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a b s t r a c t 

Nonlinear energy transfer is represented through eddy viscosity and stochastic forcing within the framework of 

resolvent analysis. Previous investigations estimate the contribution of eddy-viscosity-enhanced resolvent opera- 

tor to nonlinear energy transfer. The present article estimates the contribution of stochastic forcing to nonlinear 

energy transfer and demonstrates that the contribution of stochastic forcing cannot be ignored. These results are 

achieved by numerically comparing the eddy-viscosity-enhanced resolvent operator and stochastic forcing with 

nonlinear energy transfer in turbulent channel flows. Furthermore, the numerical results indicate that composite 

resolvent operators can improve the prediction of nonlinear energy transfer. 
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Energy transfer plays a crucial role in turbulent flows, particularly in

erms of nonlinear energy transfer. Energy transfer caused by the non-

inear term in the turbulent kinetic energy equation is referred to as

onlinear energy transfer. This transfer serves as the inter-scale transfer

erm in the spectral turbulent kinetic energy equation and plays a vital

ole in the energy distribution across scales. Numerous studies have ex-

lored the relationship between energy transfer, nonlinear energy trans-

er, turbulent dynamics, and coherent structures using the method such

s spectral energy balance [1–9] . It is important to note that turbulence

annot be sustained by linear part alone; the inclusion of nonlinear ef-

ects, specifically nonlinear energy transfer, is indispensable. 

However, incorporating the nonlinear term typically leads to sub-

tantial computational costs in numerical calculations. To address this

ssue, the resolvent method, based on linearized Navier-Stokes (N-S)

quations, proposes treating the nonlinear term as input to the linearized

ystem. This approach effectively reduces computational expenses and

rovides the space-time spectrum of velocity fluctuations as an out-

ut. As a necessary part of resolvent analysis, it is important to study

he models of nonlinear forcing and the corresponding response. Re-

earchers often employ stochastic forcing as input to the linear system

o obtain statistical properties. The linearized N-S equations excited by

hite noise [10–16] have been widely used for this purpose. Stochastic

orcing is referred to as nonlinear forcing that extracts energy from the

ean field and transfers it to the fluctuating field. The nonlinear term in

he N-S equations adheres to energy conservation principles. To account

or dissipative effects, an eddy viscosity term is introduced, resulting in
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n enhanced resolvent method that includes both eddy viscosity and

tochastic forcing. 

By using nonlinear energy transfer, one can evaluate the models of

onlinear forcing in the resolvent method and in order to improve the

rediction of the space-time spectrum. Symon et al. [9] compared the

odes obtained from the resolvent analysis and the spatial proper or-

hogonal decomposition modes in direct numerical simulation (DNS).

hey found that the resolvent analysis accurately predicts the wave

peed associated with the highest energy only at the scale with the high-

st growth rate. Through an analysis of transport induced by the eddy

iscosity term, it is observed that derivatives of eddy viscosity result in

 larger eddy viscosity transport. 

It is important that nonlinear energy transfer in the eddy-viscosity-

nhanced resolvent method should encompass not only the transport

aused by eddy viscosity but also the influence of stochastic forcing. The

ombined effect of these two components constitutes a complete char-

cterization of nonlinear energy transfer in the eddy-viscosity-enhanced

esolvent method. The present article focuses on evaluating the non-

inear energy transfer in the eddy-viscosity-enhanced resolvent method

nd emphasizing the significance of stochastic forcing. This paper is or-

anized as follows: firstly, we introduce the eddy-viscosity-enhanced

esolvent and provide the calculation of nonlinear energy transfer in

esolvent analysis. Subsequently, we present the results obtained from

NS and resolvent methods. Additionally, we calculate the results of the

omposite sweeping-enhanced resolvent method [17] , which employs

ynamic auto-regression to map white noise input to colored noise and
arch 2024 
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ntroduces random sweeping into the resolvent method for turbulent

hear flows. 

Consider a turbulent channel flow, which is homogeneous in the

treamwise and spanwise directions. In the subsequent descriptions, 𝐮 =
 𝑢1 , 𝑢2 , 𝑢3 ]T = [ 𝑢, 𝑣, 𝑤 ]T represents the velocity fluctuation vector, 𝑥 and

 represent the streamwise and spanwise coordinates, while 𝑦 ∈ (− ℎ, ℎ )
epresents the wall-normal coordinate. The symbol ̂⋅ represents spatial

ourier mode in ( 𝑥, 𝑧 ), and ̃⋅ represents spatial-temporal Fourier mode

n ( 𝑥, 𝑧 ) and 𝑡 . The variables 𝑘𝑥 and 𝑘𝑧 denote streamwise and spanwise

avenumbers, respectively, and 𝑘2 = 𝑘2 𝑥 + 𝑘2 𝑧 . 

(1) The conventional resolvent can be briefly described as follows.

he N-S equations can be expressed in the input-output form as: 

̃
 = 𝐑�̃� , (1)

here ̃𝐅 represents the nonlinear term in the N-S equations and is treated

s the nonlinear forcing in the resolvent analysis. The linear parts of N-S

quations are represented by the resolvent operator 𝐑 , which is given

s 

𝐑 = 𝐁T 
( 

− 𝑖𝜔

[ 
𝐈 

0 

] 
−
[ 

𝐋 −∇̂ 

−∇̂T 0 

] ) −1 

𝐁 , (2) 

𝐋 =
⎡ ⎢ ⎢ ⎣ 
− 𝑖𝑘𝑥 𝑈 + 𝜈∇̂2 − 𝑈 ′ 0 

0 − 𝑖𝑘𝑥 𝑈 + 𝜈∇̂2 0 
0 0 − 𝑖𝑘𝑥 𝑈 + 𝜈∇̂2 

⎤ ⎥ ⎥ ⎦ , (3) 

𝐁 =
[ 
𝐈 
0 

] 
, (4) 

here 𝐈 represents the identity matrix, ∇̂ = [ 𝑖𝑘𝑥 , 𝜕𝑦 , 𝑖𝑘𝑧 ] T . The variables

 and 𝑖 represent the temporal frequency and the imaginary unit, re-

pectively. 

(2) In the eddy-viscosity-enhanced resolvent, the nonlinear forcing

s modeled as: 

 = ∇ ⋅
[ 

1 
𝑅𝑒𝜏

𝜈t 
𝜈

(
∇ 𝐮 + ∇ 𝐮T 

)] 
+ 𝐟 = 𝐃𝜈t 

𝐮 + 𝐟 . (5) 

Here the stochastic forcing 𝐟 is represented by spatial-temporal white

oise, and eddy viscosity 𝜈t is used as the Cess model [18,19] ; 𝐃𝜈t 
is

iven as 

𝜈t =
1 

𝑅𝑒𝜏 𝜈

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜈t 

(
𝜕2 𝑦 − 𝑘

2 
)
+ 𝜈t 

′𝜕𝑦 𝑖𝑘𝑥 𝜈t 
′ 0 

0 𝜈t 

(
𝜕2 𝑦 − 𝑘

2 
)
+ 2𝜈t ′𝜕𝑦 0 

0 𝑖𝑘𝑧 𝜈t 
′ 𝜈t 

(
𝜕2 𝑦 − 𝑘

2 
)
+ 𝜈t 

′𝜕𝑦 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (6) 

Here 𝜈t 
′ = d 𝜈t ∕dy. 

By submitting Eq. (5) into Eq. (1) , we obtain 

 = 𝐑𝜈t 
�̃� . (7) 

t is noted that 𝐑𝜈t 
is the eddy-viscosity-enhanced resolvent, given by 

𝜈t 
= 𝐁T 

( 

− 𝑖𝜔

[ 
𝐈 

0 

] 
−
[ 
𝐋 + 𝐃𝜈t 

−∇̂ 

−∇̂T 0 

] ) −1 

𝐁 . (8) 

Due to the fact that nonlinear energy transfer is caused by nonlinear

orcing, we can write the spatial Fourier mode of Eq. (5) in its com-

onents and multiply them by �̂�∗ 𝑗 , the nonlinear energy transfer can be

btained: 

̂
𝜈t = ℜ

{ 

1 
𝑅𝑒𝜏𝜈

( 

𝜈t ⟨ 𝜕2 �̂�𝑗 
𝜕�̂�2 𝑖 

�̂�∗ 𝑗 ⟩ + d 𝜈t 
dy 
⟨( 𝜕�̂�𝑗 

𝜕�̂� 
+ 𝜕�̂� 

𝜕�̂�𝑗 

) 
�̂�∗ 𝑗 ⟩
) } 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̂�𝜈t 

+ℜ
{ ⟨𝑓𝑗 ̂𝑢∗ 𝑗 ⟩} 

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
�̂�𝐟 

, (9) 

here ∗ represents the complex conjugation, ℜ represents the real part

f the result. �̂�𝜈t represents the contribution of the eddy viscosity trans-

ort, and �̂�𝐟 represents the contribution of the stochastic forcing term.

he eddy viscosity transport in Ref. [9] is the first term �̂�𝜈t in Eq. (9) . 
2

Equation (9) can be written in the operator form as 

̂
𝜈t 
= ℜ

{ ⟨tr (�̂� ̂𝐮∗ )⟩} 

= ℜ
{ ⟨tr [(𝐃𝜈t ̂

𝐮 + 𝐟 
)
�̂�∗ 
]⟩} 

= ℜ
{ ⟨tr (𝐃𝜈t ̂

𝐮 ̂𝐮∗ + 𝐟 ̂𝐟∗ 𝐑∗ 
𝜈t 

)⟩} 

= ℜ
{ 

tr 
(
𝐃𝜈t 

𝐑𝜈t 
⟨𝐟 ̂𝐟∗ ⟩𝐑∗ 

𝜈t 

)
+ tr 

(⟨𝐟 ̂𝐟∗ ⟩𝐑∗ 
𝜈t 

)} 

, 

(10) 

here tr represents the trace of a matrix. The cross-spectrum of stochas-

ic forcing is given by 
 

𝐟 ( 𝑘𝑥 , 𝑘𝑧 , 𝑦 )𝐟∗ ( 𝑘𝑥 , 𝑘𝑧 , 𝑦′)
⟩ 
= 𝐈 𝛿

(
𝑦 − 𝑦′

)
. (11)

(3) In the composite sweeping-enhanced resolvent [17] , the nonlin-

ar forcing is determined by: 

̂
 = −

√ 

𝑘2 𝑥 𝑉
2 
𝑥 ( 𝑦) + 𝑘2 𝑧 𝑉

2 
𝑧 ( 𝑦) ̂𝐮 + 𝜆𝑦 

(
𝑘𝑥 , 𝑘𝑧 , 𝑦

)
𝜕𝑦 
(
𝑉𝑦 ( 𝑦) 𝜕𝑦 

)
�̂� + 𝐟 = 𝐃s ̂𝐮 + 𝐟 , 

(12) 

here 𝐃s = diag { 𝐷s , 𝐷s , 𝐷s } , and 𝐷s = −
√ 

𝑘2 𝑥 𝑉
2 
𝑥 ( 𝑦 ) + 𝑘2 𝑧 𝑉

2 
𝑧 ( 𝑦 ) +

𝑦 ( 𝑘𝑥 , 𝑘𝑧 ) 𝜕𝑦 ( 𝑉𝑦 ( 𝑦 ) 𝜕𝑦 ) . The sweeping velocities 𝑉𝑥 ( 𝑦) =
√ ⟨

𝑢2 ( 𝑦) 
⟩
,

𝑦 ( 𝑦) =
√ ⟨

𝑣2 ( 𝑦) 
⟩
, 𝑉𝑧 ( 𝑦) =

√ ⟨
𝑤2 ( 𝑦) 

⟩
, and the characteristic length

cale 𝜆𝑦 
(
𝑘𝑥 , 𝑘𝑧 , 𝑦

)
=

√ 

𝑉 2 
𝑦 

⟨ |||𝜕𝑦 ̂𝐮 |||2 
⟩ 

∕
⟨ |||𝜕𝑦 (𝑉𝑦 ( 𝑦) 𝜕𝑦 )�̂� |||2 

⟩ 

are taken from

NS data. 

The composite sweeping-enhanced resolvent can be expressed as 

 = 𝐑2 
s �̃� . (13) 

he sweeping-enhanced resolvent operator 𝐑s is defined by: 

s = 𝐁T 
( 

− 𝑖𝜔

[ 
𝐈 

0 

] 
−
[ 
𝐋 + 𝐃s −∇̂ 

−∇̂T 0 

] ) −1 

𝐁 . (14) 

The nonlinear energy transfer of the composite sweeping-enhanced

esolvent can also be obtained by taking the components of Eq. (12) and

ultiply them by �̂�∗ 𝑗 : 

̂
𝑅s 

= ℜ
{ 

𝐷s ⟨�̂�𝑗 ̂𝑢∗ 𝑗 ⟩ + ⟨𝑓𝑗 ̂𝑢∗ 𝑗 ⟩} 

. (15) 

quation (15) can be written in the operator form as 

̂
𝑅s 

= ℜ
{ 

tr 
(
𝐃s 𝐑2 

s ⟨𝐟 ̂𝐟∗ ⟩𝐑∗ 
s 
2 + 𝐑s ⟨𝐟 ̂𝐟∗ ⟩𝐑∗ 

s 
2 
)} 

(16) 

here the cross-spectrum of stochastic forcing is given by 

 

𝐟 ( 𝑘𝑥 , 𝑘𝑧 , 𝑦 )𝐟∗ ( 𝑘𝑥 , 𝑘𝑧 , 𝑦′)
⟩ 
= 𝐈
[
𝑘2 𝑥 𝑉

2 
𝑥 ( 𝑦 ) + 𝑘2 𝑧 𝑉

2 
𝑧 ( 𝑦 )

]3∕2 ⟨
𝑣2 ( 𝑦 )

⟩
𝛿
(
𝑦 − 𝑦′

)
. 

