Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor | |
Wang X; Zhong FQ(仲峰泉)![]() ![]() | |
Source Publication | APPLIED THERMAL ENGINEERING
![]() |
2015-10-05 | |
Volume | 89Pages:883-896 |
ISSN | 1359-4311 |
Abstract | In this paper, characteristics of combustion and convective heat transfer of a supersonic combustor at two fuel/air equivalence ratios of 0.9 and 0.46 were numerically studied. The numerical method of Favre averaged Navier-Stokes simulation with SST k-omega turbulence model and a multiple-step reaction mechanism of ethylene is introduced. The inlet Mach number of the combustor is 2.5 and inlet total temperature is 1650K, corresponding to Mach 6 flight conditions. Ethylene is injected at two locations upstream of a flame-holding cavity. The numerical method was validated by comparing the present results of wall pressures and heat fluxes to experiments and theoretical analysis. It is found that, due to injection of fuel at the bottom wall, fuel/air mixing and combustion occurs mainly in the vicinity of the bottom wall. High non-symmetry in distributions of the bottom and the top wall heat fluxes is observed. Peaks of wall heat flux at different locations and at varied fuel/air equivalence ratios are identified, which are caused respectively by effect of cavity and by shock structure formed upstream of the injection points. It is also found that heat flux peaks are strongly related to the reaction step of CO -> CO2, contributing to major heat releasing. (C) 2015 Elsevier Ltd. All rights reserved. |
Keyword | Supersonic Combustor Convective Heat Transfer Numerical Study Wall Heat Flux |
DOI | 10.1016/j.applthermaleng.2015.06.071 |
URL | 查看原文 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000362862100084 |
WOS Research Area | Thermodynamics ; Energy & Fuels ; Engineering ; Mechanics |
WOS Subject | Thermodynamics ; Energy & Fuels ; Engineering, Mechanical ; Mechanics |
Funding Organization | This work is funded by Natural Science Foundation of China under Contract No. 11172309, 91441102. |
Department | LHD高超声速推进技术 |
Classification | 一类 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/58395 |
Collection | 高温气体动力学国家重点实验室 |
Corresponding Author | Zhong, FQ (reprint author), 15 Beisihuanxi Rd, Beijing 100190, Peoples R China. |
Recommended Citation GB/T 7714 | Wang X,Zhong FQ,Gu HB,et al. Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor[J]. APPLIED THERMAL ENGINEERING,2015,89:883-896. |
APA | Wang X,Zhong FQ,Gu HB,Zhang XY,&Zhong, FQ .(2015).Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor.APPLIED THERMAL ENGINEERING,89,883-896. |
MLA | Wang X,et al."Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor".APPLIED THERMAL ENGINEERING 89(2015):883-896. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
J2015-040.pdf(4711KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment