more
period of time after numerical solutions have reached
a periodic state. For 2D simulations, the Fourier trans-
form is applied to the instantaneous pressure pertur-
bation p′ in the time direction, which leads to.

p′(x, y, t) = |p′(x, y)|exp[i (ψ ′(x, y)− ωt)] . (20)

For 3D simulations, the Fourier transform is per-
formed in both the time and spanwise directions,
which leads to

p′(x, y, z, t) = |p′(x, y)|exp[i (ψ ′(x, y)− ωt − βz)] ,
(21)

where |p′| and ψ ′ are pressure perturbation amplitude
and phase angle, respectively. The local wavenumber
α∗ related to pressure disturbances can be extracted in
DNS as

αr
∗ = d|ψ ′|/dx∗, (22)

αi
∗ = −d|p′|/(|p′|dx). (23)

It should be noted that αr∗ and αi∗ computed above
represent the true wavenumber only when the distur-
bance is dominated by a single mode. Otherwise, both
parameters are a result of the modulation of multi-
ple mode waves in the flow field (Tumin, Wang, and
Zhong 2007).

(1) Spatial development of slow mode waves

This section focuses on the impact of slip wall on
the spatial evolution of mode S. Disturbances of mode
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Figure 13. The contour of instantaneous pressure perturbation in the no-slip case.

Figure 14. Comparison of the (a) phase velocities and (b) growth rates obtained from numerical simulations with those of mode S
predicted by LST in the no-slip and slip cases.

S at a fixed frequency of F = 2.4 × 10−4 are intro-
duced at x∗

inlet = 0.1 m for no-slip and slip cases. As the
disturbances propagate downstream, they would pass
through anunstable region of the secondmode (Figure
11(a)). For instance, the contour of instantaneous pres-
sure perturbation in the no-slip case is depicted in
Figure 13. It reveals that two-cell structures are formed
downstream with a longitudinal wave-length roughly
twice the boundary-layer thickness, which is typical
for the second-mode instability (Egorov, Fedorov, and
Soudakov 2006).

Figure 14 compares the phase velocities and the
growth rates obtained from DNS by Equations (22)
and (23) with those of mode S predicted by LST in no-
slip and slip cases. For a certain no-slip or slip case,
the phase velocities obtained from numerical simu-
lations agree well with those of mode S computed
by LST as shown in Figure 14(a). Simultaneously,

Figure 14(b) shows that the streamwise locations of
maximum growth rate and branch II neutral stability
point obtained from DNS are very close to those pre-
dicted by LST. However, there are some differences in
results between DNS and LST. Particularly, the growth
rate of mode S in the unstable region obtained by LST
is slightly lower than DNS. In the downstream region,
mode S obtained byDNS aremore stable than that pre-
dicted by LST. These behaviours are also found in pre-
vious investigations for compressible boundary-layer
stability (Ma andZhong 2003a;Wang andZhong 2012;
Husmeier, Mayer, and Fasel 2005) and are attributed
to the nonparallel flow effects. This statement gets fur-
ther corroborated by the study involving nonlinear
Parabolic Stability Equations (PSE) method (Mayer,
Von Terzi, and Fasel 2008). In addition, the DNS
results in Figure 14 exhibit some oscillations. These
oscillations are a result of the coexistence of multiple
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Figure 15. The eigenfunctions of temperature and streamwise velocity at x∗ = 0.4mobtained fromDNS and those ofmode Spredicted
by LST in the slip case (σ = 1.0).

mode waves in the flow filed (Ma and Zhong 2003a;
Knisely and Zhong 2019b; Wang, Zhong, and Ma
2011; Zhao et al. 2018). As mentioned previously, the
inlet-imposed waves are obtained from LST. Due to
the nonparallel effects, these waves are only domi-
nated by mode S or mode F in unsteady simulations.
Furthermore, the modulation between different waves
would enhance such oscillations. When mode S grows
rapidly in the unstable region, other minor waves
would have little impacts and thus the oscillations dis-
appear. Whereas there are no oscillations in the LST
results since LST neglects the modal interactions and
only considers a single mode at one time. It should
be noted that the influence of shock wave is negligible
since mode S waves are confined within the boundary
layer.

The DNS results indicate that the slip effect
decreases the maximum growth rate in the unstable
region, thus stabilising the secondmode, and increases
the second-mode most unstable frequency. However,
the phase velocity of mode S is almost unaffected by
the slip wall. These findings are consistent with the
LST analysis. Overall, there is a good agreement in
the wavenumber of mode S between DNS and LST.
Such agreement is also observed when comparing the
eigenfunction profiles, as illustrated in Figure 15.

The amplitudes of pressure perturbation along the
wall in no-slip and slip cases are presented in Figure
16. It shows that the amplitude of pressure disturbance
increases rapidly as the mode S wave in these cases
enters its unstable zone, i.e. the second-mode region.
It is apparent that the locations of maximum pertur-
bation amplitudes obtained from DNS are nearly the
same as those predicted by LST. Further downstream,
the disturbance rapidly decays as mode S becomes
stable. By comparison, the behaviour of exponential
growth and the location of peak amplitude in slip flow
are both delayed downstream when compared to the
no-slip flow. This tendency getsmore pronounced as σ
lowers, proving that the second-mode unstable region
indeed shifts downstream due to the slip effect.

In addition, it is noted that the maximum of pres-
sure perturbation is increased in slip cases. This seems
to contradict the conclusion that the slip effect sta-
bilises the second mode. As mentioned previously, the
amplitude of pressure perturbation |p′| varying with
streamwise location x∗ can be calculated by integrating
the growth rate−α∗

i along the streamwise direction as,

|p′(x∗)| = |p′
0|exp

(∫ x∗

x∗
0

−α∗
i (x

∗)dx∗
)

, (24)
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Figure 16. Comparison of the amplitudes of pressure perturbation along the wall for no-slip and slip cases. (Solid lines: the amplitude
of pressure perturbation; vertical dash dot lines: branch I neutral stability points predicted by LST; vertical dashed lines: branch II neutral
stability points predicted by LST.)

where |p′
0| is the initial amplitude pressure perturba-

tion at branch I neutral stability point, and x∗
0 denotes

the location of branch I neutral stability point. This
equation illustrates that themaximumpressure pertur-
bation |p′

m| at branch II neutral stability point depends
on three factors, i.e. the growth rate, the integration
range and the initial amplitude. Among them, the ini-
tial amplitude of perturbation cannot be predicted by
LST. Before mode S reaches the unstable region, there
are oscillations in the perturbation amplitude. Addi-
tionally, the second-mode unstable region is delayed
downstream by the slip effect. Thus, |p′

0| is differ-
ent for each no-slip and slip case. This might be the
main reason for the increased maximum perturba-
tion amplitude in slip flows. To support this deduction,
Table 2 presents the amplitude of the initial pressure
perturbation (at branch I neutral stability point) and
the maximum pressure perturbation for no-slip and
slip cases in Figure 16. It is found that |p′

m|/|p′
0| is

3.135 for the no-slip case, 3.049 for the slip case (σ =
1.0) and 2.952 for the slip case (σ = 0.4). Given that
the length of unstable region is almost unaffected by
the slip wall, the present results indicate that the slip
boundary does decrease the second-mode growth rate,
i.e. the slip effect stabilises the second mode. Here, the
locations of branch I neutral stability points predicted

Table 2. The amplitude of pressure perturbation at branch I neu-
tral stability point andmaximumpressure perturbation for no-slip
and slip cases in Figure 12.

Cases |p′
0|/p∞ |p′

m|/p∞ |p′
m|/|p′

0|
No-slip 0.000657 0.00206 3.135
Slip (σ = 1.0) 0.000679 0.00207 3.049
Slip (σ = 0.4) 0.000752 0.00222 2.952

by LST are used as the reference since they are hard
to be recognised from DNS due to the oscillations.
Therefore, the increased |p′

m| in slip cases is caused
by the increased |p′

0|, which is due to the oscillations
before the unstable region. However, the behaviours
out of the unstable region are not the focus in this
section.

To investigate the spatial development of oblique
first-mode waves under the slip effect, disturbances
of oblique mode S with the spanwise wavenumber of
β∗ = 85 m−1 and a low frequency of F = 3 × 10−5

are imposed at the inlet of x∗ = 0.1 m. Here, the 3D
DNS is conducted to simulate the streamwise evolu-
tion of these oblique waves. As illustrated in Figure
11(b), the imposed oblique mode S waves would go
through an unstable region of the first mode within
the current computational domain. Figure 17 shows
the streamwise evolution of pressure perturbation for
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Figure 17. Comparison of the amplitudes of pressure perturbation along thewall for no-slip and slip caseswith obliquemode S imposed
at the inlet.

oblique mode S at the wall in the no-slip and differ-
ent slip cases. It is evident that amplitude of pressure
perturbation in each case grows continuously due to
the first-mode instability. Upon comparison, it can be
observed that the amplitude of pressure perturbation
is getting larger as the slip effect becomes more pro-
nounced. This suggests that the growth of the first
mode is enhanced by the presence of slip boundary.
In other words, the first mode is destabilised by the
slip velocity and temperature jump, which is consistent
with the previous LST analysis.

(2) Spatial development of fast mode waves

It is well-known that fast mode waves play a critical
role in the receptivity process through their resonant
interactions with fast acoustic waves and slow mode
waves (Ma and Zhong 2003a; 2003b). Thus, it is neces-
sary to use DNS to explore the impact of slip boundary
on the spatial development of fast mode waves.

(a) Mode F1. The slip effect on the spatial evolu-
tion of mode F1 waves is first studied. Distur-
bances of mode F1 at a frequency of F = 2.4 ×
10−4 are imposed at the inlet of x∗ = 0.1 m in
no-slip and slip cases. Figure 18 shows the wall

distribution of phase velocities obtained from
DNSwith those of mode F1 andmode S predicted
by LST. In the upstream region, the phase veloci-
ties obtained from DNS agree well with those of
mode F1 predicted by LST for each case. How-
ever, mode F1 converts to mode S as propagating
downstream. As shown in Figure 5, mode F1 and
mode S become synchronised at their synchro-
nisation point, where both mode F1 and mode
S have almost the same profiles of disturbances
across the boundary layer (Figure 6). Thus, due
to their interactions, there occurs the conversion
of mode F1 to mode S as mode F1 propagates to
the region near their synchronisation. However,
this conversion is not captured by LST (Figure
5) because LST can only track the single-mode
wave and cannot resolve the resonant interactions
between waves. Further downstream, the oscilla-
tions are also caused by themixture of the induced
mode S and other waves in the flow field. From
Figure 18, it is evident that the synchronisation
region where mode F1 changes to mode S shifts
downstream under the slip effect. This is because,
in slip flows, the phase velocities of mode F1 decay
slower, whereas those of mode S are almost unal-
tered as shown in Figure 14(a).
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Figure 18. Comparison of the phase velocities obtained from DNS with those of mode F1 and mode S predicted by LST for no-slip and
slip cases.

The amplitudes of pressure perturbations along
the wall in no-slip and slip cases are compared in
Figure 19. It shows that the amplitude of pressure
perturbation grows to its first peak downstream the
inlet, which appears to contradict the LST predic-
tion that fast mode waves are always stable (Figure 8).
The same mechanism is also observed in a previous
DNS study by Ma and Zhong (2003a) that investi-
gated the propagations of fast mode waves in a no-
slip flow. According to the previous study, this non-
modal growth is attributed to the resonant interactions
between mode F1 and fast acoustic waves as mode F1
is introduced near its synchronisation region with fast
acoustic waves. Correspondingly, the waves begin to
decay due to the inherent stability of mode F1 when
they move away from the synchronisation region. Fur-
ther downstream, as mode F1 converts to mode S after
its synchronisation with mode S, the induced Mack
instability causes the second growth for the perturba-
tion. This is also confirmed in Figure 19, which shows
that the location of the second peak of perturbation
amplitude in each case is close to the second-mode
branch II neutral stability points predicted by LST. In
addition, the starting location of the second growth
for the amplitude moves downstream as σ decreases,
indicating the delayed conversion from mode F1 to

mode S under the slip effect. It should be noted that
these amplifications of the perturbation are not led by
the shock wave. Moreover, Figure 19 shows that the
first amplification of the perturbation becomes more
significant as the slip effect increases. It implies that
the slip wall might strengthen the resonant interaction
between mode F1 and fast acoustic waves. Similarly,
the oscillations in the results are due to the influence
of multiple modes.

The instantaneous contours of disturbance energy
k′ = (u′)2 + (v′)2 for no-slip and slip cases are given
in Figure 20. It depicts that the disturbance energy
behind the inlet quickly amplifies due to the resonant
interaction between mode F1 and fast acoustic waves.
Then, the disturbance energy decays downstream due
to the inherent stability of mode F1. The maximum
disturbance energy in the flow field increases as σ
decreases, indicating the enhanced resonance of mode
F1 and fast acoustic waves. According to the LST
results, the slip wall enlarges the magnitudes of mode
F1 eigenfunctions, which might explain the enhance-
ment of the resonant interactions. Figure 21 com-
pares the eigenfunctions obtained fromDNSand those
of mode F1 predicted by LST in no-slip and slip
cases. Given the nonparallel-flow effects, the profiles
of eigenfunction obtained from DNS agree well with
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Figure 19. Comparisons of amplitudes of pressure perturbations along the wall for no-slip and slip cases. (Vertical dashed lines: branch
II neutral stability points predicted by LST.)

Figure 20. Instantaneous contours of disturbance energy in no-slip and slip flows for the cases of introduced mode F1.

those predicted by LST. From this figure, the magni-
tudes of mode F1 waves are indeed increased under
the slip effect. Thus, the energy of mode F1 waves
increases under the slip effect, which strengthens their
resonance with fast acoustic waves.

(b) Mode F2. In this section, the disturbances ofmode
F2 at the frequency of F = 2.4 × 10−4 are intro-
duced at the inlet of x∗ = 0.72 m in no-slip and
slip cases. According to the LST results, this inlet
is very close to the location where mode F2 first
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Figure 21. Eigenfunctions for (a) streamwise velocity and (b) temperature at x∗ = 0.25m obtained by numerical simulations and those
of mode F1 predicted by LST in no-slip and slip cases.

Figure 22. (a) The wall distributions of the amplitude of pressure perturbations for the no-slip and slip cases of imposedmode F2 at the
inlet of x∗ = 0.72m. (b) The comparison of phase velocities obtained from DNS with those of mode F2 predicted by LST for the no-slip
and slip cases of imposed mode F2 at the inlet of x∗ = 0.72m.

appears, i.e. the synchronisation points of mode
F2 and fast acoustic waves.

Figure 22(a) shows the distribution of the ampli-
tudes of pressure perturbations along the wall in no-
slip and slip cases. The propagation profiles of current
cases present several peaks in perturbation amplitudes
due to a mixture of several modes. Particularly, despite
LST predicting that mode F2 is stable (Figure 8(a)), the
amplitude of pressure perturbations grows rapidly to
the first peak behind the inlet. Similar to the cases of
imposedmode F1 waves, this non-modal growth of the

amplitude for perturbation is led by resonant interac-
tions betweenmode F2 and fast acoustic waves. This is
because that the imposed mode F2 waves synchronise
with fast acoustic waves near the inlet. Meanwhile, the
results in Figure 22(b) also reveal that mode F2 waves
are modulated by the fast acoustic waves due to their
interactions.

The above statements can be also supported by
Figure 23. Firstly, Figure 23(a) shows the wall distri-
bution of the magnitudes of pressure perturbations in
the no-slip and slip cases where the inlet of mode F2
is fixed at x∗ = 1.0 m. This inlet is far downstream
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Figure 23. (a) The wall distributions of the amplitude of pressure perturbations for the no-slip and slip cases of imposedmode F2 at the
inlet of x∗ = 1.0m. (b) The comparison of phase velocities obtained from DNS with those of mode F2 predicted by LST for the no-slip
and slip cases of imposed mode F2 at the inlet of x∗ = 1.0m.

the synchronisation point between fast acoustics waves
and mode F2. Unlike those shown in Figure 22(a), the
amplitudes of pressure perturbation for no-slip and
slip cases in Figure 23(a) are continuously decaying
due to the stability of mode F2, and there is no growth
in the perturbation amplitude. This is because there
are no interactions between mode F2 and fast acoustic
waves, as mode F2 do not synchronise with fast acous-
tic waves in these cases. Correspondingly, the phase
velocities obtained from DNS agree very well with
those of LST, as shown in Figure 23(b). Additionally,
Figure 23(a) clearly shows that the decay rate of mode
F2 is decreased by the slip boundary, which is consis-
tent with the LST analysis (Figure 8(a)). Back to Figure
22(a), the first peak of perturbation amplitude rises as
the slip effect increases. This indicates the enhanced
resonance between mode F2 waves and fast acoustic
waves. Then, downstream from the first peak of the
perturbation amplitude, the inherent stability of mode
F2 leads to the decay of the perturbation amplitude.

Figure 24 shows the instantaneous contour of dis-
turbance energy in the no-slip and slip cases of
imposed mode F2 at the inlet of x∗ = 0.72 m. Due to
the interactions between mode F2 and fast acoustic
waves, the disturbance energy gradually increases in
the upstream region. Different from the field of dis-
turbance energy for mode F1, two-cell structures are
formed in the field of disturbance energy for mode
F2. This is because that the eigenfunction of veloc-
ity for mode F2 has two peaks, whereas there is only

one peak in the eigenfunction of velocity for mode F1
(Figure 7). In Figure 24, the maximum disturbance
energy increases as σ decreases, also indicating the
enhanced resonant interactions between mode F2 and
fast acoustic waves. As mode F2 waves resonate with
fast acoustic waves mainly outside the boundary layer
(Ma and Zhong 2003a), the eigenfunction profiles at
x∗ = 0.9 m obtained from DNS and those of mode F2
predicted by LST are compared in Figure 25. The figure
exhibits good agreements in wave structures inside the
boundary layer between the results of DNS and LST,
demonstrating the dominance of mode F2 in this area.
However, two sets of results present major differences
outside the boundary layer since the resonance can-
not be captured by LST. It is clear that the slip effect
increases the eigenfunction magnitudes of mode F2,
especially outside the boundary layer. Thereby, the res-
onant interactions between mode F2 and fast acoustic
waves are enhanced.

It should be noted that the above results still hold
true when the frequency of imposed disturbance is
altered. In summary, the impacts of slip boundary on
the modal stability and the resonances between fast
acoustic waves, fast mode waves and slow mode waves
are studied by comparing the spatial development of
the fast and slow mode waves in no-slip and slip cases.
On the one hand, it is found the impacts of slip bound-
ary on the stability of boundary-layer waves obtained
from DNS are consistent with those predicted by LST.
On the other hand, the modal resonant interactions
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Figure 24. The instantaneous contours of disturbance energy in no-slip and slip cases of imposed mode F2 at the inlet of x∗ = 0.72m.

Figure 25. Comparison of the eigenfunctions of mode F2 obtained by LST and unsteady simulations at x∗ = 0.9m in no-slip and slip
case where the mode F2 waves are imposed at the inlet of x∗ = 0.72m.

that cannot be resolved by LST are also studied. Most
importantly, the present result reveals that the slip
boundary can strengthen the resonant interactions
between fast mode waves and fast acoustic waves.

4. Conclusions

Within theNS framework, DNS and LST are both used
to study the linear stability and resonant interactions

of boundary-layer waves for a Mach 5 flat plate in the
slip regime. The slip velocity and temperature jump
are modelled by the M-S slip boundary conditions.
The NS equations with no-slip and slip boundary con-
ditions are numerically solved to obtain steady and
unsteady flow fields with different degrees of the slip
effect. Moreover, the LST that considers wall pertur-
bation boundary conditions for no-slip and slip flows
is adopted.
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Based on the steady solutions, the slip effect on the
modal stability is first analysed by LST. Fast mode
waves are found to remain stable in slip flows but
their decay rates are lower than those in no-slip flows.
Regarding the mode S, it constitutes both the first
mode and second mode of Mack in current cases. In
slip flows, the 2D instability is dominant for the sec-
ond mode, while the 3D instability is dominant for
the first mode. The analyses of the local growth rate
and the integrated N factor both suggest that the slip
velocity and temperature jump tend to stabilise the sec-
ond mode but destabilise the first mode. Additionally,
the synchronisation process of fast and slow modes
is studied. The slip effect causes the phase velocity of
fast mode to decrease more slowly while having little
impacts on that of mode S, which leads to the delayed
synchronisation between fast modes andmode S. Cor-
respondingly, the onset of second-mode instability is
delayed downstream in the slip flow. However, the
first-mode unstable region gets enlarged and moves
upstream under the influence of slip wall.

Subsequently, unsteady simulations are carried out
to study the spatial development of mode F1, F2 and
S waves under different degrees of slip effect. The
results show that the phase velocity, the growth rate
and the eigenfunction obtained from DNS agree well
with those predicted by LST, except for the discrepancy
mainly caused by nonparallel flow effects. Further-
more, the unsteady DNS results also reveal that the
slip effect enhances the streamwise growth of the first
mode, while suppressing the second-mode streamwise
growth. Accordingly, the impacts of the slip wall on the
linear stability characteristics of fast and slow modes,
as predicted by LST, have been confirmed through
DNS. Also, the developed LST method for analysing
slip flow has been validated. Moreover, the resonant
interactions between boundary-layer waves that can-
not be resolved in LST are also studied by unsteady
simulations. The numerical results demonstrate that
the slip boundary indeed postpones the resonance
between mode S and mode F1, through which mode
F1 converts to mode S. Additionally, the interactions
between fast acoustic waves and mode F1 and F2 lead
to the amplification of mode F1 and F2 waves, even
though both of them are predicted to be stable by
LST. This non-modal amplification of fast mode waves
becomes more significant due to the slip effect, indi-
cating enhanced resonant interactions between fast
mode and fast acoustic waves. This phenomenon can

be attributed to the increased magnitude of the eigen-
function of fast modes.

This work sheds a light on the study of high-speed
boundary-layer stability and transition with local slip
effects using both numerical and theoretical methods.
However, further research on the receptivity process
affected by the free-stream rarefaction effects is needed
to fully understand the relevant mechanisms.
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Appendix

Validation

A. DNS

To verify the accuracy of DNS, the present steady solutions
for the no-slip case are first compared with a laminar com-
pressible Blasius solution. As shown in Figure A1, the profiles
of streamwise velocity and temperature obtained by DNS are
consistent with the compressible Blasius solutions. Addition-
ally, a case from Ou and Chen (2021) is taken as a reference
benchmark to verify the DNS code with M-S slip boundary
conditions. In this case, a flat-plate flow at Mach 4.5 in the slip
regime is computed. Figure A2 compares the wall-normal pro-
files of streamwise velocity and temperature at x∗ = 0.5 m, as
well as the wall distribution of streamwise velocity and temper-
ature computed by Ou and Chen (2021) and present code. The
good agreement demonstrates the accuracy of present method.

In addition, the grid independence for steady and unsteady
solutions of no-slip and slip cases are studied. From Figure A1,
the numerical results based on two different grid resolutions
agree well, proving the grid independence of current steady cal-
culations. Meanwhile, Figure A3 shows the spatial evolution

of mode S at the frequency of F = 2.4 × 10−4 in no-slip and
slip cases obtained by unsteady simulations using the present
and a higher grid resolution. It is obvious the present grid
resolution is sufficient to accurately track the development of
disturbances.

B. LST

The code of LST with both no-slip and slip wall perturba-
tion boundary conditions is verified in this part. Firstly, the
results of Ma and Zhong (Ma and Zhong 2003a) for the sta-
bility of a supersonic no-slip boundary layer are considered.
The distributions of growth rates and phase velocities of var-
ious boundary-layer modes are calculated at a fixed streamwise
location. Moreover, both adiabatic and isothermal wall con-
ditions are employed as two bounds for temperature pertur-
bations, which are denoted by ∂T̂/∂y|y=0 = 0 and T̂|y=0 = 0,
respectively. Figure A4 compares the results obtained by Ma
and Zhong (2003a) and the present code. The excellent agree-
ment proves the high accuracy of present LST for analysing
no-slip flows.

Meanwhile, the results for a rarefied Mach 4.5 flat-plate
boundary layer in Ref. 5 are used to examine the accuracy of
our LST code with the slip-wall perturbation boundary con-
ditions. As can be seen in Figure A5, the growth rate and the
phase velocity versus frequency calculated by the present code
and their counterparts in the reference are very close. Further-
more, we test the case in Klothakis et al. (2022), who obtained
the modal eigenvalue of a supersonic laminar boundary layer
corresponding to the altitude of 55 km using DSMC and LST.
The eigenvalue of a temporal mode at x∗ = 0.7 m obtained by
Klothakis et al. (2022) and the present method is compared in
the Table A1, and it is clear that both eigenvalues are very close.
Thus, the reliability of our LST solver is fully verified.

Figure A1. Comparisonsof (a) streamwise velocity and temperatureprofiles calculatedbyDNSwith twomesh resolutions and compress-
ible Blasius solutions at x∗ = 0.746m for the no-slip case; (b) streamwise velocity profiles calculated by DNS with two mesh resolutions
at x∗ = 0.18m for the slip cases.
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https://doi.org/10.1146/annurev-fluid-120710-101208
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Figure A2. Comparison of streamwise velocity and temperature profiles for slip flow at Mach 4.5 between Ou and Chen (2021) and
present results: (a) along the y-axis at x∗ = 0.5m; (b) along the plate surface.

Figure A3. The wall distribution of the amplitude of pressure perturbation for the no-slip and slip (σ = 1.0) cases with imposed mode
S at the inlet of x∗ = 0.1m calculated from unsteady simulations using different grid resolution.

Table A1. Comparison of the computed eigenvalues
(α = 0.2, β = 0).

Method Eigenvalue ofω

Klothakis et al. 0.182390-0.003960i
Present 0.181447-0.003928i
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Figure A4. Comparisonof growth rates andphase velocities of differentmodesbetween thepresent andMaandZhong’s (2003a) results.
(a) Growth rates with adiabatic and isothermal boundary conditions. (b) Phase velocities with adiabatic boundary conditions.

Figure A5. Comparison of growth rate and phase velocity versus frequency at x∗ = 1.0m of a two-dimensional wave for the slip flow
(σ = 0.2) obtained by Ref. 5 (BC-1F) and the present calculation.
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