(17) 

We utilized the DNS data of turbulent channel flow at 𝑅𝑒𝜏 = 550 in
his work, which has been validated in our previous studies [17,20,21] .

he nonlinear energy transfer of the DNS results is shown in Fig. 1 (a) and

d), calculated in terms of the formula �̂� 

(
𝑘𝑥 , 𝑘𝑧 ; 𝑦

)
= −

⟨ 
�̂�∗ 𝑗 

𝜕 
𝜕�̂�𝑖 

(
𝑢𝑖 𝑢𝑗 

)⟩ 
. 

Figure 1 (b) and (e) plot the nonlinear energy transfer �̂�𝜈t 
of the

ddy-viscosity-enhanced resolvent. The positive (colored in red) and

egative (colored in blue) nonlinear energy transfer qualitatively con-

istent with the DNS results in terms of the distribution in streamwise

 Fig. 1 (b)) and spanwise ( Fig. 1 (e)) wavenumbers, respectively, and the

all-normal location. But the positive region is closer to the wall and

he negative region is smaller than the DNS results. 

Figure 1 (c) and (f) plot the energy transfer �̂�𝜈t caused by eddy viscos-

ty alone, without the inclusion of stochastic forcing. Notably, the areas

nd locations of negative and positive regions shows greater deviations

rom the DNS results, indicating that the nonlinear energy transfer of the

ddy-viscosity-enhanced resolvent should encompass both the transport

nduced by eddy viscosity and the energy injection from stochastic forc-

ng. 
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Fig. 1. One dimensional premultiplied spectrum of nonlinear energy transfer. (a) and (d), DNS results; (b) and (e), nonlinear energy transfer of eddy-viscosity- 

enhanced resolvent, �̂�𝜈t 
= �̂�𝜈t + �̂�𝐟 ; (c) and (f), eddy viscosity transport of eddy-viscosity-enhanced resolvent, �̂�𝜈t . The white solid line represents the contour cor- 

responding to zero value of DNS results, the black dased line in spanwise premultiplied spectrum represent the variance of negative peak spanwise scale with 

wall-normal height. 

Fig. 2. (a)-(d), Wall-normal distribution of nonlinear energy transfer for eddy-viscosity-enhanced resolvent at specific wavenumbers. (a) and (c), Ensemble(time) 

averaged results; (b) and (d), at specific frequencies or wave speeds. Blue solid line, �̂�𝜈t 
= �̂�𝜈t + �̂�𝐟 ; black dashed line, eddy viscosity transport �̂�𝜈t ; green dotted dashed 

line, stochastic forcing effect �̂�𝐟 . (e)-(f), One dimensional premultiplied spectrum of nonlinear energy transfer of the composite sweeping-enhanced resolvent. The 

color bars correspond to those in Fig. 1 . 

3
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To illustrate the wall-normal distributions of the nonlinear energy

ransfer for the eddy-viscosity-enhanced resolvent, we considered spe-

ific wavenumbers and frequencies corresponding to the results of

ymon et al. [9] . These results are presented in Fig. 2 (a)-(d). We can

bseve that in Fig. 2 (a), (c) and (d), the black dashed line represent-

ng eddy viscosity transport is significantly different from the blue solid

ine representing the total nonlinear energy transfer. This indicates that

lthough eddy viscosity transport at ( 𝑘𝑥 , 𝑘𝑧 ) = (0 , 4) with 𝜔 = 0 yields ef-

ective outcomes in Fig. 2 (b), the energy injection caused by stochastic

orcing is significant for both the ensemble average and other frequency

esults. 

In Fig. 2 (e)-(f), we investigated the nonlinear energy transfer pre-

icted by the composite sweeping-enhanced resolvent introduced in Ref.

17] , calculated according to Eq. (15) . The result exhibits a closer agree-

ent in the areas and locations of positive and negative regions with the

NS results compared to the predictions of the eddy-viscosity-enhanced

esolvent shown in Fig. 1 . It indicates that the composite sweeping-

nhanced has shown the effective improvements in predicting the non-

inear energy transfer. 

In this paper, we conducted numerical analysis of nonlinear en-

rgy transfer in two models: the eddy-viscosity-enhanced resolvent and

he composite sweeping-enhanced resolvent. The main results can be

ummarized as follows: (1) The nonlinear energy transfer of the eddy-

iscosity-enhanced resolvent consists of two components: the transport

nduced by eddy viscosity and the energy injection from stochastic forc-

ng. (2) The contribution of energy injection caused by stochastic forc-

ng cannot be ignored in the eddy-viscosity-enhanced resolvent. (3) The

omposite sweeping-enhanced resolvent can improve the prediction of

onlinear energy transfer compared to the eddy-viscosity-enhanced re-

olvent. This study demonstrates the importance of stochastic forcing in

esolvent analysis. The results obtained can be improved by use of the

omposite resolvents. 
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