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Fig. 1 Femoral morphological parameters: anterior arch angle and anteversion angle
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3 Mbone Sawbones ( : mm) : (a) ; (b) ; (o) 3 (D)
Fig. 3 Mbone femur and Sawbones femur(unit; mm) : (a) experimental samples;
(b) front view; (c) anterior arch angle; (d) anteversion angle
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6 (a) Mbone Sawbones ; (b)

Fig. 6 (a)torsion test of Mbone femur and Sawbones femur; (b)torsional fixation diagram
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Fig. 9 Strain distribution around Mbones and Sawbones femur under compression:

(a)anterior femur; (b)medial femur; (c)posterior femur; (d)lateral femur
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, Mbone o
» Mbone Sawbones 7.2%,
3500N, 1, 2290N
~A471ON# 5] . . ,

s . Mbone s Mbone



292 (2024 ) 39
1
Tab.1 Investigation on compression failure load of corpse femur in previous literature
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Compression and torsion biomechanical equivalence study of Mbone

LI Yu'?, XIN Peng’, LIU Moyu®*, WANG Zhixuan*, WANG Jun**®, HUAN Yong**

(1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 3. Department of Orthopaedics, General Hospital of
Southern Theater Command of PLA, Guangzhou 510010, Guangdong, China; 4. School of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China; 5. Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311121,

Zhejiang, China)

Abstract: Cadaver bone is often used in clinic and bone biomechanical research, but its samples are
scarce and the consistency between samples is poor. Therefore, a simulated bone with mechanical
equivalence to cadaver bone is indispensable. Sawbones is currently the most recognized artificial bone
with mechanical equivalence, but it is developed based on the American bones, which is quite different
from the Chinese bones, especially the femoral anteversion and anterior arch of the femur. The
purpose of this paper is to research the compressive and torsional mechanical properties of the new
Chinese mechanical equivalent simulation bone Mbone femur by biomechanical test, and to verify its
mechanical equivalence. In this paper, the compression and torsion mechanical properties of the
Mbone femur and Sawbones femur were tested and compared. Results showed that the compressive
stiffness of Mbone femur was slightly 7. 2% higher than that of Sawbones, and its compressive failure
load was within the range of cadaver bones. After destruction, it presented a femoral neck fracture
that was consistent with clinical cases. The posterior compressive strain in the middle of the medial
femur of Mbone was significantly higher than that of Sawbones, and the compressive strain in the
other 15 regions was highly consistent with that of Sawbones. When subjected to torsion, the inward
torsional stiffness of Mbone femur was slightly 6. 7% lower than that of Sawbones and the outward
torsional stiffness was significantly lower than that of Sawbones. Mbone femur showed satisfactory
mechanical equivalence in compression and torsion mechanical properties, and was more suitable for
Chinese bone. Therefore, it is considered that it can replace imported products as mechanical
equivalent samples of cadaver bone.
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