Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas | |
Lin K(林岿)1,2; Huang XF(黄先富)1,2; Zhao YP(赵亚溥)1,2 | |
Corresponding Author | Zhao, Ya-Pu([email protected]) |
Source Publication | ENERGY & FUELS |
2020 | |
Volume | 34Issue:1Pages:258-269 |
ISSN | 0887-0624 |
Abstract | Shale gas stored in deep shale is in a supercritical state. Therefore, it is necessary to study the adsorption and desorption properties of supercritical shale gas. To accurately determine the state of methane (CH4) in the pores of deep shale, the fractal characteristics of several shale samples drilled at a depth of 2650 m are analyzed using scanning electron microscopy (SEM) and image analysis. We find nanopores with different fractal features in the shale. The effects of adsorption energy and substrate strain on adsorption capacity are clarified. The virial coefficients of CH4 are obtained by molecular dynamics (MD) simulations and are consistent with the experiment. The adsorption and desorption of CH4 in different fractal nanopores are modeled using grand canonical Monte Carlo (GCMC) simulations at different temperatures and pressures (from capillary condensation to supercritical state). Additionally, the gas-in-place (GIP), excess adsorption, and absolute adsorption isotherms are obtained. We find the crossover of excess adsorption isotherms, which was observed in the experiment, and the absolute adsorption amount increases with the increase in pressure in the case of ultrahigh pressure (>40 MPa). Moreover, we obtain an ultrahigh-pressure dual-site Langmuir equation, and it can accurately describe observed adsorption isotherms from low pressure to ultrahigh pressure. Our study visually reproduces the adsorption/desorption behaviors of CH4 under in situ conditions in deep shale and reveals their microscopic mechanism. |
DOI | 10.1021/acs.energyfuels.9b03669 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000508470500023 |
WOS Keyword | MOLECULAR-DYNAMICS SIMULATIONS ; NATURAL-GAS ; FRACTAL CHARACTERISTICS ; METHANE ADSORPTION ; PORE STRUCTURE ; SPONTANEOUS IMBIBITION ; COAL ; PRESSURE ; DISPLACEMENT ; DIFFUSION |
WOS Research Area | Energy & Fuels ; Engineering |
WOS Subject | Energy & Fuels ; Engineering, Chemical |
Funding Project | National Natural Science Foundation of China (NSFC)[11872363] ; National Natural Science Foundation of China (NSFC)[51861145314] ; National Natural Science Foundation of China (NSFC)[11702299] ; Chinese Academy of Sciences (CAS) Key Research Program of Frontier Sciences[QYZDJ-SSW-JSC019] ; CAS Strategic Priority Research Program[XDB22040401] ; PetroChina Innovation Foundation |
Funding Organization | National Natural Science Foundation of China (NSFC) ; Chinese Academy of Sciences (CAS) Key Research Program of Frontier Sciences ; CAS Strategic Priority Research Program ; PetroChina Innovation Foundation |
Classification | 二类 |
Ranking | 1 |
Contributor | Zhao, Ya-Pu |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/81301 |
Collection | 非线性力学国家重点实验室 |
Affiliation | 1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Lin K,Huang XF,Zhao YP. Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas[J]. ENERGY & FUELS,2020,34,1,:258-269.Rp_Au:Zhao, Ya-Pu |
APA | 林岿,黄先富,&赵亚溥.(2020).Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas.ENERGY & FUELS,34(1),258-269. |
MLA | 林岿,et al."Combining Image Recognition and Simulation To Reproduce the Adsorption/Desorption Behaviors of Shale Gas".ENERGY & FUELS 34.1(2020):258-269. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2020080.pdf(2166KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment