Technical potential assessment of offshore wind energy over shallow continent shelf along China coast | |
Nie BC(聂冰川)![]() ![]() | |
Source Publication | RENEWABLE ENERGY
![]() |
2018-12-01 | |
Volume | 128Pages:391-399 |
ISSN | 0960-1481 |
Abstract | Offshore wind resource assessment seems to be urgently needed due to the rapid development of offshore wind energy in the coming decades. Technical potential of offshore wind energy over the sea area shallower than 250 m along China coast is investigated. To avoid erroneous estimation of wind power density, a statistical model considering sea state effect is proposed. Long-term CCMP wind field data are examined using that model to reduce uncertainties. Further, influential factors including wind power density, water depth, wind turbine size, wind farm layout and various spatial constraints are analyzed on the GIS platform. Technical potential under different scenarios are presented and discussed. It shows that wind resource at Taiwan Strait is particularly abundant, where wind power density at 70 m height can be above 900 W/m(2). Technical potential is quite sensitive to the size of wind turbine. Taking the layout S1 (8 x 15 turbines in each farm, 8 rotor diameters apart between wind turbines, 20 km buffer region between neighboring farms) as an example: the total technical potential of the study area is 613 GW for rotor radius 60 m, and that for rotor radius 90 m is 1264 GW; the growth rates of technical potential with rotor radius is 19.3 GW/m roughly. Spatial constraints has significant impact on the region with water depth less than 50 m, where only 48.1% of area is available for developing wind energy and the technical potential there is about 23% of that of the study area. (C) 2018 Elsevier Ltd. All rights reserved. |
Keyword | Wind energy Offshore wind farm Floating wind turbine GIS Surface roughness length |
DOI | 10.1016/j.renene.2018.05.081 |
URL | 查看原文 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000437079600034 |
WOS Keyword | RESOURCES ASSESSMENT ; UNCERTAINTY ANALYSIS ; HONG-KONG ; POWER ; SEA ; OCEAN ; STRESS ; MODEL ; SCALE ; WAVES |
WOS Research Area | GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY ; Energy & Fuels |
WOS Subject | Science & Technology - Other Topics ; Energy & Fuels |
Funding Organization | China Postdoctoral Science Foundation [2017M620597] ; National Natural Science Foundation of China [1172339, 11232012] |
Classification | 二类/Q1 |
Ranking | 1 |
Contributor | 李家春 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/77868 |
Collection | 流固耦合系统力学重点实验室 |
Affiliation | 1.Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China 2.Beijings Key Lab Struct Wind Engn & Urban Wind En, Beijing 100044, Peoples R China 3.Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, 15 Beisihuanxi Rd, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Nie BC,Li JC. Technical potential assessment of offshore wind energy over shallow continent shelf along China coast[J]. RENEWABLE ENERGY,2018,128:391-399.Rp_Au:李家春 |
APA | Nie BC,&Li JC.(2018).Technical potential assessment of offshore wind energy over shallow continent shelf along China coast.RENEWABLE ENERGY,128,391-399. |
MLA | Nie BC,et al."Technical potential assessment of offshore wind energy over shallow continent shelf along China coast".RENEWABLE ENERGY 128(2018):391-399. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
IrJ2018255.pdf(2631KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment