High strain-rate behavior and deformation mechanism of a multi-layer composite textured AZ31B Mg alloy plate | |
Zhang WG; Liu S; Li K; Li PJ; Qi JF; Wang Z; Chen Y; Zhang HS(张虎生); Meng L | |
Source Publication | JOURNAL OF ALLOYS AND COMPOUNDS |
2018-06-15 | |
Volume | 749Pages:23-39 |
ISSN | 0925-8388 |
Abstract | There are currently very few studies on the high strain-rate properties of Mg alloys with multi-layer composite textures under dynamic loading. In present study, a multi-layer composite textured AZ31B Mg alloy plate was fabricated using the asymmetric twin-roll casting process. The high strain-rate (similar to 10(3) s(-1)) deformation behaviors of the AZ31B plate along the normal direction (ND) were investigated using split-Hopkinson pressure bar technique. The microstructural evolution and deformation mechanism were analyzed by optical microscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy methods. The experimental results show that the mechanical behaviors exhibit a power-law hardening response under high strain-rate deformation. The flow stress generally increases with increasing strain rate, whereas the strain-hardening rate decreases with increasing strain. An interesting feature is that the maximum flow stress at high strain rates is much lower than that at its corresponding quasi-static counterpart. Microstructure analysis demonstrates that the characteristic layered texture and microstructure along the ND determine its mechanical behavior. The plastic deformation is mainly controlled by the basal-type texture, where the predominant deformation mechanism is dislocation slip. Dynamic recrystallization (DRX) occurred unevenly in the material during dynamic deformation, resulting in a moderate increase in ductility. The fracture behaviors change from brittle fracture to ductile fracture as the strain rate increases. The energy absorption capacity is therefore enhanced due to the occurrence of both DRX and the brittle-ductile transition at high strain rates. (C) 2018 Elsevier B.V. All rights reserved. |
Keyword | Az31 b Mg Alloy Multi-layer Composite Textures High Strain Rate Twinning And Slip Energy Absorption Capacity |
DOI | 10.1016/j.jallcom.2018.03.258 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000432666200003 |
WOS Keyword | MAGNESIUM ALLOY ; MICROSTRUCTURAL EVOLUTION ; DYNAMIC DEFORMATION ; PURE MAGNESIUM ; GRAIN-SIZE ; SHEET ; COMPRESSION ; TEMPERATURES ; MG-3AL-1ZN ; ANISOTROPY |
WOS Research Area | Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS Subject | Chemistry, Physical ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
Funding Organization | National Natural Science Foundation of China (NSFC)(51471090) |
Classification | 一类 |
Ranking | 5+ |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/77502 |
Collection | 非线性力学国家重点实验室 |
Recommended Citation GB/T 7714 | Zhang WG,Liu S,Li K,et al. High strain-rate behavior and deformation mechanism of a multi-layer composite textured AZ31B Mg alloy plate[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2018,749:23-39. |
APA | Zhang WG.,Liu S.,Li K.,Li PJ.,Qi JF.,...&Meng L.(2018).High strain-rate behavior and deformation mechanism of a multi-layer composite textured AZ31B Mg alloy plate.JOURNAL OF ALLOYS AND COMPOUNDS,749,23-39. |
MLA | Zhang WG,et al."High strain-rate behavior and deformation mechanism of a multi-layer composite textured AZ31B Mg alloy plate".JOURNAL OF ALLOYS AND COMPOUNDS 749(2018):23-39. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
IrJ2018027.pdf(9648KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment