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Abstract: In this paper, we present a linear stability analysis on flow-induced vibration
of an elastically mounted cylinder subjected to forced rotation. Four series of cases, with
different combinations of degrees of freedoms in oscillation and Reynolds number are
investigated. For each series of cases, a wide range of reduced velocity at various rotation
rates are considered. The variations of growth and frequency with reduced velocity for the
leading modes are presented. Some phenomena observed in previous numerical studies
are interpreted by using the results of linear stability analysis. The supressing of vortex
shedding at moderate rotation rate is explained by the absence of unstable fluid mode. The
amplitude enhancement in high range of rotaton rate is explained by the emergence of
unstable elastic mode. The stability properties of the leading modes provide some new
insight into the influences of forced rotation on flow-induced vibration. The results of
the current study have important implications in the design of offshore structures and
energy-havesting devices.

Keywords: linear stability analysis; flow-induced vibration; elastically mounted cylinder;
forced rotation; fluid mode; elastic mode

1. Introduction
Flow-induced vibration (FIV) is a common phenomenon in nature and is also fre-

quently encountered in civil, offshore, and nuclear engineering structures. The occurrence
of FIV can lead to fatigue damage and safety issues [1]. On the other hand, FIV can also
be utilized to harvest hydrokinetic and wind energy from the environment [2]. The pre-
vention and exploitation of FIV in engineering applications have motivated the study of
this phenomenon.

An elastically mounted circular cylinder that is free to oscillate in the cross-flow
direction is the canonical FIV model. The first type of FIV behavior in this model is termed
‘vortex-induced vibration (VIV)’. The oscillation amplitude is greatly amplified when the
vortex shedding frequency locks onto the natural frequency. In the classical hydroelasticity
theory, the frequency lock-in in VIV is interpreted as a resonance phenomenon in forced-
vibration systems [3]. Recently, by using linear stability analysis (LSA), a second excitation
mechanism in VIV, namely, the flutter-induced mechanism, has been identified. Unlike
the resonance-related mechanism (which is rooted in the instability of a fluid mode), the
flutter-induced mechanism is rooted in the instability of a structural (elastic) mode [4].

For objects with non-axially symmetric cross-sections (such as a square or a D-shaped
cylinder), a second type of FIV behavior termed ‘galloping’ may appear. Such phenomenon
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is characterized by a low-frequency oscillation, the amplitude of which increases unbound-
edly with the reduced velocity. Unlike VIV, galloping is caused by asymmetric pressure
distribution due to the effect of instantaneous angle of attack. The synchronization between
body oscillation and vortex formation is not involved in galloping [3].

FIV of an elastically mounted cylinder with forced rotation has attracted some attention
recently [5–8]. Such configuration has practical application in offshore engineering where
drilling risers without casing may be exposed to ocean currents. The possible enhancement
of oscillating amplitude due to imposed rotation also has some implications in energy-
harvesting devices. A series of computational studies on such configurations at low
Reynolds numbers of the order O(10) − O(102) were conducted. Among these works,
some were concerned with 1-DOF oscillations of a rotating cylinder [9–11]. Bourguet & Lo
Jacono [9] investigated into the cross-flow flow-induced vibrations of a rotating cylinder,
and they found significant enhancement in oscillation amplitudes of the rotating cylinders
in comparison with the non-rotating ones. They also confirmed that the free oscillation of
a rotating cylinder were induced by wake-body synchronization mechanism (similar to
that found in non-rotating cylinders). In a subsequent study by Bourguet & Lo Jacono [10],
in-line flow-induced vibrations of a rotating cylinder were explored. In the entire range
of rotation rate (ratio of speed on the cylinder surface and that of the incoming flow),
two vibration regimes which were interposed by a non-vibration regime, were identified.
In the vibration regime at a low rotation rate, the oscillation was induced by the wake-
synchronization mechanism. In the vibration regime at a high rotation rate, where the
amplitude increased unboundedly with reduced velocity, the FIV behavior was very similar
to that in the galloping phenomenon observed in a square (or D-shaped) cylinder. The
study by Bourguet [11] bridged the gap between these two works by considering rotating
cylinders which were free to oscillate in an arbitrary direction.

2-DOF vibrations of a rotating cylinder were considered in some other references [8,12–15].
In the study by Bourguet [12], it was found that if the cylinder was free to oscillate in both
the cross-flow and the in-line directions, the responses may differ significantly from its
1-DOF counterparts. Flow-induced vibrations were found to exist in the entire range of
rotation rate (from 0 to 5.5). In the work of Zhao et al. [8], the responses of 1-DOF and 2-
DOF oscillators were compared, and the roles of pressure and viscous forces in exciting and
damping the vibrations were analyzed. Sahu et al. [13] discovered multiple lock-in regimes
in a 2-DOF oscillator at various rotation rates. Each lock-in regime was associated with
a different wake pattern. Amini et al. [14] studied the effects of mass ratio on oscillation
amplitude and heat transfer. In a more recent work by Bourguet [15], focus was placed
on how the forced rotation affected subcritical-Re VIV of a rotating cylinder, which was
down to very low Reynolds numbers. It was found that, at high rotation rates, the vibration
region considerably expanded, and the amplitude was greatly enhanced. In addition, a
transition from VIV to galloping was also observed at a sufficiently high rotation rate.

In almost all aforementioned references, numerical investigations were conducted
by solving nonlinear (Navier–Stokes) equations. The only exception was the one by
Sahu et al. [13] where a linear stability analysis (LSA) was also performed. The LSA results
revealed that FIV can be induced by instabilities in the fluid, elastic, or coupled fluid–elastic
modes, depending on the values of rotation rate and reduced velocity.

The new contribution of the current study is a systematic investigation on how forced
rotation affects FIV behaviors by using LSA. More specifically, we considered 1-DOF (cross-
flow and in-line) and 2-DOF oscillators, which were explored using nonlinear simulations
by Bourguet and co-workers [9,10,12,15]. The LSA results are expected to provide some
new insights into the mechanisms behind distinct FIV behaviors at different ranges of
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rotation rate. These important information are expected to be helpful in guiding the design
of offshore structures and energy-harvesting devices.

The arrangement of rest of this paper is as follows. Section 2 presents the physical
model and governing equations. Section 3 presents a brief introduction on the numerical
methods for performing LSA. Section 4 presents the results and discussion. Finally, some
concluding remarks are provided in Section 5.

2. Physical Model and Governing Equations
In this paper, we consider a rigid circular cylinder that is elastically mounted and

immersed in a two-dimensional incompressible viscous flow. A schematic representation
of the physical model is shown in Figure 1. The cylinder is free to oscillate in the in-line or
cross-flow direction (or both). The cylinder has a diameter of D and is forced to rotate at an
angular velocity of Ω.

Figure 1. Schematic diagram of the physical model.

The flow is assumed to be laminar and is governed by incompressible Navier–Stokes
equations, which can be written in a dimensionless form as follows:

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u + f , (1a)

∇ · u = 0, (1b)

where u is the velocity vector and p is the pressure. f is the body-force term which
represents the interaction between the flow and the immersed object. In the immersed
boundary method used to solve the Navier–Stokes equations, this term can be implicitly
determined by enforcing no-slip condition on the surface of the object.

The oscillating motions of the cylinder are governed by Newton’s second law, which
can be written in a dimensionless form as follows:

ẍ + 2ξ

(
2π

U∗

)
ẋ +

(
2π

U∗

)2
x =

Fx

m∗ =
CD
2m∗ , (2a)

ÿ + 2ξ

(
2π

U∗

)
ẏ +

(
2π

U∗

)2
y =

Fy

m∗ =
CL

2m∗ , (2b)

where x and y denote the horizontal and vertical positions of the cylinder center. U∗ is
the reduced velocity, ξ is the dimensionless damping coefficient, and m∗ is the mass ratio.
CL and CD are the lift and drag coefficients which are defined as CL = Fy/(ρ f U2

∞L) and
CD = Fx/(ρ f U2

∞L), where Fy and Fx are the vertical and horizontal components of the
resultant hydrodynamic force exerted on the cylinder. In the framework of immersed
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boundary method for solving Navier–Stokes equations, this hydrodynamic force can be
computed by using the body-force f .

The inflow which comes from left to right has a uniform velocity of U∞. The reference
length and time used in the nondimensionalization are L and L/U∞, respectively. The
dynamic behavior of the FIV system is determined by five dimensionless parameters,
namely, Reynolds number Re, reduced velocity U∗, mass ratio m∗, dimensionless damping
coefficient ξ, and rotation rate α. The definitions of these parameters are as follows:

Re =
LU∞

ν
, (3a)

U∗ =
U∞

fnL
=

U∞

L
2π

√
ms

k
, (3b)

m∗ =
ρs

ρ f
, (3c)

ξ =
κ

2
√

kms
, (3d)

α =
2Ω

U∞L
. (3e)

Here, ν is the kinematic viscosity of the fluid, ms is the mass of the cylinder, and fn is the
natural frequency of the spring-mass system in vacuum. ρ f and ρs are the densities of
the fluid and the cylinders, respectively. κ and k are the damping coefficient and stiffness
coefficient, respectively. In this paper, we only consider cases with no structural damping,
and thus ξ = κ = 0. Such setting facilitates higher oscillation amplitudes in simulation and
is often used when the effect of structural damping is not the main concern.

3. Numerical Methods
In this study, we conduct LSA by using the linear stability solver developed in

Zhang et al. [16]. It utilizes a direct-forcing immersed boundary method based on stream-
function formulation to solve the linearized equations of the FIV system. The immersed
boundary method aforementioned was first proposed by Wang & Zhang [17] for solving
incompressible Navier–Stokes equations with stationary and moving boundaries.

The state variable of the FIV system can be written as q = [s, V, X, F]T . Here, s is
the stream function, which is the primary unknown in the discretized stream-function
formulation of Navier–Stokes equations. V is the velocity of the cylinder center, i.e.,
V = [ẋ, ẏ]T . X represents the position vectors of the Lagrangian points on the cylinder
surface. F represents the Lagrangian forces at these points.

The state variable can be described as the summation of base and perturbation vari-
ables, i.e., q = qb + q′. The subscript ()b indicates the base variable that can be obtained by
solving steady Navier–Stokes equations with the cylinder placed at its equilibrium posi-
tion. The prime symbol represents the perturbation variable. By linearizing the governing
Equations (1) and (2) around the base state, we can derive the linearized equations for the
perturbation variable of the FIV system, i.e.,

B
∂q′

∂t
= A(qb)q

′. (4)

Here, A and B are two matrices that are constructed based on operators involved in dis-
cretizing the linearized equations. By using the normal-mode assumption q′ = q̂eλt (where
λ is the circular frequency), Equation (4) can be reformulated as a generalized eigenvalue
problem: λBq̂ = Aq̂. We utilize the shift–invert iteration method provided in software
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packages PETSc 3.20.0 and SLEPc 3.20.0 to solve this generalized eigenvalue problem.
The linear stability solver has been thoroughly validated by computing eigenvalues and
eigenmodes for the FIV system of flow past an elastically mounted cylinder [16]. In the
current study, the residual tolerances on eigenvalue and eigenvector are set to 1.0 × 10−10.

The real part of eigenvalue λ (i.e., λr) represents the growth (or decay) rate of the
eigenmode. The eigenmode is stable, neutral, or unstable, if the eigenvalue is negative,
zero, or positive, respectively. The imaginary part of eigenvalue λ (i.e., λi) represents the
oscillating frequency of the eigenmode.

4. Results and Discussion
4.1. Control Parameters and Numerical Settings

LSA is performed on four series of cases. The physical parameters for these cases are
listed in Table 1. In each series, the Reynolds number is fixed, while the rotation rate and
reduced velocity may vary. The value of mass ratio m∗ is set to 10.0 for all cases in this
study. This value is chosen to be the same as that in the nonlinear simulations by Bourguet
and co-authors [9,10,12,15].

Table 1. Values of control parameters in this study.

Series Re DOFs α U∗

1 100 1 (in-line) [0.0, 1.0, 2.5, 3.0, 4.0] 4.0–30.0
2 100 1 (cross-flow) [0.0, 1.0, 2.0, 3.0, 4.0] 4.0–30.0
3 100 2 (both) [0.0, 1.0, 2.1, 3.0, 4.0] 4.0–30.0
4 30 2 (both) [0.0, 1.0, 2.0, 3.0, 4.0] 4.0–30.0

Series 1 represents the scenario of in-line oscillation at a supercritical Reynolds num-
ber [10]. Series 2 represents the scenario of cross-flow oscillation at a supercritical Reynolds
number [9]. Series 3 and series 4 represent the scenarios of 2-DOF oscillations at a supercrit-
ical [12] and a subcritical Reynolds number [15], respectively. Here, the critical Reynolds
number (which is roughly 47) refers to the one for onset of vortex shedding in flow past a
rigidly mounted non-rotating cylinder.

The parameter range of this study is carefully chosen such that the flow is strictly
two-dimensional within almost the entire range. Three-dimensionality may develop in a
very narrow parameter range with a high Re number and high rotation rate. For cases in
such parameter range, the nonlinear simulation results mentioned here are referred to as
those obtained by conducting 2D simulations. It should also be noted that, even for cases in
which the transition from 2D to 3D may occur, the structure responses are barely affected
by the transition.

