IMECH-IR  > 非线性力学国家重点实验室
Nanoindentation investigation on the creep mechanism in metallic glassy films
Ma Y; Peng GJ; Feng YH(冯义辉); Zhang TH(张泰华); Zhang, TH (reprint author), Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China.
发表期刊MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
2016-01-10
卷号651页码:548-555
ISSN0921-5093
摘要Using the magnetron sputtering technique, two metallic glassy films namely Cu44.3Zr45.1Al10.6 and Cu44.2Zr43Al11.3Ti1.5 were prepared by alloy targets. The minor Ti addition effectively induces excess free volume. Upon spherical nanoindentation, the creep behaviors of both films were studied at various peak loads. As the increase of peak load, the creep deformations became more severely in both samples. Interestingly, Cu-Zr-Al-Ti film crept stronger than Cu-Zr-Al at small-load holdings (nominal elastic regimes), whereas it is opposite at high-load holdings (plastic regimes). The creep characteristic could be intrinsically related to the scale variation of the shear transformation zone (STZ) with Ti addition. Statistical analysis was employed to estimate the STZ volume, which increased by 60% with Ti addition in the Cu-Zr-Al film. The finite element modeling indicated that STZs would be activated even at the minimum load we adopted. Higher activation energy of larger STZs in Cu-Zr-Al-Ti enables less flow units, which offsets the creep enhancement by the excess free volume with Ti addition. The deeper the pressed depth of the indenter, the more contribution of the STZ operation on creep deformation. In addition, experimental observation on the creep flow rates implies that STZ could be the dominating mechanism at the steady-state creep. This study reveals that STZ volume could also be important to the time-dependent plastic deformation in metallic glass, besides as a key parameter for instantaneous plasticity. (C) 2015 Elsevier B.V. All rights reserved.
关键词Metallic Glass Nanoindentation Creep Free Volume Shear Transformation Zone
DOI10.1016/j.msea.2015.11.014
URL查看原文
收录类别SCI ; EI
语种英语
WOS记录号WOS:000367486800065
关键词[WOS]SHEAR TRANSFORMATION ZONES ; VISCOPLASTIC DEFORMATION ; PLASTIC-DEFORMATION ; INDENTATION CREEP ; AMORPHOUS-ALLOYS ; SIZE ; FLOW ; DYNAMICS ; BEHAVIOR
WOS研究方向Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
项目资助者The support from the National Natural Science Foundation of China (Grant nos. 11025212, 11272318, 11402233, 11302231 and 11502235) and Zhejiang Provincial Natural Science Foundation of China (Grant no. LQ15A020004) are gratefully acknowledged.
课题组名称LNM实验平台
论文分区一类
力学所作者排名False
引用统计
被引频次:45[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/58644
专题非线性力学国家重点实验室
通讯作者Zhang, TH (reprint author), Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China.
推荐引用方式
GB/T 7714
Ma Y,Peng GJ,Feng YH,et al. Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2016,651:548-555.
APA Ma Y,Peng GJ,冯义辉,张泰华,&Zhang, TH .(2016).Nanoindentation investigation on the creep mechanism in metallic glassy films.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,651,548-555.
MLA Ma Y,et al."Nanoindentation investigation on the creep mechanism in metallic glassy films".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 651(2016):548-555.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
a2016-126.pdf(3595KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Ma Y]的文章
[Peng GJ]的文章
[冯义辉]的文章
百度学术
百度学术中相似的文章
[Ma Y]的文章
[Peng GJ]的文章
[冯义辉]的文章
必应学术
必应学术中相似的文章
[Ma Y]的文章
[Peng GJ]的文章
[冯义辉]的文章
相关权益政策
暂无数据
收藏/分享
文件名: a2016-126.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。