| An Adaptive Multimoment Global Model on a Cubed Sphere |
| Chen CG(陈春刚) ; Xiao F(肖锋) ; Li XL ; Chen, CG (reprint author), Chinese Acad Sci, Inst Mech, LHD, 15 Beisihuanxi Rd, Beijing 100190, Peoples R China
|
发表期刊 | Monthly Weather Review
![](/image/waiting.gif) |
| 2011
|
卷号 | 139期号:2页码:523-548 |
ISSN | 0027-0644
|
摘要 | An adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite volume scheme and the Berger-Oliger adaptive mesh refinement (AMR) algorithm that was originally designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are constructed in a way that the Berger-Oliger algorithm can be applied directly. Moreover, an algorithm to transfer data across neighboring patches is proposed to establish a practical integrated framework for global AMR computation on the cubed-sphere grid. The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present scheme very attractive not only in dealing with the artificial boundaries between different patches but also in the coarse fine interpolations required in the AMR computations. The single-cell-based reconstruction avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained interpolation profile-conservative semi-Lagrangian scheme with third-order polynomial function (CIP-CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness. Numerical experiments with typical benchmark tests for both advection equation and shallow-water equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical accuracy with less computational cost. |
关键词 | Shallow-water Equations
Finite-volume Method
Barotropic Vorticity Equation
Mesh Refinement
Efficient Implementation
Incompressible Flows
Unified Formulation
Weather Prediction
Conservation-laws
Grid Refinement
|
学科领域 | Meteorology & Atmospheric Sciences
|
DOI | 10.1175/2010MWR3365.1
|
URL | 查看原文
|
收录类别 | SCI
; EI
|
语种 | 英语
|
WOS记录号 | WOS:000288729300013
|
关键词[WOS] | SHALLOW-WATER EQUATIONS
; FINITE-VOLUME METHOD
; BAROTROPIC VORTICITY EQUATION
; MESH REFINEMENT
; EFFICIENT IMPLEMENTATION
; INCOMPRESSIBLE FLOWS
; UNIFIED FORMULATION
; WEATHER PREDICTION
; CONSERVATION-LAWS
; GRID REFINEMENT
|
WOS研究方向 | Meteorology & Atmospheric Sciences
|
WOS类目 | Meteorology & Atmospheric Sciences
|
项目资助者 | This work is supported by National Natural Science Foundation of China and Chinese Academy of Sciences under Projects 10852001, 10902116, 40805045, and KJCX2-YW-L04. We thank anonymous reviewers for their constructive suggestions.
|
论文分区 | 二类/Q2
|
引用统计 |
|
文献类型 | 期刊论文
|
条目标识符 | http://dspace.imech.ac.cn/handle/311007/45179
|
专题 | 高温气体动力学国家重点实验室
|
通讯作者 | Chen, CG (reprint author), Chinese Acad Sci, Inst Mech, LHD, 15 Beisihuanxi Rd, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 |
Chen CG,Xiao F,Li XL,et al. An Adaptive Multimoment Global Model on a Cubed Sphere[J]. Monthly Weather Review,2011,139,2,:523-548.
|
APA |
陈春刚,肖锋,Li XL,&Chen, CG .(2011).An Adaptive Multimoment Global Model on a Cubed Sphere.Monthly Weather Review,139(2),523-548.
|
MLA |
陈春刚,et al."An Adaptive Multimoment Global Model on a Cubed Sphere".Monthly Weather Review 139.2(2011):523-548.
|
修改评论