A non-uniform Cartesian mesh on a computational domain of [80D × 56D] is used to
perform linear stability analysis. The mesh is stretched in such a way that the minimum
grid spacing of 0.02D is uniformly distributed in a small region of [10D × 4D] around the
cylinder, while the maximum grid spacing of 0.55D is attained near the domain boundaries.

To ensure that the mesh resolution is fine enough, and the domain size is sufficiently
large for obtaining accurate solutions, convergence tests are conducted, and the results are
presented in Appendix A.

4.2. In-Line Oscillation at a Supercritical Reynolds Number (Series 1)

Some results for series 1 from the nonlinear simulation of Bourguet & Lo Jacono [10]
are summarized in Figure 2. Figure 2a shows the vibration and non-vibration regions in the
space of (U∗, α). It is seen that there exist two vibration regions at the low and high ranges
of rotation rate, respectively. These two vibration regions are separated by a non-vibration
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region (without flow unsteadiness) at the intermediate range of rotation rate. Figure 2b
shows the amplitude of oscillation as a function of U∗ at various rotation rates. For the
vibration region in the low range of rotation rate, amplitudes are very small and the curves
are bell-shaped. For the vibration region in the high range of rotation rate, amplitudes are
much larger and tend to increase unboundedly with U∗. This is the typical behavior of
galloping responses that are found in FIV of non-axisymmetic objects. The cases selected
for conducting LSA are denoted as dots in Figure 2a. Different colors are assigned to these
dots depending on stability properties of the leading modes. It is evident that the critical
values of U∗ for onset of oscillation in the high range of rotation rate can be predicted by
using stability properties of the leading modes.

(a)

(b)

3.5

Steady flow

First vibration region

Second vibration region

Figure 2. Results from nonlinear simulation for FIV of an in-line oscillator at Re = 100 (series 1):
(a) vibration region and non-vibration regions in (U∗, α). The lower vibration region is represented in
light grey. In this region, the area in which the amplitude is large than 0.01D is enclosed by a dashed
line. The upper vibration region is represented in dark gray. The black dots represent cases without
unstable mode(s). The red and orange dots represent cases with one unstable FM mode and one
unstable EM mode, respectively. (b) The amplitude of oscillation as a function of U∗. The boundary
lines in (a) and curves in (b) are re-plotted by using digitized data extracted from Bourguet & Lo
Jacono [10].

Figure 3 shows the variations in growth rate (λr) and non-dimensional frequency ( f ∗)
with reduced velocity (U∗) for one (or two) leading mode(s) obtained at α = 0, 1.0, 3.0.
At (α = 0) (which represents the non-rotating case), it is evident that one leading mode
remains unstable in the entire range of U∗. We refer to this mode as the fluid mode (FM),
since its frequency is nearly invariant with varying U∗. The other leading mode (which is
always stable) is referred to as the elastic mode (EM), since its frequency varies inversely
with U∗. At α = 1.0, the results are very similar to those for α = 0. In other words, the LSA
results are barely affected by the imposed rotation. At α = 2.5, it is found that no unstable
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leading modes exist in the entire range of U∗. This is consistent with the result of nonlinear
simulation in which cylinder oscillation and flow unsteadiness are completely inhibited.
The growth rate and dimensionless frequency of the leading modes are not shown here
for brevity. At α = 3.0, one leading mode, which is unstable when U∗ > 7.5, is identified
as an EM mode. The critical value of U∗ = 7.5 is close to the value for onset of oscillation
in nonlinear simulation (see Figure 2a). The fact that the EM mode remains unstable at
the high limit of U∗ can be used to rationalize the unbounded increase in amplitude with
increasing U∗.

(a) (b)

(c) (d)

(e) (f)

Figure 3. LSA results for FIV of an in-line oscillator at Re = 100 (series 1): growth gate λr and
dimensionless frequency f ∗ = λi/(2π) as a function of U∗ at α = 0 (a,b); α = 1.0 (c,d); α = 3.0 (e,f).
The unstable regions (with a positive growth gate) in the (left panel) are shaded in gray. The
(dimensionless) natural frequencies as a function of U∗ are shown as dashed lines in the (right panel).

Figure 4 shows the structures (vorticity fields) of the FM and EM modes for some
cases at α = 1.0 and α = 3.0. It is seen that the structures of FM modes are not significantly
affected by varying U∗. These structures are similar to those observed in flow past a rigidly
mounted non-rotating cylinder. On the other hand, the structures of EM modes strongly
depend on the value of U∗. The spacing between adjacent lobes appears to increase in
length in the streamwise direction with increasing U∗. The increase in spacing between
vorticity lobes for the EM modes is consistent with the reduction in frequency. This trend
was reported previously in the study by Sahu et al. [13].



Fluids 2025, 10, 56 8 of 17

FM
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

EM EM

Figure 4. Mode structures for some cases in series 1: vorticity fields of FM modes (left panel) and EM
modes (middle panel) for α = 1.0, and EM modes for α = 3.0 (right panel). Frames (a,d,g), (b,e,h),
and (c,f,i) are for U∗ = 6.0, 10.0, 15.0, respectively. The ranges of vorticity are [−5 × 10−3, 5 × 10−3]

for (a–c), [−5 × 10−4, 5 × 10−4] for (d–f), and [−10−5, 10−5] for (g–i). The incoming flow is from left
to right.

4.3. Cross-Flow Oscillation at a Supercritical Reynolds Number (Series 2)

Some results for series 2 from the nonlinear simulation of Bourguet & Lo Jacono [9]
are summarized in Figure 5. Figure 5a shows the vibration and non-vibration regions
in the space of (U∗, α). Dark gray represents the region of high-amplitude oscillation,
which extends from α = 0 to α = 3.75. Light gray represents the region of low-amplitude
oscillation (with flow unsteadiness). The cases selected for conducting LSA are denoted as
dots in different colors, depending on the stability properties of the leading modes. It is seen
that the boundary lines between different regions in Figure 5a can be predicted by using
stability properties of the leading modes. Figure 5b shows the amplitude of oscillation as a
function of U∗ at various rotation rates. At α = 0, the response curve is bell-shaped. At
α = 1.0, the shape of response curve is very similar to that of α = 0. The amplitude of
oscillation slightly increases, and the range of U∗ for high-amplitude oscillation slightly
expands and shifts towards high U∗ values. The curves of such shape is a hallmark of the
VIV response. At α = 2.0 and α = 3.0, the amplitudes further increase, and the ranges
of U∗ for high-amplitude oscillation significantly expand. The shapes of these curves are
markedly dissimilar to those of the curves for α = 0 and α = 1.0. At α = 4.0, the oscillation
is completely suppressed, and the amplitude is reduced to zero.

Figure 6 shows the variations in growth rate (λr) and non-dimensional frequency ( f ∗)
with reduced velocity (U∗) for the leading mode(s) calculated at α = 0, 1.0, 2.0. At α = 0,
the FM mode is found to be unstable over the entire range of U∗, while the EM mode is
found to be unstable in the range of 5.0 ≤ U∗ ≤ 10.0. At α = 1.0, the stability properties of
the two leading modes are very similar to those for α = 0. At these two rotation rates, the
coexistence of unstable FM and EM modes in certain range of U∗ signifies the resonance
(synchronization) between flow unsteadiness and cylinder oscillation. This range of U∗

roughly coincides with the range for high-amplitude oscillation shown in Figure 5a. At
α = 2.0, the FM mode becomes stable in the entire range of U∗, while the EM mode is
found to be unstable in the range of 6.0 ≤ U∗ ≤ 17.0. This range of U∗ also coincides with
the range for high-amplitude oscillation shown in Figure 5a. At α = 4, it is found that no
unstable leading modes exist in the entire range of U∗. This finding is consistent with the
result of nonlinear simulation, in which the amplitude is reduced to zero. The growth rate
and frequency of the leading modes are not shown here for brevity.
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(a)

(b)

Vibrations

Unsteady flow

Steady flow

Vibrations

Figure 5. Results from nonlinear simulation for the FIV of a cross-flow oscillator at Re = 100 (series 2):
(a) vibration and non-vibration regions in space of (U∗, α). The vibration region where the amplitude
is larger than 0.05D is represented in dark gray. The vibration region with low amplitude (and flow
unsteadiness) is represented in light gray. The red dots represent cases with one unstable FM mode.
The green dots represent cases with one unstable FM mode plus one unstable EM mode. The orange
dots represent cases with one unstable EM mode. The black dots represent cases without any unstable
mode(s). (b) The amplitude of vibration as a function of U∗. The boundary lines in (a) and response
curves in (b) are re-plotted by using digitized data extracted from Bourguet & Lo Jacono [9].

(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. LSA results for the FIV of a cross-flow oscillator at Re = 100 (series 2): growth gate
λr and dimensionless frequency f ∗ = λi/(2π) as a function of U∗ at α = 0 (a,b); α = 1.0 (c,d);
α = 2.0 (e,f). The unstable regions (with a positive growth gate) in the (left panel) are shaded in gray.
The (dimensionless) natural frequencies ( fn = 1/U∗) as a function of U∗ are shown as dashed lines
in the (right panel).

