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ABSTRACT 
Remotely operated vehicles (ROVs) are frequently used in 

subsea explorations and exploitations, aiming to obtain not only 
traditional ocean oil and gas, but also other mineral resources, 
such as manganese, polymetallic nodules and sulfides. However, 
due to the interactions between ocean environmental loads, ROV, 
suspending cable and top-end vessel, the dynamic responses of 
ROV system have strong coupling and nonlinear characteristics. 
Especially, during the initial deployment and the final recovery 
stages, the cable length might be so short that the relative motion 
between the ROV and the vessel may cause a severe collision and 
even structural damage. In this study, based on the structural 
and dynamic characteristics of the ROV system during the initial 
deployment and the final recovery stages, numerical simulation 
and analytical method are employed to investigate the impacts 
of the top-end vessel motion on the ROV system. In the numerical 
simulations, vessel surge and hydrodynamic force on ROV, are 
considered, and the ROV responses and cable tensions under 
different vessel motion amplitudes and frequencies are 
presented. It is found that the ROV responses are larger than the 
vessel motion amplitudes in some cases owing to vessel surge. 
And, the governing equation of ROV with a horizontal moving 
boundary is developed. Then, in order to have a deeper 
understand of the behaviors of the ROV system and the 
mechanisms of our simulation results, the analytical method is 
used. 

Keywords: ROV system; deployment and recovery; 
dynamic response; vessel surge; numerical simulation  

NOMENCLATURE 
𝑥஺ Vessel surge displacement [m] 
𝑥଴ Vessel surge amplitude [m] 
𝜔 Vessel surge frequency [rad/s] 
𝐹 Hydrodynamic force [N] 
𝐶஽ Drag coefficient 

𝐶௠ Added mass coefficient 
𝜌 Density of seawater [kg/m3] 
𝑣 ROV velocity [m/s] 
𝑀଴ Displaced water mass of ROV [kg] 
𝜂 Frequency ratio 
𝛼 Amplitude ratio 
𝑙 Cable length [m] 
𝜔଴ Natural frequency of ROV system [rad/s] 
𝐺ோை௏  ROV weight in water [N] 
𝑀 ROV mass in air [kg] 
𝑚 ROV added mass [kg] 
𝑇 Kinetic energy of system [N⋅m] 
𝑈 Potential energy of system [N⋅m] 
𝜃 ROV angular displacement around the vessel [radian] 
𝑥(𝑡) ROV horizontal relative displacement [m] 
𝑥௠௔௫ Amplitude of ROV horizontal displacement [m] 
𝑄 Response amplification factor 
𝑄෨ Approximate response amplification factor 
𝑄௦  Response amplification factor in the steady-state phase 
𝜉 Damping ratio 

1. INTRODUCTION
Remotely operated vehicle (ROV) is a kind of submersible

with deep-sea operation capability, which is widely used in the 
underwater survey, the oceanographic and geologic data 
acquisition [1, 2], the construction, inspection, maintenance, and 
repair of marine structures [3, 4], and the maritime search and 
rescue [5]. The ROV system is usually composed of top-end 
vessel, umbilical cable and underwater vehicle (ROV). The 
vessel provides power and transmits instructions to the ROV 
through the cable, and they transmit data to each other in real 
time [6, 7]. 

The main working steps of a ROV system include 
deployment, diving, operation, moving upward and recovery. In 
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order to ensure that the work is carried out in an orderly manner, 
it is particularly important to grasp the motion state of ROV and 
the reliability of cable or other structures in these processes. 
Therefore, the current researches related to ROV mainly 
concentrate on the two major fields of "ROV motion and 
positioning control" and "structural safety analysis". Among 
them, the structural safety analysis focuses on the motion and 
tension of the cable. However, due to the interactions between 
ocean environmental loads, ROV, cable and top-end vessel, the 
dynamic responses of ROV system have strong coupling and 
nonlinear characteristics. This makes the study of ROV system, 
during the whole operation processes, more challenging. 

Accurate control is an important basis to ensure the 
autonomy and safety of ROV. The marine environment is 
complex, changeable and uncertain, making the control model 
uncertainty high. Therefore, the motion and positioning control 
technology of ROV has always been a difficult issue in the field 
of submersible research. However, most of these literatures focus 
on the operation stage of ROV [8-11], and rarely consider the 
two key stages of deployment and recovery. Especially, during 
the initial deployment and the final recovery stages, the ROV is 
in the wave zone and very close to the top-end vessel due to the 
shorter cable length. The vessel motion causes the ROV to 
oscillate, which has effect on the dynamic response of the ROV, 
and may even cause the collision between the ROV and the 
vessel due to the relative motion, resulting in the risk of damage. 
At the same time, the ROV motion will also change the cable 
tension, which causes the cable to slack or be shocked, seriously 
affecting the structural safety. Therefore, it is necessary to 
systematically analyze the ROV response and the cable tension 
during the deployment and recovery process. 

