Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite | |
Zhang JS; Hao SJ; Jiang DQ; Huan Y(郇勇)![]() | |
发表期刊 | NANO LETTERS
![]() |
2018-05-01 | |
卷号 | 18期号:5页码:2976-2983 |
ISSN | 1530-6984 |
摘要 | Freestanding nanomaterials (such as nanowires, nanoribbons, and nanotubes) are known to exhibit ultralarge elastic strains and ultrahigh strengths. However, harnessing their superior intrinsic mechanical properties in bulk composites has proven to be difficult. A recent breakthrough has overcome this difficulty by using a martensitic phase transforming matrix in which ultralarge elastic strains approaching the theoretical limit is achieved in Nb nanowires embedded in the matrix. This discovery, breaking a long-standing challenge, still limits our ability of harnessing the exceptional properties of nanomaterials and developing ultrahigh strength bulk materials to a narrow selection of phase transforming alloy matrices. In this study, we investigated the possibility to harness the intrinsic mechanical properties of nanoinclusions in conventional dislocation slip matrix based on a principle of synergy between the inclusion and the matrix. The small spacing between the densely populated hard and dislocation-impenetrable nanoinclusions departmentalize the plastic matrix into small domains to effectively impede dislocation motion within the matrix, inducing significant strengthening and large local elastic strains of the matrix, which in turn induced large elastic strains in the nanoinclusions. This dual phase synergy is verified in a Ti3Sn inclusions/B2-NiTi(Fe) plastic matrix model materials system. The maximum elastic strain of Ti3Sn inclusion obtained in the dislocation slip matrix is comparable to that achieved in a phase transforming matrix. This finding opens new opportunities for the development of high-strength nanocomposites. |
关键词 | Elastic Strain Composite Mechanical Behavior High-energy X-ray Diffiraction Dislocation Slip |
DOI | 10.1021/acs.nanolett.8b00427 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000432093200034 |
关键词[WOS] | X-RAY-DIFFRACTION ; IN-SITU SYNCHROTRON ; HIGH-STRENGTH ; NB NANOWIRES ; NITI MATRIX ; DEFORMATION ; ALLOYS ; STEELS ; NANOCOMPOSITES ; ULTRASTRONG |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
项目资助者 | National Natural Science Foundation of China (NSFC)(51601069 ; Australian Research Council(DP160105066 ; US Department of Energy, Office of Science, and Office of Basic Energy Science, Office of Basic Energy Sciences(DE-AC02-06CH11357) ; 51731010 ; DP180101955) ; 11474362 ; 51471187) |
论文分区 | 一类 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://dspace.imech.ac.cn/handle/311007/77485 |
专题 | 非线性力学国家重点实验室 |
推荐引用方式 GB/T 7714 | Zhang JS,Hao SJ,Jiang DQ,et al. Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite[J]. NANO LETTERS,2018,18,5,:2976-2983. |
APA | Zhang JS.,Hao SJ.,Jiang DQ.,Huan Y.,Cui LS.,...&Yang H.(2018).Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite.NANO LETTERS,18(5),2976-2983. |
MLA | Zhang JS,et al."Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite".NANO LETTERS 18.5(2018):2976-2983. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
IrJ2018041.pdf(2708KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论