Figure 7 shows the structures of the FM and EM modes for some cases at α = 1.0 and
α = 3.0. Similar to the those in series 1, the structures of FM modes are not affected by
varying U∗, while the structures of EM modes strongly depend on the value of U∗.

FM
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

EM EM

Figure 7. Mode structures for some cases in series 2: vorticity fields of FM mode (left panel) and EM
mode (middle panel) for α = 1.0, and EM mode for α = 3.0 (right panel). Frames (a,d,g), (b,e,h), and
(c,f,i) are calculated for U∗ = 6.0, 10.0, 15.0, respectively. The ranges of vorticity are [−10−3, 10−3] for
(a–f), and [−5 × 10−6, 5 × 10−6] for (g–i). The incoming flow is from left to right.

4.4. 2-DOF Oscillation at a Supercritical Reynolds Number (Series 3)

Some results for series 3 from the nonlinear simulation of Bourguet [12] are summa-
rized in Figure 8. Figure 8a shows the vibration and non-vibration regions in the space of
(U∗, α). In comparison with that for series 2, the area of vibration region expands signif-
icantly and covers almost the entire parameter space. The cases selected for conducting
LSA are denoted as dots with different colors, depending on stability properties of the
leading modes. It is seen that the boundary lines between different regions in Figure 8a
can be predicted by using stability properties of the leading modes. Figure 8b shows the
amplitude of oscillation as a function of U∗ at various α. At α = 0 and α = 1.0, the response
curves are bell-shaped and similar to those observed in series 2 at the same values of α. The
curves of this type is also a hallmark of VIV response. At α = 2.0, the response curve is
sawtooth-shaped. This type of curve is seldomly seen and can be regarded as abnormal
behavior of such FIV system. At α = 3.0 and α = 4.0, the response curves are qualitatively
similar to those in series 1 at the high range of α. The amplitudes at these two values of α

increase unboundedly with increasing U∗, exhibiting the typical behavior of galloping.
Figure 9 shows the variations in growth rate (λr) and non-dimensional frequency

( f ∗) with U∗ for the leading modes calculated at α = 0, 1.0, 2.1, 3.0. At α = 0, similar to
series 2, the FM mode is found to be unstable in the entire range of U∗, and the EM mode
is found to be unstable in a narrow range of 5.0 ≤ U∗ ≤ 10.0. This range of U∗ (where
two unstable modes co-exist) roughly coincides with that for the high-amplitude VIV-type
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response shown in Figure 8b. At α = 1.0, the stability properties of the leading modes are
very similar to those for α = 0. The FM mode remains consistently unstable, while the
unstable range of U∗ for the EM mode slightly narrows. At α = 2.1, similar to the situations
in series 1 and series 2, the FM mode is stabilized in the entire range of U∗. The EM mode
now becomes unstable in a relatively wide range of 4.5 ≤ U∗ ≤ 22.0. At α = 3.0, the
unstable range of the EM mode further expands and covers the high limit of U∗. Overall,
the stability properties of the leading modes for series 3 show some similarities with those
for series 2 at the low range of α, while resemble those for series 1 at the high range of α.
There are some additional remarks regarding stability properties of the leading modes for
1.8 ≤ α ≤ 2.0. The curves of growth rate and frequency of the leading modes resemble
those for α = 2.1 (not shown here for brevity). In other words, the complex geometry of the
boundary line between vibration and non-vibration regions and abnormal behavior in the
response curve shown in Figure 8 cannot be interpreted by LSA results.

(a)

(b)

Unsteady flow

Steady flow

Vibrations

Steady flow

Vibrations

Figure 8. Results from nonlinear simulation for the FIV of a 2-DOF oscillator at Re = 100 (series
3): (a) vibration region and non-vibration region in space of (U∗, α). The vibration region where the
(cross-flow) amplitude of oscillation is larger than 0.03D is represented in dark gray. The vibration
region with small amplitude of oscillation (and flow unsteadiness) is represented in light gray. The
black dots represent cases without unstable modes. The red and orange dots represent cases with one
unstable FM mode and one unstable EM mode, respectively. The green dots represents cases with
two unstable modes (one FM mode plus one EM mode). (b) amplitude of (cross-flow) oscillation as a
function of U∗. The boundary lines in (a) and response curves in (b) are re-plotted by using digitized
data extracted from Bourguet [12].

The structures of modes for some cases at α = 1 and α = 3 are shown in Figure 10.
Similar to the other two series above, the structures of the EM modes are modified obviously
by varying U∗, the influence of U∗ on the structures of the FM modes is much smaller.



Fluids 2025, 10, 56 12 of 17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. LSA results for the FIV of a 2-DOF oscillator at Re = 100 (series 3): growth gate λr and
dimensionless frequency f ∗ = λi/(2π) as a function of U∗ at α = 0 (a,b); α = 1.0 (c,d); α = 2.1 (e,f);
α = 3.0 (g,h). The unstable regions (with a positive growth gate) in the (left panel) are shaded in
gray. The (dimensionless) natural frequencies ( fn = 1/U∗) as a function of U∗ are shown as dashed
lines in the (right panel).

FM
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

EM EM

Figure 10. Mode structures for some cases in series 3: vorticity fields of FM mode (left panel) and
EM mode (middle panel) for α = 1, and EM mode for α = 3 (right panel). Frames (a,d,g), (b,e,h),
and (c,f,i) are calculated for U∗ = 6, 10, 15, respectively. The range of vorticity is [−10−3, 10−3] for
(a–f), and [−5 × 10−6, 5 × 10−6] for (g–i). The incoming flow is from left to right.
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4.5. 2-DOF Oscillation at a Subcritical Reynolds Number (Series 4)

Some results for series 4 from the nonlinear simulation of Bourguet [15] are summa-
rized in Figure 11. Figure 11a shows the vibration and non-vibration regions in the space
of (U∗, α). Unlike the other three series, the region of small-amplitude vibration (with
flow unsteadiness) disappears. The vibration region extends from α = 0 to α = 4.0. The
range of U∗ for the vibration region first narrows and then widens with increasing α. The
narrow-necked place is found to be located at α = 1.0. The cases selected for conducting
LSA are denoted by dots in different colors, depending on stability properties of the leading
modes. It is seen that the boundary lines between the vibration and non-vibration regions
can be predicted by using stability properties of the leading modes. Figure 11b shows the
amplitudes of oscillation as a function of U∗ at various α. At α = 0, 1.0, 2.0, the response
curves are bell-shaped and of VIV type. At α = 3.0, the amplitude of oscillation is much
higher than those at α = 0, 1.0, 2.0. It first increases monotonically with U∗ and reaches a
peak amplitude of 3.5D at U∗ = 25.0. The amplitude then decreases steeply with increasing
U∗ and becomes zero for U∗ > 28.0. At α = 4.0, the amplitude increases unboundedly with
increasing U∗. The oscillation amplitude reaches a value as high as 10D at the high limit of
U∗. This galloping-like response curve looks similar to that observed in series 3 at the same
value of α.

(a)

(b)

Steady flow

Vibrations

Figure 11. Results from nonlinear simulation for the FIV of a 2-DOF oscillator at Re = 30 (series 4):
(a) vibration region and non-vibration region in space of (U∗, α). The vibration region is represented
in dark gray. The black dots represent cases without unstable mode(s). The orange dots represent
cases with one unstable EM mode. (b) cross-flow oscillation amplitude as a function of U∗ at various
values of α. The boundary lines in (a) and response curves in (b) are re-plotted by using digitized
data extracted from Bourguet [15].
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Figure 12 shows the variation in λr and f ∗ with U∗ for the leading modes calculated
for α = 0, 1.0, 3.0, 4.0. It is seen that, at a subcritical Reynolds number, no unstable FM mode
can be found, while the EM mode is unstable in certain range of U∗. The unstable range
of the EM mode first reduces and then increases with increasing α. At low rotation rates,
the unstable ranges for the EM mode are relatively narrow. More specifically, the ranges
are 6.4 < U∗ < 10.6 and 6.0 < U∗ < 9.0 at α = 0 and α = 1.0, respectively. At α = 3.0,
a much wider unstable range of 4.5 < U∗ < 27.8 for the EM mode can be identified. At
α = 4.0, the unstable range is found to be the entire range of U∗. The unstable ranges of U∗

at different values of α are found to be consistent with those for the vibration region shown
in Figure 11a.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. LSA results for FIV of a 2-DOF oscillator at Re = 30 (series 4): growth gate λr and
dimensionless frequency f ∗ = λi/(2π) as a function of U∗ at α = 0 (a,b); α = 1.0 (c,d); α = 3.0 (e,f);
α = 4 (g,h). The unstable regions (with a positive growth gate) in the (left panel) are shaded in gray.
The (dimensionless) natural frequencies ( fn = 1/U∗) as a function of U∗ are shown as dashed lines
in the (right panel).
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The structures of the EM modes for some cases at α = 1.0 and α = 3.0 are shown
in Figure 13. The dependency of mode structures on U∗ resembles the scenarios of other
three series.