Fewer literatures focusing on the ROV deployment and 
recovery processes are seen. Sayer [12] measured the wave 
forces on the scale model of a working-class ROV during 
deployment and recovery, and compared them with the results 
obtained from Morison’s equation. Using numerical simulation, 
Tran et al. [13] studied the influence of the parameters of control 
system algorithms on the ROV tracking performance and 
umbilical tension during recovery process. Based on the 
experiments in the wave flume, Lubis et al. [14] studied the 
effects of vessel motion and winch speed on cable tension during 
a lightweight ROV passing through splash zone, and they put 
forward suggestions on the deployment and recovery strategy of 
ROV. 

In this study, the dynamic responses of ROV system under 
the vessel surge are investigated, while the hydrodynamic force 
on ROV is included. The dynamic response of the ROV system 
is a complicated nonlinear problem, and it is difficult to directly 
obtain the accurate solution by an analytical method. Therefore, 
in this study, the FEM numerical simulations are used to examine 
the responses of the ROV system. Then, in order to have a deeper 
understand of the behaviors of the ROV system and the 
mechanisms of our simulation results, the analytical model, 
under the assumption of small response amplitude, is used. In 
Section 2, the finite element structural model and the 
hydrodynamic model of the ROV system are developed based on 

the structural and dynamic characteristics of the ROV system 
during the initial deployment and the final recovery stages. 
Section 3 shows the numerical simulation results of ROV 
displacement and cable tension under various cases, and the 
influences of vessel motion amplitude and frequency on the 
system response are examined. In Section 4, the ROV governing 
equation with a horizontal moving boundary is established and 
the laws presented in the numerical simulation results are further 
discussed. Section 5 is our research remarks. 
 
2. ANALYSIS MODELS OF ROV SYSTEM 

During the initial deployment and the final recovery stages, 
the vessel moves under the ocean environment loads, making the 
ROV oscillate around the vessel. In these processes, the bending 
and tensile deformations of the cable are much smaller than the 
rigid body motions of ROV, because the length of suspending 
cable is not large. Therefore, based on the structural and dynamic 
characteristics of the ROV system, we simplify the system as a 
pendulum with a moving boundary. The schematic diagram of 
the ROV system is shown in Fig.1. The boundary condition of 
the system is the motion of the top end of the cable, which is 
connected to the vessel. And it is assumed that the ROV is in still 
water, and the hydrodynamic force comes from the relative 
motion between the ROV and the fluid. The schematic diagram 
of the reference systems is shown in Fig.2. The fixed coordinate 
system on the surface of the still water serves as the inertial 
reference system 𝑆ଵ, and the moving vessel serves as the non-
inertial reference system 𝑆ଶ . In this study, the motion of the 
vessel is assumed as a harmonic motion. In the reference system 
𝑆ଵ, the vessel motion is described as: 

 
𝑥஺ = 𝑥଴ sin 𝜔𝑡                            (1) 

 
where 𝑥஺ is the vessel surge displacement, 𝑥଴ is the amplitude 
of the vessel surge motion, and 𝜔 is the frequency of the vessel 
surge motion. 

In order to study the dynamic responses of ROV system 
caused by the vessel surge, a finite element model of the system 
composed of ROV and cable is established, and the effect of 
hydrodynamic force on ROV is also considered. The horizontal 
displacement excitation is applied to the first node of the cable 
to simulate the vessel surge motion. At the initial moment, the 
cable is vertically stationary and the ROV is in a stationary 
hovering state. The main parameters of ROV and cable are 
shown in Table 1, with reference to the parameters of the 4500m-
class deep-sea operational ROV in Ref. [15]. 
 
2.1 Finite element structural model 

The finite element simulation is used in this study to model 
the cable, and the whole cable is divided into a set of beam 
elements. The ROV is treated as a lumped mass suspended at the 
bottom end of the cable, or a lumped mass element is used to 
model the ROV. We assume that the motion of the ROV is in the 
𝑋 − 𝑌  plane (see Fig.1), so only the plane displacements are 
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considered for each beam element. The displacement vector of 
the beam element is:  

 
𝑈௘ = [𝑢௜ 𝑣௜ 𝜃௜ 𝑢௜ାଵ 𝑣௜ାଵ 𝜃௜ାଵ]்       (2) 

 
where 𝑢  and 𝑣  are the axial and translational displacements, 
respectively. 𝜃  is the rotational angle, and 𝑖  is the node 
number of the beam element. For simplicity, the displacement 
vector is divided into two parts, i.e., the axial part and the lateral 
part: 
 
𝑈௘

ଵ = [𝑢௜ 𝑢௜ାଵ]்                             
𝑈௘

ଶ = [𝑣௜ 𝜃௜ 𝑣௜ାଵ 𝜃௜ାଵ]்                   
(3) 

 
The shape function matrices of beam element are: 
 

 𝑁ଵ(𝑥௘) = ቂ1 −
௫೐

௟೐
,

௫೐

௟೐
ቃ                         

𝑁ଶ(𝑥௘) = [1 − 3𝜉ଶ + 2𝜉ଷ, 𝑙௘(𝜉 − 2𝜉ଶ + 𝜉ଷ),3𝜉ଶ   
−2𝜉ଷ, 𝑙௘(𝜉ଷ − 𝜉ଶ)]              (4) 

 
where 𝑙௘  is the length of the element, which is 0.2m in the 
numerical model. 𝑥௘ is the axial location and 𝜉 = 𝑥௘/𝑙௘. 

The strain matrix can be written as: 
 

𝐵௜(𝑥௘) =
ௗ(ே೔)

ௗ(௫೐)
                        (5) 

 
Then the mass and stiffness matrices of the element can be 

written as: 
 

𝐾௘
ଵ = ∫ ∫ 𝐵ଵ

்𝐸௘𝐵ଵ஺೐

௟೐

଴
𝑑𝐴௘𝑑𝑥௘                   

𝑀௘
ଵ = ∫ ∫ 𝐵ଵ

்𝜌𝐴௘𝐵ଵ஺೐

௟೐

଴
𝑑𝐴௘𝑑𝑥௘                  

𝐾௘
ଶ = ∫ ∫ 𝐵ଶ

்𝐸௘𝐵ଶ஺೐

௟೐

଴
𝑑𝐴௘𝑑𝑥௘                    

𝑀௘
ଶ = ∫ ∫ 𝐵ଶ

்𝜌𝐴௘𝐵ଶ஺೐

௟೐

଴
𝑑𝐴௘𝑑𝑥௘                (6) 

 
where 𝜌 is the density of the cable, 𝐴௘  is the cross area, and 
𝐸௘  is the Young's modulus of the cable. The first two equations 
are used to describe the mass and stiffness matrices in the axial 
direction, and the latter two are about the lateral direction. 

For the cable that only provides tension and no compression 
stiffness, the cable response is simulated by an improved finite 
element model. In our improved finite element model, the 
rotation DOFs of beam elements are not constrained. Then the 
rotational DOF 𝜃 will change into 𝜃, 𝜃′, and Eq. (2) describing 
the displacement vector of each element is rewritten as: 
 

 
FIGURE 1: ILLUSTRATION OF ROV SYSTEM. 

 

FIGURE 2: SCHEMATIC OF THE REFERENCE SYSTEMS. 

TABLE 1: MAIN PARAMETERS OF ROV AND ITS CABLE 
Parameter Value 

ROV body sizes (m) 3.1×1.8×2.0 
ROV mass in air (kg) 4187.5 

Displaced water mass of ROV (kg) 3350 
Cable length (m) 10 

Cable external diameter (m) 0.04 
Cable mass in water (kg/m) 1.26×10-2 

Cable Young's modulus (GPa) 200 
 

𝑼௜
′ = [𝑢௜ 𝑣௜ 𝜃௜ 𝜃௜

′  𝑢௜ାଵ 𝑣௜ାଵ 𝜃௜ାଵ 𝜃௜ାଵ
′ ]்            

𝑖 = 2, ⋯ , 𝑁 − 1                           (7) 
 
It is seen that, because of the additional DOF 𝜃′ , the 

stiffness matrix has singularity. To eliminate this singularity, we 
use additional constrains, i.e., an original shape calculated 
through traditional static method. For the cable structures with 
different tensile and compressive stiffness, the response of the 
cable at different stages is simulated by customizing the stress-
strain relationship of the material. Assembling the element 
matrices, the whole structural matrices are obtained, and then the 
dynamic governing equation, in terms of finite element 
expression, of the cable is:  
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[𝑀] ⋅ ൣ𝑈̈൧ + [𝐶] ⋅ ൣ𝑈̇൧ + [𝐾] ⋅ [𝑈] = [𝑃]        (8) 
 

where [𝑀], [𝐶] and [𝐾] are the mass matrix, damping matrix 
and stiffness matrix, respectively. [𝑈]  and [𝑃]  are the 
displacement vector and load vector of the whole cable, 
respectively. The damping matrix is calculated by Rayleigh 
damping commonly used in engineering. The calculation 
expression of the damping matrix is as follows: 
 

[𝐶] = 𝛼ଵ[𝑀] + 𝛼ଶ[𝐾]                      (9) 
 

where 𝛼ଵ and 𝛼ଶ are the proportional coefficients. 
To solve the Eq. (8), the Newmark scheme is used to 

integrate in time. Assuming the current time step is step 𝑛, an 
estimate of the acceleration at the end of step 𝑛 + 1 will satisfy 
the following equation of motion:  

  
[𝑀] ⋅ [𝑎௡ାଵ] + [𝐶] ⋅ [𝑣௡ାଵ] + [𝐾] ⋅ [𝑑௡ାଵ] = [𝑝௡ାଵ] 

 (10) 
 

where [𝑝௡ାଵ] , [𝑎௡ାଵ ], [𝑣௡ାଵ ] and [𝑑௡ାଵ]  are the vectors of 
externally applied loads, estimated acceleration, estimated 
velocity and estimated displacement at step 𝑛 + 1, respectively. 
The estimates of displacement and velocity are given by: 
 

[𝑑௡ାଵ] = [𝑑௡] + [𝑣௡]𝛥𝑡 +
(ଵିଶఉ)[௔೙]௱௧మ

ଶ
𝛽[𝑎௡ାଵ]𝛥𝑡ଶ 

[𝑣௡ାଵ] = [𝑣௡] + (1 − 𝛾)[𝑎௡]𝛥𝑡 + 𝛾[𝑎௡ାଵ]𝛥𝑡  (11) 
 

where ∆𝑡  is the time step, 𝛽  and 𝛾  are constants, and the 
values of 𝛽 and 𝛾 are 1/6 and 1/2 respectively in this study. 
 
2.2 Hydrodynamic model 

In this study, we use Morison’s equation to calculate the 
hydrodynamic force on the ROV, which is a sum of an initial 
force proportional to acceleration and a drag force proportional 
to the square of velocity. And the drag force on the ROV can be 
regarded as the nonlinear damping effect. The hydrodynamic 
force on the ROV in still water can be written as [15,16]: 

 

𝑭 = −
ଵ

ଶ
𝐶஽𝜌𝐿ଶ𝒗|𝒗| − 𝐶௠𝑀଴𝒗̇               (12) 

 
where 𝜌 is the density of seawater, and it is 1025𝑘𝑔/𝑚ଷ; 𝐿 is 
the characteristic length, and it is taken as the ROV width of 
1.8𝑚; 𝑣 is the ROV velocity; 𝑀଴ is the displaced water mass 
of ROV; 𝐶஽ is the drag coefficient, and 𝐶௠ is the added mass 
coefficient. ROVs have complex external structures and there are 
large differences between the structures of different ROVs, 
making it difficult to generalize the hydrodynamic performances 
of ROVs. Compared to CFD simulation and empirical formula, 
the model test is a better way to obtain hydrodynamic 

coefficients of ROV. Here, 𝐶஽ is taken as 0.28 [15], and 𝐶௠ is 
taken as 0.8 [14]. 

The established FEM model and method, including the 
cable structural model and the moving boundary, along with the 
combination of hydrodynamic force during dynamic response, 
have been verified in our previous publications [17,18]. 
Considering the length of the paper, the verification process and 
examples of the model are not given in the paper. 

 
3. NUMERICAL SIMULATION RESULTS 

The dynamic responses of the ROV system, including the 
ROV responses and the cable tensions, caused by the surge 
motion of the vessel are obtained based on the numerical 
simulations. For the convenience of discussion, two parameters 
describing the vessel motion are defined: the amplitude ratio 𝛼 
and the frequency ratio 𝜂. The amplitude ratio is the ratio of the 
vessel motion amplitude 𝑥଴  to the cable length 𝑙 , and the 
frequency ratio is the ratio of the vessel motion frequency 𝜔 to 
the natural frequency of the ROV system 𝜔଴. In this study, we 
fixed the cable length to 10 m, and the natural frequency of the 
ROV system is 0.3457 rad/s (0.0550 Hz). The simulated cases 
are shown in Table 2. In this section, by comparing the ROV 
responses and cable tensions under different cases, the impacts 
of parameters on the dynamic responses of the ROV system are 
summarized. 

TABLE 2: SIMULATED CASES. 
Amplitude ratio 𝛼 Frequency ratio 𝜂 

0.05 0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0, 3.0 
0.075 0.5, 0.7, 1.0, 1.1, 1.5, 3.0 

0.1 0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0, 3.0 
0.125 0.5, 0.7, 1.0, 1.1, 1.5, 3.0 
0.15 0.5, 0.7, 1.0, 1.1, 1.5, 3.0 
0.2 0.5, 0.7, 1.0, 1.1, 1.5, 3.0 

 
3.1 ROV response 

The horizontal displacement relative to the vessel is used 
here to indicate the ROV response. Fig.3 illustrates the ROV 
displacement histories at different frequency ratios, with two 
amplitude ratios of 0.05 and 0.1 at each frequency ratio. It can 
be seen that the frequency of ROV response increases as the 
excitation frequency increases. When the frequency ratios are in 
the non-resonance region, it is observed from Figs.2(a)-(b) and 
(f)-(h) that in the transient-state phase, the ROV displacement 
increases rapidly to the peak amplitude, and then decays to the 
steady-state amplitude. And when the frequency ratios are in the 
resonance region, it is observed from Figs.2(c)-(e) that the peak 
value of the response amplitude increases significantly, but the 
amplitude grows at a slower rate. Specifically, when the 
frequency ratio is equal to 1.0, the maximum amplitude in the 
transient-state phase is the steady-state amplitude, while when 
the frequency ratio is not equal to 1.0, the maximum amplitude 
in the transient-state phase is slightly larger than the steady-state 
amplitude. 
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FIGURE 3: THE ROV DISPLACEMENT HISTORIES UNDER 
DIFFERENT FREQUENCY RATIOS: (a) 𝜂 = 0.5 , (b) 𝜂 = 0.7 , (c) 
𝜂 = 0.9, (d) 𝜂 = 1.0, (e) 𝜂 = 1.1, (f) 𝜂 = 1.5, (g) 𝜂 = 2.0, (h) 𝜂 =
3.0. 
 

 
FIGURE 4: THE CHANGE OF RESPONSE AMPLIFICATION 
FACTOR OF THE ROV DISPLACEMENT WITH FREQUENCY 
RATIO IN THE TRANSIENT-STATE AND STEADY-STATE 
PHASES: (a) AT 𝛼 = 0.05, (b) AT 𝛼 = 0.1. 

The ratio of the maximum value of the response amplitude 
to the amplitude of the vessel motion is defined as the response 
amplification factor. Fig.4 illustrates the change of response 
amplification factor of the ROV displacement with frequency 
ratio. The change trends of the response amplification factor are 
similar at the amplitude ratios of 0.05 and 0.1. The response 
amplification factors increase first and then decrease with the 
frequency ratio, and reach the peaks when the frequency ratio is 
equal to 1.0, e.g. when the amplitude ratio is 0.05, the response 
amplification factor reaches 5.955. The peak values of the ROV 
response in the transient-state phase are larger than those in the 
steady-state phase (except for the resonance case). And the 
difference of which have maximums near the frequency ratios of 
0.7 and 1.5. In addition, when the frequency ratio is larger than 
0.7, the response amplification factor is always larger than 1, that 
is, the ROV response is amplified compared to the amplitude of 
vessel motion owing to vessel surge. It indicates that the 
frequency ratio of 0.7 is a critical case.  

Fig.5 illustrates the changes of response amplitude and 
response amplification factor of the ROV displacement with 
amplitude ratio. When the frequency ratio is in the non-
resonance region, the ROV response amplitude increases linearly 
with the amplitude ratio, while the response amplification factors 
are nearly constant, which indicates that the frequency ratio is 
the main parameter to control the amplification effect of the 
vessel surge on the ROV response. When the frequency ratio is 
in the resonance region, the ROV response amplitude shows a 
weak nonlinear growth trend, while the ROV response 
amplification factor gradually decreases with the amplitude 
ratio. It is because as the frequency ratio approaches 1, the 
system response is stronger as the amplitude ratio increases, 
making the stiffness nonlinear effect larger and the damping 
effect more significant.  
 
3.2 Structural tension of suspending cable 

Fig.6 shows the numerical simulation results of cable 
tension amplification factor (the ratio of the maximum value of 
the cable tension to the ROV weight in water) under different 
frequency ratios and amplitude ratios. It can be observed that the 
cable tension amplification factor is always larger than 1. 

By observing the trend of the curves in Fig.6(a), it is found 
that the change of the tension amplification factor with frequency 
ratio is non-monotonic in both transient-state and the steady-
state phases. The peak value of the cable tension reaches a local 
maximum near the frequency ratio of 1 (up to 1.20 times the 
ROV weight at the amplitude ratio of 0.1), and between the 
frequency ratio of 1.5 and 2, there exists a local minimum. The 
cable tension mainly depends on the inertial centrifugal force 
generated by the ROV oscillating around the vessel, which is 
proportional to the square of the ROV velocity. And the 
amplitude of ROV velocity is related to the response 
amplification factor. Based on the response amplification factor 
in the resonance region considering damping in Section 4.3.2, 
there exists a maximum of the ROV velocity near 𝜂 = 1. When 
𝜂 > 1.5, the damping effect is weak, according to the response 
amplification factor in the steady-state phase without 
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considering damping in Section 4.2, there exists a minimum of 
the ROV velocity at 𝜂 = √3. Therefore, the results of analytical 
method and numerical simulation are consistent. 

As shown in Fig.6 (b), it can be seen that the tension 
amplification factor shows a weak nonlinear characteristic with 
the change of amplitude ratio. The amplitude of ROV velocity 
varies linearly with 𝛼, so the tension amplification factor varies 
linearly with 𝛼ଶ. In addition, the change gradient of the tension 
amplification factor increases with the increase of frequency 
ratio. 

 
4. DISCUSSIONS 
4.1 Governing equation of ROV with a horizontal 
moving boundary 

 In the reference system 𝑆ଵ (see Fig.2), the ROV velocity 
𝒗 is expressed as Eq. (13). And the fluid particles and the ROV 
are regarded as a system. The total kinetic energy of the system 
is the kinetic energy of the ROV considering the added mass, and 
the total potential energy of the system is the sum of the potential 
energy of the fluid particle and the ROV. Taking the origin of the 
coordinate as the zero potential energy point, the expressions of 
kinetic energy 𝑇  and potential energy 𝑈  of the system are 
obtained: 

 

𝒗 = 𝒙̇𝑨 + 𝜽̇ × 𝒍                          (13) 

𝑇 =
ଵ

ଶ
(𝑀 + 𝑚)൫𝑥̇஺

ଶ + 𝜃̇ଶ𝑙ଶ൯ − (𝑀 + 𝑚)𝜃̇𝑙 cos 𝜃 𝑥̇஺ 

(14) 
𝑈 = 𝑈௪ − (𝑀 − 𝑀଴)𝑔𝑙 𝑐𝑜𝑠 𝜃               (15) 

 
where 𝑥̇஺  is the velocity of vessel motion, 𝜃  is the ROV 
angular displacement around the vessel in the reference system 
𝑆ଶ, 𝜃̇ is the angular velocity, 𝑀 is the ROV mass in air, 𝑚 is 
the ROV added mass, 𝑀଴ is the displaced water mass of ROV, 
𝑔  is the gravitational acceleration, and 𝑈௪  is the potential 
energy of the fluid particles distributed in the whole space 
domain, which is a constant. 

Based on the numerical simulation results in Section 3, it 
can be deduced that the damping effect on ROV response 
induced by the hydrodynamic force is small, so the damping is 

not considered firstly. Let 𝜔଴𝑡 = 𝜏 , 𝜔଴
ଶ =

௚

௟
∙

ெିெబ

ெା௠
, and the 

Lagrangian function be 𝐿 = 𝑇 − 𝑈, which are substituted into 
the Lagrange equation. Ignoring the infinitesimal of higher 
order, the governing equation for the ROV motion with a 
horizontal moving boundary is developed: 

 

 𝜃̈ + 𝜃 = −𝛼𝜂ଶ 𝑠𝑖𝑛 𝜂𝜏                      (16) 
 

4.2 ROV response amplification factor without 
damping 

Under the small response amplitude, it is approximated that 
the ROV horizontal relative displacement 𝑥(𝑡) obtained from  

 
FIGURE 5: THE RESULTS OF THE ROV RESPONSE IN THE 
TRANSIENT-STATE AND STEADY-STATE PHASES UNDER 
DIFFERENT AMPLITUDE RATIOS: (a) RESPONSE AMPLITUDE, 
(b) RESPONSE AMPLIFICATION FACTOR. 

 

 
FIGURE 6: THE CHANGES OF CABLE TENSION 
AMPLIFICATION FACTOR WITH FREQUENCY RATIO AND 
AMPLITUDE RATIO: (a) FREQUENCY RATIO, (b) AMPLITUDE 
RATIO. 

 

the numerical simulation is the product of the ROV angular 
displacement 𝜃  and the cable length 𝑙 . Therefore, the 
characteristics of horizontal relative displacement and angular 
displacement of ROV are similar. Eq. (16) is a typical governing 
equation for forced vibration. When the ROV is at rest at the 
initial moment, i.e., 𝜃 = 0  and 𝜃̇ = 0 , the solution of the 
governing equation is shown in Eq. (17): 

 

𝜃(𝑡) =
௫(௧)

௟
= −

ఈఎమ

ଵିఎమ
(𝑠𝑖𝑛 𝜂𝜏 − 𝜂 𝑠𝑖𝑛 𝜏)       (17) 

 
It can be seen that the amplitude ratio only affects the 

response amplitude, while the frequency ratio not only affects 
the amplitude of the ROV response but also change pattern. The 
first term in Eq. (17) is the steady-state response, and the second 
term is the transient-state response. By analyzing the extreme 
values of this equation, the exact expression of the response 
amplification factor without damping is obtained: 

 

𝑄 =
௫೘ೌೣ

௫బ
= 𝑚𝑎𝑥 ቄ

ఎమ

ଵାఎ
𝑠𝑖𝑛 ቀ

ଶ௞గ

ଵିఎ
ቁ ,

ఎమ

ଵିఎ
𝑠𝑖𝑛 ቀ

ଶ௞గ

ଵାఎ
ቁቅ    

(18) 
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FIGURE 7: THE CHANGES OF 𝑄෨ , 𝑄௦   AND RESPONSE 
AMPLIFICATION FACTOR OBTAINED BY NUMERICAL 
SIMULATION WITH FREQUENCY RATIO. 
 
where 𝑥௠௔௫  is the amplitude of ROV horizontal relative 
displacement, and 𝑘  is any positive integer. Since the above 

equation is complicated, it is approximated as 𝑄෨ =
ఎమ

ଵିఎ
. Because 

the sine function is approximated as 1, this approximate response 
amplification factor 𝑄෨  is larger than the exact one. 

When damping exists, the transient-state response gradually 
attenuates with time, and when only the steady-state response 
remains, the system is in the steady-state phase. And the response 
amplification factor in the steady-state phase 𝑄௦ is shown in Eq. 
(19). Fig.7 demonstrates the changes of 𝑄෨   and 𝑄௦  with 
frequency ratio. It can be seen that 𝑄෨  is significantly larger than 
𝑄௦  when the frequency ratio is relatively large, because the 
transient-state response is amplified with the increase of 
frequency ratio. 

 

𝑄௦ =
ఎమ

ଵିఎమ                               (19) 

 
4.3 Analysis of the numerical simulation results 

The ROV responses without damping are discussed both in 
Section 4.1 and Section 4.2. The numerical simulation results are 
analyzed below considering the effect of hydrodynamic 
damping. 
 
4.3.1 The ROV response in the resonance region 

Assuming that the damping ratio 𝜉 is very small, the ROV 
response is expressed as: 

 

𝑥(𝑡) =
ఈ௟ఎమ

ඥ(ଵିఎమ)మାସఎమకమ
sin(𝜔𝑡 + 𝜙)               

+
ఈ௟ఎయ௘ష഍ഘబ೟

ඥ(ଵିఎమ)మାସఎమకమ
cos(𝜔଴𝑡 + 𝜓)             

tan 𝜙 = −2
ఎ

ଵିఎమ 𝜉， tan 𝜓 =
ଵିఎమ

ଶక
           (20) 

 
Based on the above equation, when the frequency ratio, the 

cable length and the damping ratio are determined, the response 

amplitude is proportional to the amplitude ratio in both transient-
state and steady-state phases. It is consistent with the 
phenomenon that the response amplitude increases linearly with 
amplitude ratio as shown in Fig.5(a). 

When the excitation frequency is in the resonance region, it 
is mentioned in Section 3.1 that the ROV response grows slowly 
to the peak amplitude in the transient-state phase. At this time, 
the amplitude and frequency between the transient-state and 
steady-state responses are not much different. And the effect of 
damping on the response is significant. In order to obtain the 
expression of ROV response in the resonance region, 
substituting 𝜔 = 𝜔଴ + 𝜀  (𝜀  is a small quantity) into the Eq. 
(20): 

 

𝑥(𝑡) =
ఈ௟ఎమ

ඥ(ଵିఎమ)మାସఎమకమ
Φ(𝑡) 𝑠𝑖𝑛 𝜔𝑡                

Φଶ(𝑡) ≈ 1 + 𝜂ଶ𝑒ିଶకఠబ௧                        
−2𝑒ିకఠబ௧[𝜂 cos 𝜀𝑡 − 𝜉 sin 𝜀𝑡]        (21) 

 
In order to clarify the change of the response amplitude with 

time, we let 𝜏 = 𝜔଴𝑡  and derive the time-varying function 
Φଶ(𝑡) in the response amplitude of Eq. (21): 

 
ௗ

ௗ௧
Φଶ ≈ 2𝜔଴𝑒ିకఛ ∙ [(2𝜂 − 1)𝜉 cos(𝜂 − 1)𝜏        

−(𝜉ଶ − 𝜂ଶ + 𝜂) sin(𝜂 − 1)𝜏 − 𝜉𝜂ଶ𝑒ିకఛ൧ 

(22) 
 

 

It can be seen that when 𝜂 = 1, Eq. (22) becomes 
ௗ

ௗ௧
Φଶ =

2𝜉𝜔଴𝑒ିకఛ൫1 − 𝑒ିకఛ൯ , which is always larger than zero, 
indicating that the response amplitude increases monotonically 
from zero to steady-state amplitude. When 𝜂 ≠ 1, the derivative 

function 
ௗ

ௗ௧
Φଶ  has the infinite number of zero points, so the 

process of the response reaching the steady-state phase is 
observed to be oscillatory in Figs.2(c) and (e), but the oscillation 
amplitude is extremely small. 

 
4.3.2 Influences of vessel motion frequency on ROV 
response amplification factor 

In Section 4.2, the relationship between the amplification 
factor of ROV response and the frequency ratio without damping 
is obtained, and the theoretical results are compared with the 
numerical simulation results in the following. The symbols in 
Fig.7 are the response amplification factors obtained by 
numerical simulation at amplitude ratios of 0.05 and 0.1, 
respectively. It can be seen that in the non-resonance region 
(|𝜂 − 1| > 0.15), the numerical simulation results in the steady-
state phase fit well with Eq. (19). This suggests that if the 
excitation frequency is within the non-resonance region, the 
undamped linear theory can well predict the ROV response in 
the steady-state phase. Meanwhile, by observing Eq. (19), the 
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number of the solution of equation 𝑄௦ = 1  is only one, i.e., 
𝜂 = √2/2 ≈ 0.7. And it can be further proved that the response 
amplification factor in the steady-state phase is always larger 
than one when the frequency ratio is larger than 0.7, which also 
corresponds to the results presented in Fig.4. However, when the 
excitation frequency is in the resonance region (|𝜂 − 1| < 0.15), 
the response is very sensitive to damping, and even a small 
damping will produce a large suppression effect. So that the 
response peaks in both the steady-state and transient-state phases 
are much smaller than the theoretical results. In order to grasp 
the ROV response in the resonance region more accurately, the 
damping is introduced into the expression of response 
amplification factor, as shown in Eq. (23): 

 

𝑄 =
ఎమ

ඥ(ଵିఎమ)మାସఎమకమ
                       (23) 

 
4.3.3 Influences of vessel motion amplitude on ROV 
response 

The change gradients of the response amplitude related to 
the amplitude ratio in the steady-state and transient-state phases 
are: 

 

𝑔௦ =
ఎమ௟

ඥ(ଵିఎమ)మାସఎమకమ
                       (24) 

𝑔௧ =
ఎమ௟

ඥ(ଵିఎమ)మାସఎమకమ
ൣ1 + 𝜂𝑒ିకఠబ௧భ൧           (25) 

 
where 𝑡ଵ  is the moment corresponding to the peak value of 
response in the transient-state phase. 𝑡ଵ  is larger as the 
frequency ratio approaches to 1. The change gradients increase 
as the frequency ratio approaches 1, indicating that the system is 
closer to resonance, the ROV response amplitude is more 
sensitive to the change of the amplitude ratio, which is consistent 
with the phenomenon observed in Fig.5 (a).  
 
5. CONCLUSIONS 

In this study, through FEM numerical simulation, the 
dynamic responses of ROV system, including ROV responses 
and cable tensions, under the vessel surge and hydrodynamic 
force, are obtained. The influences of important parameters, such 
as amplitude ratio and frequency ratio, which characterize the 
vessel motion conditions, on the system responses are 
summarized. At the same time, their physical essences are 
explained by theoretical analysis. 

The vessel motion amplitude only affects the amplitude of 
the ROV response, not the change pattern. The amplitude of the 
ROV response increases approximately linearly with the vessel 
motion amplitude. While, as the vessel motion frequency 
approaches to the natural frequency of the ROV system, the 
growth gradient is larger and shows a nonlinear trend. 
Meanwhile, the cable tension increases nonlinearly with the 
vessel motion amplitude, and the growth gradient increases as 
the vessel motion frequency increases. 

The vessel motion frequency not only affects the amplitude 
of the ROV response but also the change pattern: (a) As the 
vessel motion frequency approaches to the natural frequency of 
the ROV system, the ROV response amplitude is larger. At this 
time, the hydrodynamic damping has a significant effect on the 
ROV response, and the damping increases with the increase of 
the vessel motion amplitude, suppressing the amplification effect 
of the vessel motion on the ROV response. In contrast, when the 
vessel motion frequency is not in the resonance region, the 
damping has no obvious effect on the ROV response, and this 
nonlinear phenomenon will not occur. (b) Except for the case of 
the frequency ratio of 1, the ROV response amplitude in the 
transient-state phase is larger than that in the steady-state phase, 
and the amplitude attenuation from the transient-state phase to 
the steady-state phase varies non-monotonically with the 
frequency ratio. (c) When the frequency ratio is larger than 0.7, 
the amplitude of ROV response is larger than that of the vessel 
surge motion. As for the cable tension, the change of the response 
peak value with the frequency ratio is also non-monotonic. When 
the frequency ratio is less than 2, there exists a maximum of the 
tension amplitude near 𝜂 = 1, which can reach 1.20 times the 
ROV weight. While when the frequency ratio is larger than 2, the 
cable tension amplitude increases monotonically with frequency 
ratio.  
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