Tunable Adhesion of a Bio-Inspired Micropillar Arrayed Surface Actuated by a Magnetic Field | |
Li XJ(李兴济)![]() ![]() ![]() ![]() | |
Corresponding Author | Chen, Shaohua([email protected]) |
Source Publication | JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
![]() |
2019 | |
Volume | 86Issue:1Pages:11 |
ISSN | 0021-8936 |
Abstract | Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications. |
Keyword | micropillar arrayed surface magnetic field tunable adhesion mechanical mechanism large elastic deformation |
DOI | 10.1115/1.4041550 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000469485600007 |
WOS Keyword | BIOMIMETIC FIBRILLAR INTERFACES ; REVERSIBLE ADHESION ; GECKO ADHESION ; FRICTIONAL FORCES ; ASPECT RATIO ; MECHANICS ; CONTACT ; ATTACHMENT ; BIOMECHANICS ; DESIGN |
WOS Research Area | Mechanics |
WOS Subject | Mechanics |
Funding Project | Beijing Institute of Technology (The BIT Creative Research Plan) ; National Natural Science Foundation of China[11532013] ; National Natural Science Foundation of China[11672302] ; National Natural Science Foundation of China[11872114] |
Funding Organization | Beijing Institute of Technology (The BIT Creative Research Plan) ; National Natural Science Foundation of China |
Classification | 一类/力学重要期刊 |
Ranking | 1 |
Contributor | Chen, Shaohua |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/80711 |
Collection | 非线性力学国家重点实验室 |
Recommended Citation GB/T 7714 | Li XJ,Peng ZL,Yang YZ,et al. Tunable Adhesion of a Bio-Inspired Micropillar Arrayed Surface Actuated by a Magnetic Field[J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME,2019,86,1,:11.Rp_Au:Chen, Shaohua |
APA | 李兴济,彭志龙,杨亚政,&陈少华.(2019).Tunable Adhesion of a Bio-Inspired Micropillar Arrayed Surface Actuated by a Magnetic Field.JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME,86(1),11. |
MLA | 李兴济,et al."Tunable Adhesion of a Bio-Inspired Micropillar Arrayed Surface Actuated by a Magnetic Field".JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME 86.1(2019):11. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2019432.pdf(3105KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment