Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity | |
Zhao JF(赵建福); Zhang L(张良); Li ZD(李震东); Qin WT; Zhao, JF (reprint author), Chinese Acad Sci, Key Lab Micrograv, Natl Micrograv Lab, Inst Mech, Beijing 100190, Peoples R China | |
Source Publication | International Journal of Heat and Mass Transfer |
2011 | |
Volume | 54Issue:21-22Pages:4655-4663 |
ISSN | 0017-9310 |
Abstract | Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of a deformable liquid drop immerged in an immiscible bulk liquid with a temperature gradient is simulated numerically with constant material properties of the two phases. Steady terminal state of the motion can always be reached. The dimensionless terminal migration velocity decreases monotonously with the increase of the Marangoni number. Good agreements with space experimental data and most of previous numerical studies in the literature are evident. The terminal topological structure of flow field, in which a recirculation identical to Hill's vortex exists inside the drop, does not change with the Marangoni number. Only slight movement of the location of vortex center can be observed. On the contrary, bifurcations of the terminal topological structure of temperature field occur twice with increasing Marangoni number. At first, the uniform and straight layer-type structure of temperature field at infinitesimal Reynolds and Marangoni numbers wraps inside of the drop due to convective transport of heat as the Marangoni number increases, resulting in the emergence of an onion-type local cooler zone around the center of the drop beyond a lower critical Marangoni number. Expanding of this zone, particularly in the transverse direction, with the increasing of the Marangoni number leads to a cap- or even shell-type structure. The coldest point within the liquid drop locates on the axis. There is a middle critical Marangoni number, beyond which the coldest point will jump from the rear stagnation into the drop, though the topological structure of the temperature field does not change. The second bifurcation occurs at an upper critical Marangoni number, where the shell-type cooler zone inside drops ruptures from the central point and then a torus-type one emerges. The coldest point departs from the axis, and the so-called "cold-eye" appears in the meridian. It is also found that the inner and outer thermal boundary layers along the interface may exist both inside and outside the drop if Ma > 70. But the thickness decreases with the increasing Marangoni number more slowly than the prediction of potential flow at large Marangoni and Reynolds numbers. A velocity shear layer outside the drop is also introduced formally, of which modality may be affected by the convective transports of heat and/or momentum. (C) 2011 Elsevier Ltd. All rights reserved. |
Keyword | Thermocapillary Migration Topological Structure Liquid Drop Numerical-simulation Reduced Gravity Gradient Bubbles Motion Reynolds Numbers |
Subject Area | Thermodynamics ; Engineering ; Mechanics |
DOI | 10.1016/j.ijheatmasstransfer.2011.06.012 |
URL | 查看原文 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000293989200021 |
WOS Keyword | NUMERICAL-SIMULATION ; REDUCED GRAVITY ; GRADIENT ; BUBBLES ; MOTION ; REYNOLDS ; NUMBERS |
WOS Research Area | Thermodynamics ; Engineering ; Mechanics |
WOS Subject | Thermodynamics ; Engineering, Mechanical ; Mechanics |
Funding Organization | The present work is supported financially by the National Natural Science Foundation of China under the grant of 10972225. |
Department | NML微重力两相流与燃烧 |
Classification | 一类 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/45072 |
Collection | 微重力重点实验室 |
Corresponding Author | Zhao, JF (reprint author), Chinese Acad Sci, Key Lab Micrograv, Natl Micrograv Lab, Inst Mech, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Zhao JF,Zhang L,Li ZD,et al. Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity[J]. International Journal of Heat and Mass Transfer,2011,54,21-22,:4655-4663. |
APA | 赵建福,张良,李震东,Qin WT,&Zhao, JF .(2011).Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity.International Journal of Heat and Mass Transfer,54(21-22),4655-4663. |
MLA | 赵建福,et al."Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity".International Journal of Heat and Mass Transfer 54.21-22(2011):4655-4663. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
SCI-J2011139.pdf(1402KB) | 开放获取 | -- | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment