IMECH-IR  > 高温气体动力学国家重点实验室
Fault diagnosis of rotating machinery equipped with multiple sensors using space-time fragments
Yan XS1,2,3; Sun Z1,2,3; Zhao JJ1,2,3; Shi ZG1,2,3; Zhang CA(张陈安)4
通讯作者Yan, Xunshi([email protected])
发表期刊JOURNAL OF SOUND AND VIBRATION
2019-09-15
卷号456页码:49-64
ISSN0022-460X
摘要The vibration signals captured by multiple sensors can be fused and provide rich information to distinguish faults of rotating machinery. However, previous studies mostly regard multiple signals as individual signals and ignore the coupling relationship between signals resulting in a loss of information. To overcome the above problem, this paper proposes a new multi-sensor data fusion algorithm for identifying faults. First, space-time fragments are constructed to combine multiple signals together considering the space and time relationship between signals. Second, histograms of multi-channel shaft orbit based on space-time fragments are extracted to describe faults. Third, K-nearest neighbor is selected as the classification method. The experiments are carried out on a rig of rotating machinery supported by active magnetic bearings and demonstrate the effectiveness of our proposed algorithm. (C) 2019 Elsevier Ltd. All rights reserved.
关键词Rotating machinery Fault diagnosis Multi-sensor fusion Active magnetic bearing Shaft orbit
DOI10.1016/j.jsv.2019.05.036
收录类别SCI ; EI
语种英语
WOS记录号WOS:000471250400004
关键词[WOS]CONVOLUTIONAL NEURAL-NETWORK ; FUSION ; CLASSIFICATION
WOS研究方向Acoustics ; Engineering ; Mechanics
WOS类目Acoustics ; Engineering, Mechanical ; Mechanics
资助项目National Science and Technology Major Project of China[2011ZX069] ; National Science and Technology Major Project of China[61305065] ; NSFC ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA17030100]
项目资助者National Science and Technology Major Project of China ; NSFC ; Strategic Priority Research Program of Chinese Academy of Sciences
论文分区二类/Q1
力学所作者排名5
RpAuthorYan XS
引用统计
被引频次:32[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/79233
专题高温气体动力学国家重点实验室
空天飞行科技中心
通讯作者Yan XS
作者单位1.Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2.The Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084, China
3.Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing 100084, China
4.State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
推荐引用方式
GB/T 7714
Yan XS,Sun Z,Zhao JJ,et al. Fault diagnosis of rotating machinery equipped with multiple sensors using space-time fragments[J]. JOURNAL OF SOUND AND VIBRATION,2019,456:49-64.Rp_Au:Yan XS
APA Yan XS,Sun Z,Zhao JJ,Shi ZG,&Zhang CA.(2019).Fault diagnosis of rotating machinery equipped with multiple sensors using space-time fragments.JOURNAL OF SOUND AND VIBRATION,456,49-64.
MLA Yan XS,et al."Fault diagnosis of rotating machinery equipped with multiple sensors using space-time fragments".JOURNAL OF SOUND AND VIBRATION 456(2019):49-64.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2019521.pdf(2340KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Yan XS]的文章
[Sun Z]的文章
[Zhao JJ]的文章
百度学术
百度学术中相似的文章
[Yan XS]的文章
[Sun Z]的文章
[Zhao JJ]的文章
必应学术
必应学术中相似的文章
[Yan XS]的文章
[Sun Z]的文章
[Zhao JJ]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2019521.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。