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A B S T R A C T

In this work, a numerical framework for global stability analysis of rigid-body-motion fluid–
structure-interaction problems is presented. The Jacobian matrices which arise in the lin-
earization procedure are derived numerically via the first-order finite difference scheme. The
linearized fluid–structure coupled equations are solved using an immersed boundary method.
The linear stability solver is first tested on two canonical cases, i.e., the flow past a stationary
cylinder and the flow past an isolated elastically mounted cylinder. An excellent agreement
between the results obtained here and those from available published research is achieved. The
solver is then used to study the linear stability of the flow past two elastically mounted cylinders
in tandem arrangement. The variations in growth rate and frequency of two leading modes with
reduced velocity are examined. The mechanisms of lock-in and galloping phenomena observed
in nonlinear simulation are elucidated from the perspective of linear instabilities in the leading
modes.

1. Introduction

Flow-induced vibration (FIV) is a common phenomenon observed in nature and engineering practices. In structures such as tall
buildings (Hayashida and Iwasa, 1990; Kawai, 1992) and offshore facilities (Kim et al., 2018; Thorsen et al., 2019), FIV can lead
to fatigue damage and cause safety issues. On the other hand, FIV can also be utilized to harvest hydrokinetic and wind energies
from the environment (Wang et al., 2020; Zhu et al., 2021).

FIV is a classic bi-directional fluid–structure interaction (FSI) problem. Despite of the fundamentally nonlinear nature, the onset
of FIV can be predicted by examining the stability of linearized systems. Global stability analysis is a well-developed method for
describing the linear systems and determining the bifurcation thresholds (Theofilis, 2017; Gómez et al., 2012). There is abundant
literature on applying this method to fluid systems (such as the wakes of bluff bodies). It was only until recently that the global
linear stability analysis was applied to fluid–structure coupled systems.

The transformation of equations to a non-inertial body-fixed frame is a well-established technique to handle moving boundaries
in FSI simulation. Naturally, such technique has also been applied to perform global stability analysis of fluid–structure coupled
systems. Cossu and Morino (2000) was the first to investigate the linear instability of a canonical FIV model — the flow past a rigid
circular cylinder which is free to oscillate in the transverse direction. The result indicated that the first instability can be identified
at a Reynolds number that was much lower than the critical value for the onset of vortex shedding in a stationary cylinder. The
occurrence of vortex shedding at a subcritical Reynolds number was rationalized by the occurrence of instability in a structural mode.
The critical Reynolds number of the FIV system determined by global stability analysis was found to be consistent with the value
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determined via nonlinear simulation by Mittal and Singh (2005). The results of linear stability analysis from Meliga and Chomaz
(2011), Zhang et al. (2015), Navrose and Mittal (2016), Kou et al. (2017), Yao and Jaiman (2017) also confirmed that the first
instability can be triggered at a subcritical Reynolds number. Navrose and Mittal (2016) investigated the correlation between the
lock-in phenomenon and linear instability in the FIV system. Dolci and Carmo (2019) considered the flow past a cylinder which was
allowed to oscillate in both transverse and in-line directions, and linear stability analysis was applied to find the critical Reynolds
numbers at different combinations of mass ratio and reduced velocity. Subsequently, sensitivity of the least stable mode with respect
to the local forces was investigated by the same group (see Dolci and Carmo, 2022). Moulin and Marquet (2021) performed global
stability analysis of a more complex FIV system involving a heaving-and-pitching spring-mounted rigid plate, and a parametric
exploration was conducted to identify different types of unstable modes.

Additionally, the technique of non-inertial reference frame has also been utilized to examine the stability of the paths in falling
or rising) objects under gravity (or buoyancy). Assemat et al. (2012) investigated the stability of the falling paths in two-dimensional
lat plates with different geometric parameters. Subsequently, Tchoufag et al. (2014b) employed a similar approach to study the
alling paths of three-dimensional objects (such as disks and thin cylinders). Linear stability analysis was also applied to study the
tability of the paths in rising bubbles (e.g., spheroidal bubbles by Tchoufag et al. (2014a) and oblate bubbles by Cano-Lozano et al.
2016)). Vagnoli et al. (2023) investigated the effect of permeability on the stability of the paths in falling objects.

Arbitrary–Eulerian–Lagrangian (ALE) method is another widely used technique in FSI simulations to handle moving and deform-
ng boundaries. The attempts to perform global stability analysis using the ALE method were also found in the literature. Fernández
nd Tallec (2003a,b) performed linear stability analysis of FSI problems by starting with the ALE equations in a weak form. Following
he same methodology, Negi et al. (2020) proceeded with the linearization of ALE equations in a strong form. Pfister et al. (2019),
fister and Marquet (2020) derived the linearized FSI equations in the ALE framework via a Lagrangian-based approach.

FSI simulation can also be conducted using the immersed boundary (IB) method in which a non-conforming mesh is employed.
he IB method thus provides an alternative avenue for performing global stability analysis of FSI problems. The IB method enjoys
ome specific advantages over the other two methods aforementioned. First, multiple rigid bodies with relative motions with
espect to each other or flexible bodies with a large number of degrees of freedom can be easily handled. Obviously, under such
ircumstances, the technique of non-inertial reference frame is no longer applicable. Second, the IB method uses a stationary mesh
nd a fixed computational domain. Thus, the complexity in the ALE method associated with the linearization of fluid equations on
deforming domain is circumvented.

Till now, global stability analysis of FSI problems based the IB method is still at its exploratory stage and only a few attempts
ave been made. Goza et al. (2018) performed global stability analysis of an inverted-flag system and explored the mechanisms
hat initiated flapping. Tirri et al. (2023) proposed an algorithm in which the analytical derivation of linearized FSI equations can
e avoided. They then performed linear stability analysis of a FIV system involving the flow past two tandem elastically mounted
ylinders.

In this paper, we perform linear stability analysis on a series of FIV problems by combining the standard matrix-forming
inearization procedure with a direct-forcing IB method. The contributions of the present paper are twofold. The first contribution is
hat a linear stability solver is developed based on a direct-forcing IB method in the streamfunction formulation proposed by Wang
nd Zhang (2011). The linear stability code is then thoroughly validated with two canonical testing cases, including the flow past
stationary cylinder and the flow past an isolated elastically mounted cylinder. The results of the present study are compared with

vailable data from the literature. A second contribution is that we conduct further investigate on linear stability of the flow past
wo elastically mounted cylinders in tandem arrangement. Although nonlinear simulations of the dual-cylinder FIV system have
een conducted in many previous works, such as Borazjani and Sotiropoulos (2009), Kim et al. (2009), Griffith et al. (2017), Qin
t al. (2019), Lin et al. (2020), Hu et al. (2020), Sharma and Bhardwaj (2023), etc., global stability analysis was only found in Tirri
t al. (2023). In comparison with the work by Tirri et al. (2023), a much wider parameter range is explored in the present study. The
esults of present work can help us better understand the mechanisms of lock-in and galloping phenomena observed in nonlinear
imulation.

The rest of the paper is organized as follows. The physical model and governing equations are presented in Section 2. In Section 3,
he numerical methods for solving the nonlinear and linearized equations are introduced. The results and discussion are provided
n Section 4. Finally, some conclusions are drawn in Section 5.

. Physical model and governing equations

In this study, we consider two rigid circular cylinders which are elastically mounted and immersed in a two-dimensional
ncompressible viscous flow. The cylinders are free to oscillate in the cross-stream direction. A schematic representation of the
hysical model is shown in Fig. 1. The two cylinders have the same diameter 𝐷, and the streamwise distance between the two
enters is 𝐿. The flow direction is from left to right and a uniform inflow velocity 𝑈∞ is specified at the left boundary.

The flow is assumed to be laminar and is governed by incompressible Navier–Stokes equations, which can be written in a
imensionless form as

𝜕𝒖
𝜕𝑡

+ (𝒖 ⋅ ∇)𝒖 = −∇𝑝 + 1
Re

∇2𝒖 + 𝒇 , (1a)

∇ ⋅ 𝒖 = 0, (1b)
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Fig. 1. Schematics of the physical model.

where 𝒖 is the velocity vector and 𝑝 is the pressure. 𝒇 is the body-force term which represents the interaction between the flow and
the immersed objects. This term can be implicitly determined by enforcing the no-slip condition on the surfaces of objects.

The motions of the cylinder centers are governed by Newton’s second law, which can be written in a dimensionless form as

𝑌𝑐,𝑖 +
4𝜋𝜉
𝑈∗ �̇�𝑐,𝑖 + ( 2𝜋

𝑈∗ )
2(𝑌𝑐,𝑖 − 𝑌 𝑒𝑞

𝑐,𝑖 ) =
4𝐶𝑦,𝑖

𝜋𝑀∗ , (2)

where 𝑌𝑐,𝑖 and 𝑌 𝑒𝑞
𝑐,𝑖 are the vertical position and vertical equilibrium position of the 𝑖th cylinder center. In the present study, 𝑌 𝑒𝑞

𝑐,𝑖 is set
to zero. 𝑈∗ is the reduced velocity, 𝜉 is the dimensionless damping coefficient, and 𝑀∗ is the density ratio. 𝐶𝑦,𝑖 is the lift coefficient
of the 𝑖th cylinder, which is defined as 𝐶𝑦,𝑖 = 𝑦,𝑖∕(𝜌𝑓𝑈2

∞𝐷), where 𝑦,𝑖 is the vertical component of the resultant hydrodynamic
force exerted on the 𝑖th cylinder. In the framework of the immersed boundary method for solving Navier–Stokes equations, this
hydrodynamic force can be computed using body-force 𝒇 .

The reference length, velocity, and time used in the nondimensionalization are 𝐷, 𝑈∞ and 𝐷∕𝑈∞, respectively. The dynamic
behavior of the FIV system is determined by five dimensionless parameters, namely, Reynolds number Re, reduced velocity 𝑈∗,
reduced mass 𝑀∗, dimensionless damping coefficient 𝜉 and gap ratio 𝐺. The definitions of these parameters are:

Re =
𝐷𝑈∞
𝜈

, (3a)

𝑈∗ =
𝑈∞
𝐹𝑛𝐷

=
𝑈∞
𝐷

2𝜋
√

𝑚𝑠
𝑘
, (3b)

𝑀∗ =
𝜌𝑠
𝜌𝑓

, (3c)

𝜉 =
𝜁

2
√

𝑘𝑚𝑠
, (3d)

𝐺 = 𝐿∕𝐷. (3e)

Here 𝑚𝑠 is the mass of the cylinder, 𝐹𝑛 = 1
2𝜋

√

𝑘
𝑚𝑠

is the natural frequency of the spring-cylinder system in vacuum, with its
dimensionless form 𝑓𝑛 defined as 𝑓𝑛 = 𝐹𝑛𝐷

𝑈∞
= 1

𝑈∗ . 𝜌𝑓 and 𝜌𝑠 are the densities of the fluid and the cylinders, respectively. 𝜁 and 𝑘
are the damping coefficient and stiffness coefficient, respectively. In this study, we only consider cases with no structural damping
and thus 𝜉 = 𝜁 = 0.

3. Numerical methods

3.1. Nonlinear solver

A direct-forcing immersed boundary method based on discrete streamfunction formulation, which was proposed by Wang and
Zhang (2011), is used to solve the incompressible Navier–Stokes equations. In this method, the pressure term is eliminated and
the continuity equation is automatically satisfied. The spatially discrete and temporally continuous equations for the fluid flow, the
equations for the displacements of cylinder centers and the no-slip boundary condition on the cylinder surfaces can be written as

𝑪T𝑪 �̇� + 𝑪T𝑵(𝑪𝑠) = 1 𝑪T𝑳𝑪𝑠 + 𝑪T𝑯T(𝑿)𝑭 , (4a)

Re

3 
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Fig. 2. Schematics of Eulerian and Lagrangian meshes with variable arrangements in a direct-forcing immersed boundary method based on streamfunction
formulation. The black curve represents one section of the boundary of an object. The solid blue circles (Eulerian grid points at 𝒙) represent the locations of
discrete stream function 𝑠. The horizontal and vertical arrows (→, ↑) represent the locations of two velocity components. The velocity vectors 𝒖 are defined at
each cell center (×). The red circles (Lagrangian grid points at 𝑿) represent the locations where horizontal and vertical Lagrangian force components (⇒,⇑) are
defined. The pink shaded square represents the supporting domain of 𝑯T(𝑿) at a selected Lagrangian grid point. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(

1 − 1
𝑀∗

)

𝑌𝑐,𝑖 +
( 2𝜋
𝑈∗

)2
𝑌𝑐,𝑖 =

4[
∑

(𝑭 ⋅ 𝒆2)𝛥𝑠]
𝜋𝑀∗ , (4b)

𝑯(𝑿)𝑪𝑠 = �̇� = �̇�𝑐,𝑖𝒆2. (4c)

Here 𝑠 is the discrete streamfunction, 𝑪 and 𝑪T are two discrete curl operators mimicking ∇×(⋅), 𝑵 and 𝑳 are the discrete convection
and discrete diffusion (Laplacian) operators, respectively. In constructing the discrete operators above, the spatial derivatives are
approximated with the standard second-order finite difference scheme.

In Eq. (4), 𝑿 denotes the position vectors of the Lagrangian points. 𝑭 represents the Lagrangian forces which are defined on the
Lagrangian points. The arrangements of variables on a staggered Cartesian mesh and a Lagrangian mesh are illustrated in Fig. 2.
𝑯T(𝑿) and 𝑯(𝑿) are two discrete operators based on discrete delta function for interpolating Lagrangian forces to the Eulerian
grid points and interpolating Eulerian velocity components to the Lagrangian points, respectively. More specifically, the three-point
smoothed delta function is adopted in the present study (Yang et al., 2009). For the details, please refer to Wang and Zhang (2011)
and Zhu et al. (2014).

At each time step in the solution of Eq. (4), 𝑭 is determined by an incremental correction method via enforcing the no-slip
boundary condition Eq. (4c). Tests on some canonical cases indicated that the velocity errors (i.e., slip and penetration) on the
surfaces of immersed objects are sufficiently small by following such procedure (see Wang and Zhang, 2011 for details). This method
is in some way different from the generalized projection approach proposed in Taira and Colonius (2007) and Colonius and Taira
(2008), where matrix decomposition was performed.

For the temporal advancement of Eq. (4a), the diffusion term is treated using the second-order Crank–Nicolson scheme, while
the convection term is treated using a two-stage Runge–Kutta scheme.

Since the cylinders undergo a rigid-body motion, 𝑿 is time-dependent and must be determined by solving Eq. (4b). On the
right-hand side of Eq. (4b), 𝒆2 denotes the unit vector in the vertical direction and 𝛥𝑠 is the spacing of the Lagrangian mesh. The
hydrodynamic force is computed by the summation of Lagrangian forces 𝑭 . Please note that the coefficient of the first term in the
left-hand side of Eq. (4b) is different from that in Eq. (2). Such difference arises from the correction needed in the IB method to
compensate for the motion of ‘pseudo fluid’ enclosed by the surface of the cylinder (please see Uhlmann, 2005).

A loosely-coupled scheme is used in the simulation of the FSI problem. Eq. (4b) is solved by converting it into two first-order
differential equations. By defining the vertical velocity of the 𝑖th cylinder center as 𝑉𝑐,𝑖 = �̇�𝑐,𝑖, the temporal advancement of Eq. (4b)
can expressed as

𝑉 𝑛+1
𝑐,𝑖 = 𝑉 𝑛

𝑐,𝑖 + 𝛥𝑡 𝑀∗

1 −𝑀∗

(

4[
∑

(𝑭 𝑛 ⋅ 𝒆2)𝛥𝑠]
𝜋𝑀∗ −

( 2𝜋
𝑈∗

)2
𝑌 𝑛
𝑐,𝑖

)

, (5a)

𝑌 𝑛+1
𝑐,𝑖 = 𝑌 𝑛

𝑐,𝑖 + 𝛥𝑡𝑉 𝑛+1
𝑐,𝑖 , (5b)

where 𝑛 + 1 and 𝑛 are the time indexes and 𝛥𝑡 is the time-step size.
4 
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3.2. Global linear stability solver

Here we assume that the state of the FIV system is 𝒒 = [𝑠, 𝑉𝑐,𝑖,𝑿,𝑭 ]T. The solution of the FIV system can be decomposed into
base solution and a perturbation as 𝒒 = 𝒒𝑏 + 𝒒′, where the subscript 𝑏 and superscript ′ denote variables of the base solution and

he perturbation, respectively (i.e. 𝒒𝑏 = [𝑠𝑏, 0,𝑿𝑏,𝑭 𝑏]T, 𝒒′ = [𝑠′, 𝑉 ′
𝑐,𝑖,𝑿

′,𝑭 ′]T). The base solution of the FIV system is equivalent to a
steady flow past stationary cylinders, and the perturbation is a small disturbance imposed on the system. The governing equations
for the perturbation of the FIV system can be obtained by linearizing the original equations around the base solution. The linearized
equations for the perturbation can be written as

𝑪T𝑪 �̇�′ + 𝑪T𝑵 (𝓁)(𝑠𝑏)𝑪𝑠′ = 1
Re

𝑪T𝑳𝑪𝑠′ + 𝑪T𝑯T (𝑿𝑏
)

𝑭 ′ + 𝑪T 𝜕𝑯T(𝑿)
𝜕𝑿

|

|

|

|

|𝑿=𝑿𝑏

𝑭 𝑏𝑿′, (6a)

(

1 − 1
𝑀∗

)

�̇� ′
𝑐,𝑖 +

( 2𝜋
𝑈∗

)2
𝑌 ′
𝑐,𝑖 =

4[
∑

(𝑭 ′ ⋅ 𝒆2)𝛥𝑠]
𝜋𝑀∗ , (6b)

�̇� ′
𝑐,𝑖 = 𝑉 ′

𝑐,𝑖, (6c)

𝑯
(

𝑿𝑏
)

𝑪𝑠′ +
𝜕𝑯(𝑿)
𝜕𝑿

|

|

|

|𝑿=𝑿𝑏

𝑪𝑠𝑏𝑿′ = �̇�′ = 𝑉 ′
𝑐,𝑖𝒆2, (6d)

here 𝑵 (𝓁) is the linearized convection operator. It should be noted that both the Lagrangian forcing 𝑭 and the position vector 𝑿
eed to be perturbed in the linearization procedure.

Eq. (6a) represents the linearized momentum equation of the fluid flow, while Eqs. (6b)–(6d) are the linearized structural
quations and linearized boundary condition at the cylinder surfaces. The elements in the two Jacobian matrices 𝜕𝑯T(𝑿)

𝜕𝑿 and 𝜕𝑯(𝑿)
𝜕𝑿

which arise in the linearization procedure are approximated with a first-order finite difference scheme (see Goza et al., 2018). More
specifically, the 𝑘th column of 𝜕𝑯T(𝑿)

𝜕𝑿 can be approximated by 𝑯T(𝑿𝑏+𝜀𝐞𝑘)−𝑯T(𝑿𝑏)
𝜀 , where 𝐞𝑘 is the unit vector in the 𝑘th direction

and 𝜀 is a small real scalar. In the present study, 𝜀 is set to 10−5. The results are found to be insensitive to the value of 𝜀, in the
range of 10−6 ≤ 𝜀 ≤ 10−3.

The linearized equations of the FIV system (i.e. Eq. (6)) can be written in a more concise matrix form as

𝑩
𝜕𝒒′

𝜕𝑡
= 𝑨(𝒒𝑏)𝒒′. (7)

y using the normal-mode assumption 𝒒′ = �̂�(𝒙,𝑿)𝑒𝜆𝑡, the solution of the linearized equations can be expressed as that of a
eneralized eigenvalue problem 𝜆𝑩�̂� = 𝑨�̂�. This generalized eigenvalue problem is then solved by a shift-invert method using
ETSc and SLEPc libraries (Balay et al., 2024; Hernandez et al., 2005). The tolerance for the convergence of computed eigenvalues
nd eigenvectors is set to 10−8 in the present study.

The base solution of the FIV system (i.e., a steady flow past stationary cylinders) is obtained by solving the steady-state nonlinear
quations Eq. (4) using the Newton–Raphson method. The solution procedure is considered to be converged when the difference
etween two consecutive iterations is less than 10−8.

It is worthy mentioning that the method proposed in this work can be generalized to tackle three-dimensional FIV systems
e.g. Govardhan and Williamson, 2005, Jauvtis et al., 2001, Rajamuni et al., 2020). The immersed boundary method of Wang and
hang (2011) is capable of handling three-dimensional geometries. In principle, the derivation of linearized equations in the present
ork is also valid in a three-dimensional situation.

. Validation and results

In this section, the code validation tests are presented first. The validation tests include linear stability analyses of the flow past
stationary cylinder and the flow past an isolated elastically mounted cylinder. After that, the result of linear stability analysis on

he flow past two tandem elastically mounted cylinders is presented.

.1. Linear stability of the flow past a stationary cylinder

In the linear stability analysis of the flow past a stationary cylinder, no structural motion is involved. Thus, the linearized
quations degenerate into a much simpler form as

𝑪T𝑪 �̇�′ + 𝑪T𝑵 (𝓁)(𝑠𝑏)𝑪𝑠′ = 1
Re

𝑪T𝑳𝑪𝑠′ + 𝑪T𝑯T (𝑿𝑏
)

𝑭 ′, (8a)

𝑯
(

𝑿𝑏
)

𝑪𝑠′ = 0. (8b)

A non-uniform Cartesian mesh on a computational domain of [80𝐷 × 56𝐷] is used to perform nonlinear simulation and linear
stability analysis (see Fig. 3). The mesh is stretched in such a way that the minimum grid spacing of 0.02𝐷 is uniformly distributed in

small region of [10𝐷×4𝐷] around the cylinder, while the maximum grid spacing of 0.55𝐷 is attained near the domain boundaries.
The boundary conditions in the nonlinear simulation are as follows. At the inlet, a uniform streamwise velocity with zero

rosswise velocity is prescribed. At the top and bottom walls, a slip-wall boundary condition is enforced. At the outlet, the constant
5 
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Fig. 3. Schematics of computational domain and mesh used in the simulation.

Table 1
Comparison of eigenvalues predicted in the present study and some reference solutions for the
flow past a stationary cylinder.
Re Present Giannetti and Luchini (2007) Relative error

48 0.006+0.734i 0.006+0.744i 1.34%
100 0.123+0.727i 0.123+0.737i 1.32%

Fig. 4. Vorticity field of the real part of the leading eigenmode for the flow past a stationary cylinder at Re=100.

pressure condition is imposed. A fixed time-step size, which ensures that the 𝐶𝐹𝐿 number is lower than 0.5, is used in temporal
advancement. In the linear stability analysis, zero velocity perturbation is prescribed at the inlet and the two side walls. At the
outlet, the condition of constant pressure perturbation is prescribed. Convergence tests have been conducted to guarantee that the
mesh resolution and domain size are sufficient for obtaining accurate results.

The linear stability property of cylinder wake has been extensively investigated. The critical Reynolds number for the onset of
vortex shedding obtained here is Re𝑐 = 46.4. This value is very close to the ones obtained in the existing literature. The results of
linear stability analysis for the case of Re = 50 (where the Reynolds number is slightly higher than Re𝑐) and the case of Re = 100
(where the Reynolds number is much higher than Re𝑐) are presented here. The eigenvalues of the unstable modes in the two cases
are compared with the results from Giannetti and Luchini (2007) in Table 1. An excellent agreement between them can be clearly
seen from the table. The vorticity field of the unstable mode for the case of Re = 100 is shown in Fig. 4. The spatial distribution of
vorticity in this figure is in consistency with that shown in Barkley (2006) (see figure 3 of Barkley, 2006).

4.2. Linear stability of the flow past an elastically mounted cylinder

Here we consider a canonical FIV system — flow past an isolated cylinder which is free to oscillate in the transverse direction.
Three series of cases with different combinations of Reynolds number and density ratio, i.e., (Re = 40, 𝑀∗ = 10), (Re = 60, 𝑀∗ = 20)
and (Re = 60, 𝑀∗ = 5) are simulated here. In the first series, the reduced velocity varies in the range of 4.0–11.0, while in the other
two series, the reduced velocity varies in the range of 3.0–11.0.
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Fig. 5. Variations in (𝑎) growth rate and (𝑏) dimensionless frequency of the two least stable modes with reduced velocity for Re = 40 and 𝑀∗ = 10.

The full linearized FSI equations (i.e., Eq. (6)) are solved in the linear stability analysis of the FIV system. The computational
domain and mesh described in Section 4.1 are also used here. The boundary conditions at the four sides of the computational domain
are the same as those described in Section 4.1. Please note that the base solution for this FIV system is the also same as that for the
flow past a stationary cylinder.

In the first series (i.e., Re = 40, 𝑀∗ = 10), the Reynolds number is below the critical value for the onset of vortex shedding in a
stationary cylinder. The variations in growth rate and dimensionless frequency of the two least stable modes with reduced velocity
are shown in Fig. 5(𝑎) and Fig. 5(𝑏), respectively. (The growth rate is the real part of the eigenvalue, while the dimensionless
frequency is the imaginary part of the eigenvalue multiplied by a factor of 1

2𝜋 .) The results indicate that only one mode of the FIV
system becomes unstable within a certain range of reduced velocity. We refer to this mode as elastic mode (EM). The frequency
of this mode scales as 1∕𝑈∗ (the same way as the natural frequency of a spring–mass system does), hence its name. In the study
by Navrose and Mittal (2016), it was found that the range of unstable EM mode coincided with the range of the lock-in regime.
This is also confirmed by the result of the present study. The vorticity fields of the real and imaginary parts of EM mode at 𝑈∗ = 7
(which lies in the unstable range) are shown in Fig. 6(𝑎) and Fig. 6(𝑏), respectively. We refer to the other mode (which is always
stable in this series of cases), as the fluid mode (FM). The frequency of this mode only varies to a small extent around 0.12 with
varying 𝑈∗. Such frequency value is close to that of the least stable mode in linear stability analysis of the flow past a stationary
cylinder (see Giannetti and Luchini, 2007), hence its name.

In the second series (i.e., Re = 60, 𝑀∗ = 20), the Reynolds number surpasses the critical value of vortex shedding in a stationary
cylinder. The variations in growth rate and dimensionless frequency of the two least stable modes with reduced velocity are shown
in Fig. 7(𝑎) and Fig. 7(𝑏), respectively. Similar to the previous series, one unstable EM mode can be identified in a certain range of
𝑈∗. However, unlike the previous series, an unstable FM mode can be identified in the entire range of 𝑈∗. The vorticity fields of
the real part of EM and FM modes at 𝑈∗ = 7 are shown in Fig. 8(𝑎) and Fig. 8(𝑏), respectively.

In the third series (i.e., Re = 60, 𝑀∗ = 5), the Reynolds number also surpasses the critical value of vortex shedding in a stationary
cylinder, while the density ratio is much lower than that of the second series. The variations in growth rate and dimensionless
frequency of the two least stable modes with reduced velocity are shown in Fig. 7(𝑐) and Fig. 7(𝑑), respectively. Unlike the previous
series, however, now it is not possible to classify the two leading modes as either EM mode or FM mode. We refer to these two
modes as coupled modes, (i.e., FEM-I mode and FEM-II mode). Near the low-𝑈∗ end, FEM-I mode behaves like a fluid mode, while
FEM-II mode acts as an elastic mode. Near the high-𝑈∗ end, the roles that the two modes play are reversed (FEM-I mode acts as an
elastic mode, while FEM-II mode behaves like a fluid mode). From Fig. 7(𝑐), it is also seen that there exists at least one unstable
mode in the entire range of 𝑈∗. FEM-I mode exhibits instability near the low-𝑈∗ end and then transits into a stable mode as 𝑈∗

increases. On the contrary, FEM-II mode is stable near the low-𝑈∗ end and transits into an unstable mode as 𝑈∗ increases. The
vorticity fields of the real part of FEM-I mode and FEM-II mode at 𝑈∗ = 6 are shown in Fig. 8(𝑐) and Fig. 8(𝑑), respectively.

The growth rates and dimensionless frequency of the two least stable modes predicted in the present study are largely in
consistency with those from the literature. For the series with a subcritical Re number, the growth rate matches very well with
the result of Negi et al. (2020), and only deviates slightly from that of Navrose and Mittal (2016). For the two series with a
supercritical Re number, the growth rate is in excellent agreement with the result of Sabino et al. (2020), and deviated slightly
from that of Navrose and Mittal (2016). The flow fields of the two leading modes obtained here are also found to be in agreement
with those from Navrose and Mittal (2016).

4.3. Linear stability of the flow past two tandem elastically mounted cylinders

The flow past two elastically mounted tandem cylinders is a more complex FIV system. Four series of cases are selected in the
simulations of the present study. The values of parameters for these cases are listed in Table 2.
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Fig. 6. Vorticity fields of the real (𝑎) and imaginary (𝑏) parts of the EM mode for (Re = 40, 𝑀∗ = 10, 𝑈 ∗ = 7).

Fig. 7. Variations in (𝑎)(𝑐) growth rate and (𝑏)(𝑑) dimensionless frequency of the two least stable modes with reduced velocity at Re = 60 for (𝑎)(𝑏) 𝑀∗ = 20
and (𝑐)(𝑑) 𝑀∗ = 5.

Fig. 8. Vorticity fields of the real part of (𝑎) FM mode and (𝑏) EM mode for (Re = 60, 𝑀∗ = 20, 𝑈 ∗ = 7), and (𝑐) FEM-I mode and (𝑑) FEM-II mode for (Re
= 60, 𝑀∗ = 5, 𝑈 ∗ = 6).
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Table 2
Values of control parameters for the flow past two tandem elastically mounted cylinders.
Series Re 𝑀∗ 𝐺 𝑈 ∗

A 100 2.546 1.5 3.0–20.0
B 60 2.546 1.5 3.0–20.0
C 100 20.0 1.5 3.0–20.0
D 100 10.0 1.1 3.0–18.0

Fig. 9. Variations in maximum displacements of the front and rear cylinders with reduced velocity for Re=200, 𝑀∗=2.546, and 𝐺=1.5.

The reason for such selection is provided below. Series A has been investigated by Tirri et al. (2023), and the results were well
documented. The inclusion of this series in the present study is mainly for the purpose of comparison. This series represents the
situation with a supercritical Re number and a relatively low density ratio. The parameters in other three series lie in a range that has
never been explored in the existing literature (in the sense of linear stability analysis). Series B represents the situation in which the
Re number is reduced below the critical value and the density ratio is relatively low. (A discussion on the critical Re numbers in the
flows past two tandem stationary cylinders will be presented in Section 4.3.2). Series C represents the situation with a supercritical
Re number and a high density ratio. Series D represents the situation with a supercritical Re number, an intermediate density ratio,
and a reduced gap ratio. Unlike the other three series, the galloping phenomenon was observed in this series of cases (see Sharma
and Bhardwaj, 2023).

4.3.1. Code validation: nonlinear simulation
Prior to the linear stability analysis of the four series of cases listed in Table 2, nonlinear simulation is first conducted on another

series of cases with Re = 200, 𝑀∗ = 2.546, 𝐺 = 1.5 and 2 ≤ 𝑈∗ ≤ 14. The results of the nonlinear simulation are compared with
available data from the literature to further validate our code.

Fig. 9 shows the variations in maximum displacements of two cylinders with reduced velocity. The results from Griffith et al.
(2017) and Borazjani and Sotiropoulos (2009) are also included for comparison. It is seen that the result of the present study
is in excellent agreement with those from the literature. Fig. 10 shows the Lissajous curves of lift coefficient and dimensionless
displacement at two reduced velocities (𝑈∗ = 6, 8). These curves bear a striking resemblance to those shown in figure 14 of Griffith
et al. (2017).

4.3.2. Critical Reynolds numbers of the flows past two tandem stationary cylinders
Similar to that described in Section 4.1, linear stability analysis is performed on the flows past two tandem stationary cylinders to

determine the critical Re numbers. Fig. 11 displays the variation in critical Reynolds number with the gap ratio. A good consistency
between the result of this paper and the linear stability calculation from Carmo et al. (2008) is clearly seen. Additionally, at 𝐺
= 1.5, the critical Reynolds number is found to be 74.1, which is very close to the result from Mizushima and Suehiro (2005)
(i.e., Re𝑐 = 73.95). The vorticity fields of the real parts of the leading modes for the flows past two tandem stationary cylinders at
Re=100 with 𝐺 = 1.1 and 𝐺 = 1.5 are shown in Fig. 12.
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Fig. 10. Lissajous curves of lift coefficient and displacement for Re=200, 𝑀∗=2.546, 𝐺=1.5, and (𝑎) 𝑈 ∗ = 6, (𝑏) 𝑈 ∗ = 8.

Fig. 11. Variation in critical Reynolds number with gap ratio for the flow past two tandem stationary cylinders.

Fig. 12. Vorticity field of the real part of the leading mode for the flow past two tandem stationary cylinders at Re=100, with (𝑎) 𝐺 = 1.1 and (𝑏) 𝐺 = 1.5.

4.3.3. Linear stability analysis
The results of linear stability analysis of series A-D listed in Table 2 are presented in this subsection. To elucidate the connection

between linear stability calculation and lock-in and galloping phenomena, nonlinear simulation is also conducted on the same cases.
A mesh independent test and a domain independent test have been conducted to ensure that mesh resolution and domain size are
sufficient for obtaining accurate results (see Appendix for the details).

For series A, the Reynolds number is 100, which lies in the supercritical range. The results of series A are shown in Fig. 13.
Fig. 13(𝑎) and Fig. 13(𝑏) show the variations in growth rates and dimensionless frequencies of the two least stable modes with
reduced velocity, respectively. Similar to Fig. 7(𝑎) and Fig. 7(𝑏), two leading modes can be identified as coupled modes (i.e., FEM-I
mode and FEM-II mode). It is also evident that at least one unstable mode exists in the entire range of 𝑈∗. FEM-I mode behaves
like a fluid mode and an elastic mode at the low-𝑈∗ and high-𝑈∗ ends, respectively. The behavior of FEM-II mode is just the other
way around. At the high-𝑈∗ end, the growth rate of FEM-II mode approaches the value attained by FEM-I mode at the low-𝑈∗ end.
10 
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It is also found that near the position where two growth-rate curves intersect, the frequencies of two modes are also very close to
each other. This is one typical characteristics which only shows up in cases with coupled modes.

At relatively low reduced velocities, the growth rates and dimensionless frequencies of the leading modes generally match well
ith those reported in Tirri et al. (2023). Some visible differences between the two results are found when the reduced velocity

s increased. Such deviations are primarily attributed to different numerical strategies employed in the two studies. Unlike the
resent work, the leading eigenvalues of the linearized system were computed by a Jacobi-free approach in Tirri et al. (2023). The
iscrepancies in the leading eigenvalues were also reported in the investigation of the single-cylinder FIV system, when the result
rom Tirri et al. (2023) and those from Navrose and Mittal (2016) and Sabino et al. (2020)) were compared (see figure 4 of Tirri
t al., 2023).

The variations in dimensionless maximum amplitude and frequency of the nonlinear responses with reduced velocity are shown
n Fig. 13(𝑐) and Fig. 13(𝑑), respectively. It is seen that the lock-in regime in nonlinear responses does not correspond to the range

of 𝑈∗ over which either FEM-I mode or FEM-II mode becomes unstable. The low-𝑈∗ end of the lock-in regime coincides with the
threshold 𝑈∗ at which FEM-II mode becomes unstable. However, at the high-𝑈∗ end of the lock-in regime (near 𝑈∗ = 15.0), the
FEM-II mode remains unstable. Thus, we cannot affirm that it is the unstable FEM-II mode that leads to lock-in. The high-𝑈∗ end
of the lock-in regime cannot be predicted by the stability property of FEM-I mode either, since FEM-I mode restores its stability
at a much lower value of 𝑈∗ (roughly 6.0). It is found that the high-𝑈∗ end of the lock-in regime is close to the position where
FEM-I mode and FEM-II mode switch their roles (near 𝑈∗ = 14.0). We tend to believe that the final desynchronization in nonlinear
responses can be explained by the fact that the stable FEM-I mode takes over the role of an elastic mode from the unstable FEM-II
mode. In Navrose and Mittal (2016), a similar finding was reported in the study of single-cylinder FIV system. They eventually
confirmed that it was FEM-II mode that led to lock-in through a deep investigation on the distribution of energy between fluid and
structure in the eigenmodes. Here we also stress that out of the lock-in regime, the amplitudes of cylinders are of order 10−3 (but
no identically zero). This is in consistency with the finding that (at least) one unstable mode exists in the entire range of 𝑈∗. From
Fig. 13(𝑏) and Fig. 13(𝑑), it is also observed that in most part of the lock-in regime, the frequencies in nonlinear responses and the
two leading modes deviate noticeably from the natural frequency. This is because that the nominal natural frequency here refers
to that of a spring–mass system placed in vacuum. At a low density ratio, due to the existence of strong added-mass effect, such
frequency may deviate substantially from the true natural frequency of the FIV system (see Zhang et al., 2015).

The vorticity fields of the real parts of FEM-I mode and FEM-II mode at three different values of 𝑈∗ are shown in Fig. 14. At a
low reduced velocity, the vorticity filed of FEM-I mode closely resembles that of the stationary wake mode (see Fig. 12(𝑏)), whereas
the vorticity field of FEM-II mode bears similarities to EM mode of the single-cylinder FIV system (see Fig. 8(𝑏)). Near the high-𝑈∗

end, the roles of FEM-I mode and FEM-II mode are exchanged. Specifically, FEM-I mode behaves like an elastic mode, while FEM-II
mode behaves like a fluid mode. Such change in behaviors of the two modes is clearly displayed in this figure. For FEM-I mode, the
region with large perturbation is shifted downstream. This is a typical feature of an elastic mode when 𝑈∗ is increased (or when the
frequency is reduced). For FEM-II mode, the vorticity field resembles that of the stationary wake mode. These findings in vorticity
fields of the dual-cylinder FIV system are similar to those reported in the study of the single-cylinder FIV system (see Navrose and
Mittal, 2016).

For series B, the Reynolds number is 60, which lies in the subcritical range. The results of series B are shown in Fig. 15. Fig. 15(𝑎)
and Fig. 15(𝑏) show the variations in growth rates and dimensionless frequencies of the two least stable modes with reduced velocity,
respectively. As can be seen here, the two leading modes are classified as FM mode and EM mode. FM mode remains stable in the
entire range of 𝑈∗, while EM mode becomes unstable in a wide range of 5.2 ≤ 𝑈∗ ≤ 17.0. It is found that in the range of 𝑈∗ where the
frequencies of two modes are close to each other, the growth rates of them deviate significantly. This is the typical characteristics
which is found in cases with uncoupled modes. The behaviors of FM mode and EM mode shown here are found to be similar to
those of the single-cylinder FIV system at a subcritical Re (see Fig. 5). The only difference between them is that the range of 𝑈∗

where the EM mode is unstable in this case is much wider than that in the case of single-cylinder system.
The variations in dimensionless maximum amplitude and frequency of the nonlinear response with reduced velocity are shown

in Fig. 15(𝑐) and Fig. 15(𝑑), respectively. It is seen that the range of 𝑈∗ over which EM mode becomes unstable coincides with that
of the lock-in regime. Clearly, it can be concluded that it is the unstable EM mode that leads to lock-in. In contrast with series A,
the amplitudes of cylinders are identically zero (to machine precision) out of the lock-in regime. This can be explained by the fact
no unstable mode exists out of the lock-in regime. A similar finding was also reported in the study of single-cylinder FIV system at
a subcritical Re (see Navrose and Mittal, 2016). Again, for the same reason aforementioned, in most part of the lock-in regime, the
frequencies in the nonlinear response and two leading modes also deviate noticeably from the nominal natural frequency.

The vorticity fields of the real parts of EM mode at different 𝑈∗ are shown in Fig. 16. As 𝑈∗ increases, the frequency of EM
mode decreases, which leads to an elongation of vortical structures.

For series C, the Re number is the same as that in series A (which lies in the supercritical range), but the density ratio is much
higher. The results of series C are shown in Fig. 17. Fig. 17(𝑎) and Fig. 17(𝑏) show the variations in growth rates and dimensionless
frequencies of the two least stable modes with reduced velocity, respectively. As can be seen, the two leading modes are also
classified as EM mode and FM mode. The results of stability calculation of series A-C indicate that whether the leading modes are
coupled or decoupled depends on both the Reynolds number and the density ratio. Unlike series B, the FM mode in series C is found
to be unstable in the entire range of 𝑈∗. At the high-𝑈∗ end, the growth rate of FM mode approaches the value attained in itself at
the low-𝑈∗ end. EM mode becomes unstable only in a narrow range of 5.7 ⩽ 𝑈∗ ⩽ 7.5. Similar to series B, in the range of 𝑈∗ where
the frequencies of two modes are close to each other, the growth rates of them deviate significantly.
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Fig. 13. Results of stability calculation and nonlinear simulation of series A (Re = 100, 𝑀∗ = 2.546, 𝐺 = 1.5): variations in (𝑎) growth rate and (𝑏) dimensionless
frequency of the two least stable modes, variations in (𝑐) dimensionless maximum amplitudes and (𝑑) dimensionless frequencies of nonlinear responses with
reduced velocity. The range of reduced velocity over which the system is linearly unstable in (𝑎) and (𝑏) is shaded in cyan. The range of reduced velocity for
the lock-in regime in (𝑐) and (𝑑) is shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. Vorticity fields of the real part of (𝑎, 𝑐, 𝑒) FEM-I mode and (𝑏, 𝑑, 𝑓 ) FEM-II mode for series A (Re = 100, 𝑀∗ = 2.546, 𝐺 = 1.5) at (𝑎, 𝑏) 𝑈 ∗ = 5.4,
(𝑐, 𝑑) 𝑈 ∗ = 12, and (𝑒, 𝑓 ) 𝑈 ∗ = 18.

The variations in dimensionless maximum amplitude and frequency of the nonlinear response with reduced velocity are shown
in Fig. 17(𝑐) and Fig. 17(𝑑), respectively. It is seen that the low-𝑈∗ end of the lock-in regime coincides with the threshold 𝑈∗ where
EM mode becomes unstable. However, the high-𝑈∗ end of the lock-in regime (near 𝑈∗ = 9.5) does not coincide with the value of
𝑈∗ where stability of EM mode is restored (near 𝑈∗ = 7.5). It is reasonable to believe that in the first part of the lock-in regime
(5.8 ≤ 𝑈∗ ≤ 7.5), lock-in is induced by the unstable EM mode, while in the second part (7.5 ≤ 𝑈∗ ≤ 9.5), it is the unstable FM mode
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Fig. 15. Results of stability calculation and nonlinear simulation of series B (Re = 60, 𝑀∗ = 2.546, 𝐺 = 1.5): variations in (𝑎) growth rate and (𝑏) dimensionless
frequency of the two least stable modes, variations in (𝑐) dimensionless maximum amplitudes and (𝑑) dimensionless frequencies of nonlinear responses with
reduced velocity. The range of reduced velocity over which the system is linearly unstable in (𝑎) and (𝑏) is shaded in cyan. The range of reduced velocity of
the lock-in regime in (𝑐) and (𝑑) is shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 16. Vorticity fields of the real part of EM mode for series B (Re = 60, 𝑀∗ = 2.546, 𝐺 = 1.5).

that leads to lock-in. The lock-in regime ends at a position where the frequency of FM mode and the natural frequency are sufficiently
far apart from each other. In the study of single-cylinder FIV system by Zhang et al. (2015), these two distinct mechanisms which
led to lock-in were termed as ‘flutter-induced’ and ‘resonance-induced’, respectively. Unlike series A and series B, in the lock-in
regime of series C, the frequencies in both nonlinear responses and the two leading modes are very close to the natural frequency.
This is because that the added-mass effect becomes insignificant when the density ratio is sufficiently high. Similar to series A, out
of the lock-in regime, the amplitudes of cylinders are small but no identically zero. Again, this can be explained by the presence of
an unstable mode in the entire range of 𝑈∗.

The vorticity fields of the real parts of FM mode and EM mode at different values of 𝑈∗ are shown in Fig. 18. From this figure, it is
evident that the change in the value of 𝑈∗ has a negligible effect on the vorticity distribution of FM mode. The vorticity distribution
of FM mode closely resembles that of the stationary wake mode (see Fig. 12(𝑏)). Contrarily, when 𝑈∗ increases, the regions with
large perturbation in the EM mode are shifted downstream and with an elongation in the shape.
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Fig. 17. Results of stability calculation and nonlinear simulation of series C (Re = 100, 𝑀∗ = 20.0, 𝐺 = 1.5): variations in (𝑎) growth rate and (𝑏) dimensionless
frequency of the two least stable modes, variations in (𝑐) dimensionless maximum amplitudes and (𝑑) dimensionless frequencies of nonlinear responses with
reduced velocity. The range of reduced velocity over which the system is linearly unstable in (𝑎) and (𝑏) is shaded in cyan. The range of reduced velocity for
the lock-in regime in (𝑐) and (𝑑) is shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 18. Vorticity fields of the real part of (𝑎, 𝑐, 𝑒) FM mode and (𝑏, 𝑑, 𝑓 ) EM mode for series C (Re = 100, 𝑀∗ = 20.0, 𝐺 = 1.5).

For series D, the Re number is the same as that in series A (which also lies in the supercritical range), and the density ratio is
moderate. Comparing with series A-C, the gap ratio is now reduced from 1.5 to 1.1. The results of series D are shown in Fig. 19.
Fig. 19(𝑎) and Fig. 19(𝑏) show the variations in growth rates and dimensionless frequencies of the two least stable modes with
reduced velocity, respectively. It is evident that two decoupled modes (EM mode and FM mode) can also be identified. FM mode
remains unstable in the entire range of 𝑈∗. EM mode first becomes unstable at 𝑈∗ = 5.2. In a narrow range near 𝑈∗ = 8.2, the
growth rate of EM mode attains a very small positive value close to zero. Unlike series C, however, with further increase in 𝑈∗,
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Fig. 19. Results of stability calculation and nonlinear simulation of series D (Re = 100, 𝑀∗ = 10.0, 𝐺 = 1.1): variations in (𝑎) growth rate and (𝑏) dimensionless
frequency of the two least stable modes, variations in (𝑐) dimensionless maximum amplitudes and (𝑑) dimensionless frequencies of nonlinear responses with
reduced velocity. The range of reduced velocity over which the system is linearly unstable in (𝑎) and (𝑏) is shaded in cyan. The range of reduced velocity for
the galloping regime in (𝑐) and (𝑑) is shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

EM mode never becomes stable again. The growth rate of EM mode first increases and then slowly declines. It finally approaches a
positive value at the high-𝑈∗ end.

The variations in dimensionless maximum amplitude and frequency of nonlinear response with reduced velocity are shown
in Fig. 19(𝑐) and Fig. 19(𝑑), respectively. A galloping-like response of the cylinders is observed at high reduced velocities. More
specifically, the amplitudes of both cylinders increase monotonically with reduced velocity after an initial jump. Such response
is very similar to that observed in an elastically mounted D-section cylinder (see Zhao et al., 2018 and Sharma et al., 2022). The
response of the cylinders predicted here is also in consistency with that obtained by the nonlinear simulation of Sharma and Bhardwaj
(2023). From the stability calculation, it is seen that value of 𝑈∗ for the initial jump in amplitude coincides with the threshold 𝑈∗

where EM mode becomes unstable. Thus, the unstable EM mode is responsible for the initial jump in amplitude. In the range of 𝑈∗

before the jump, the amplitudes are small but no identically zero. This can be explained by the presence of the unstable FM mode.
Since the stability of EM mode is never restored for 𝑈∗ ≥ 5.2, it is reasonable to believe that the galloping-like behavior is also
induced by the unstable EM mode. It is seen here that in the galloping regime the frequencies of nonlinear response and the EM
mode are always locked onto the natural frequency. Similar to series C, this can be explained by insignificant added-mass effect at
a relatively high density ratio.

Here we also stress that there exists a difference between the galloping phenomenon observed here and that observed in an
isolated square cylinder where the galloping regime is clearly separated from the lock-in regime. The stability calculation of the
square-cylinder case indicated that the galloping behavior near the high-𝑈∗ end can also be explained by the existence of unstable
EM mode (see Li et al., 2019). However, in the square-cylinder case, the stability property of EM mode failed in predicting the onset
point of either the lock-in regime or the galloping regime.

The vorticity fields of the real parts of FM mode and EM mode at different values of 𝑈∗ are shown in Fig. 20. The vorticity fields
of FM mode and EM mode closely resemble those obtained in series C (see Fig. 18). Please be noted that for series D, the elongated
vortical structure of the unstable EM mode is responsible for the galloping-like response of the cylinders at high reduced velocities.
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Fig. 20. Vorticity fields of the real part of (𝑎, 𝑐, 𝑒) FM mode and (𝑏, 𝑑, 𝑓 ) EM mode for series D (Re = 100, 𝑀∗ = 10.0, 𝐺 = 1.1).

5. Conclusions

A numerical technique in the framework of the immersed boundary method for performing global linear stability analysis of rigid-
body-motion FSI problems is proposed. The Jacobian matrices associated with the perturbation of Lagrangian points in linearizing
the coupled fluid–structure equations are derived numerically using a first-order finite difference scheme. The linear stability solver
is first validated using two canonical cases, including the flow past a stationary cylinder and the flow past an isolated elastically
mounted cylinder. The results obtained here are compared with the available data from the literature and an excellent agreement
between them is achieved.

The solver is then applied to study the linear stability of the flow past two elastically mounted cylinders in tandem arrangement.
Four series of cases with different combinations of Reynolds number, density ratio and gap ratio are investigated. Two leading
modes are identified and the variations in growth rate and frequency of the leading modes with reduced velocity are examined.

The mechanisms of the lock-in and galloping phenomena observed in nonlinear simulation are also elucidated from the
perspective of instabilities in the leading modes. In the first series, two coupled modes (FEM-I mode and FEM-II mode) are identified.
The instability in FEM-II mode is responsible for the onset of lock-in, while the role switch between the two modes is responsible
for the termination of lock-in. In the other three series, two uncoupled modes (EM mode and FM mode) are identified. In the
second series, Re number lies in the subcritical range and it is the unstable EM mode that leads to lock-in. In the third series, Re
number lies in the supercritical range and lock-in is related to two coexisting mechanisms, namely, ‘flutter-induced’ mechanism and
‘resonance-induced’ mechanism. The instabilities in EM mode and FM mode are linked with the former and the latter mechanisms,
respectively. In the fourth series, Re number lies in the supercritical range and it is the unstable EM mode that leads to galloping.
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Table A.3
Effect of mesh resolution on maximum displacements of cylinders for (Re = 100, 𝑀∗ = 2.546, 𝐺 =
1.5, 𝑈 ∗ = 6.0).
Mesh spacing 𝛥ℎ = 𝐷∕25 𝛥ℎ = 𝐷∕50 𝛥ℎ = 𝐷∕100

𝑌𝑚𝑎𝑥: front 0.7908 0.7677 0.7612
𝑌𝑚𝑎𝑥: rear 0.9808 0.9165 0.9011

Table A.4
Effect of mesh resolution on eigenvalues of two leading modes for (Re = 100, 𝑀∗ = 2.546, 𝐺 =
1.5, 𝑈 ∗ = 6.0).
Mesh spacing 𝛥ℎ = 𝐷∕25 𝛥ℎ = 𝐷∕50 𝛥ℎ = 𝐷∕100

FEM-I mode −0.0050+0.8049i −0.0052+0.8004i −0.0054+0.7985i
FEM-II mode 0.0926+0.8504i 0.0973+0.8571i 0.0987+0.8616i

Table A.5
Effect of domain size on maximum displacements of cylinders for (Re = 100, 𝑀∗ = 2.546, 𝐺 =
1.5, 𝑈 ∗ = 6.0).
Domain size [56𝐷 × 40𝐷] [80𝐷 × 56𝐷] [104𝐷 × 74𝐷]

𝑌𝑚𝑎𝑥: front 0.7683 0.7677 0.7670
𝑌𝑚𝑎𝑥: rear 0.9250 0.9165 0.9128

Table A.6
Effect of domain size on eigenvalues of two leading modes for (Re = 100, 𝑀∗ = 2.546, 𝐺 =
1.5, 𝑈 ∗ = 6.0).
Domain size [56𝐷 × 40𝐷] [80𝐷 × 56𝐷] [104𝐷 × 74𝐷]

FEM-I mode −0.0082+0.8068i −0.0052+0.8004i −0.0045+0.7964i
FEM-II mode 0.0999+0.8595i 0.0973+0.8571i 0.0960+0.8560i

Appendix. Mesh and domain independence tests

To ensure that the mesh resolution and domain size are sufficient for obtaining accurate results in the simulations, two
onvergence tests are conducted.

A series of stretched Cartesian meshes are used in the mesh convergence tests (see Fig. 3). The parameter values used in the
ests are: Re = 100, 𝑀∗ = 2.546, 𝐿 = 1.5, 𝑈∗ = 6.0. Three different meshes resolutions are employed, with the finest grid spacing

near the cylinders being 𝐷∕25, 𝐷∕50, and 𝐷∕100, respectively. The impact of mesh resolution on the maximum displacements of
the cylinders is presented in Table A.3. From this table, it is observed that the variations in maximum amplitudes of both cylinders
are less than 2% as the grid spacing decreases from 𝐷∕50 to 𝐷∕100. Additionally, the effect of grid spacing on eigenvalues is shown
n the Table A.4. The result indicates that the grid spacing of 𝐷∕50 is sufficiently fine for obtaining accurate eigenvalues.

A domain size independence test is also conducted on the same case. From the Table A.5, it is observed that the domain size
as very little effect on the maximum amplitudes of the cylinders. The stability calculations are found to be more sensitive to the
omain size (as shown in Table A.6). Again, results from this table indicate that a domain size of [80𝐷 × 56𝐷] is sufficiently large
or obtaining accurate eigenvalues.
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