EM
(a)

(b)

(c)

(d)

(e)

(f)

EM

Figure 13. Mode structures for some cases in series 4: vorticity fields of EM modes at α = 1.0 (left panel)
and α = 3.0 (right panel). Frames (a,d), (b,e) and (c,f) are for U∗ = 6.0, 10.0, 15.0, respectively. The
ranges of vorticity are [−5 × 10−5, 5 × 10−5] for frames (a–c), [−5 × 10−6, 5 × 10−6] for frames (d–f).
The incoming flow is from left to right.

5. Conclusions
The flow-induced vibration of an elastically mounted rotating cylinder was investi-

gated by using LSA. Four series of cases with different combinations of degrees of freedom
in oscillation and Reynolds number are considered. For each series, a wide range of reduced
velocity U∗ ∈ [4.0, 30.0] and rotation rate α ∈ [0, 4.0] was explored. The growth rates
and frequencies of the leading modes as a function of reduced velocity are presented. The
impact of forced rotation on FIV behaviors of the system has been interpreted by examining
its influence on stability properties of the leading modes, and some new insights have
been gained.

At a supercritical Reynolds number, an unstable FM mode can always be identified in
the non-rotating case. The instability of the EM mode may exist or not, depending on the
degrees of freedom of the oscillation. The FIV behavior of the system strongly depends on
the stability properties of the FM and EM modes. The coexistence of two unstable modes
in a certain range of the reduced velocity is associated with the resonance (synchronization)
mechanism which leads to VIV.

In the low range of rotation rate, the imposed rotation barely affects stability properties
of the FM and EM modes. Thus, the FIV behavior is similar to that of the non-rotating case.
In the intermediate and high ranges of rotation rate, the imposed rotation tends to stabilize
the FM mode. Thus, the FIV behavior only depends on stability properties of the EM mode.
In the absence of unstable EM mode, the cylinder vibration and flow unsteadiness are
completely inhibited. The existence of an unstable EM mode in certain range of reduced
velocity is correlated with high-amplitude oscillation observed in nonlinear simulation. An
expanded unstable range of the EM mode which covers the high limit of reduced velocity
is correlated with galloping-like response observed in nonlinear simulation.

At a subcritical Reynolds number, only one unstable EM mode can be identified in the
case of 2-DOF oscillation. When the rotation rate increases, the unstable range of the EM
mode first decreases and then increases. This explains why the range of reduced velocity
for high-amplitude oscillation in nonlinear simulation first narrows and then widens with
increasing rotation rate. In the high range of rotation rate, the EM mode is found to be
unstable in the entire range of reduced velocity. This is correlated with galloping-like
responses observed in nonlinear simulation.

The limitations of LSA also merit further discussion. We found that some phenomena
observed in nonlinear simulation cannot be interpreted by using LSA results. One example
is the modification of wake topology by imposed rotation and the formation of different
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wake patterns at various rotation rates. The reason behind this is that the evolution of wake
strongly depends on the nonlinear effect inherited in Navier–Stokes equations, while such
effect is not taken into account in LSA.
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Appendix A. Mesh and Domain Independence Tests
In the mesh independence test, a series of stretched Cartesian meshes are used. 2-DOF

oscillation with the control parameters of (Re = 30, M∗ = 10, α = 2, U∗ = 10.) is the
testing case. Three different mesh resolutions are employed, with the finest grid spacing
near the cylinder being D/25, D/50 and D/100, respectively. The effect of grid spacing on
eigenvalues is shown in Table A1. The result indicates that the grid spacing of D/50 is fine
enough for obtaining accurate eigenvalues.

Table A1. Effect of mesh resolution on eigenvalues of two leading modes.

Grid Spacing ∆x = D/25 ∆x = D/50 ∆x = D/100

FM −0.0237 + 0.5572i −0.0229 + 0.5574i −0.0223 + 0.5575i
EM −0.0454 + 0.6438i −0.0457 + 0.6424i −0.0459 + 0.6417i

A domain-size independence test is also conducted on the same case. From Table A2,
it is observed that a domain size of [80D × 56D] is sufficiently large for obtaining accu-
rate eigenvalues.

Table A2. Effect of domain size on eigenvalues of two leading modes.

Domain Size [56D × 40D] [80D × 56D] [104D × 74D]

FM −0.0237 + 0.5546i −0.0229 + 0.5574i −0.0235 + 0.5587i
EM −0.0447 + 0.6412i −0.0457 + 0.6424i −0.0452 + 0.6433i
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