A Fast-Response Calorimeter with Dynamic Corrections for Transient Heat Transfer Measurements | |
Zhang SZ(张仕忠)1; Wang Q(汪球)1,2![]() ![]() ![]() | |
Corresponding Author | Wang, Qiu([email protected]) ; Zhang, Xiaoyuan([email protected]) |
Source Publication | APPLIED SCIENCES-BASEL
![]() |
2020-09-01 | |
Volume | 10Issue:17Pages:22 |
Abstract | Robust fast-response transient calorimeters with novel calorimeter elements have attracted the attention of researchers as new synthetic materials have been developed. This sensor uses diamonds as the calorimeter element, and a platinum film resistance is sputtered on the back to measure the temperature. The surface heat flux is obtained based on the calorimetric principle. The sensor has the advantages of high sensitivity and not being prone to erosion. However, non-ideal conditions, such as heat dissipation from the calorimeter element to the surroundings, can lead to measurement deviation and result in challenges for sensor miniaturization. In this study, a novel transient calorimeter (NTC) with two different sizes was developed using air or epoxy as the back-filling material. Numerical simulations were conducted to explain the complex heat exchange between the calorimeter element and its surroundings, which showed that it deviated from the assumption of an ideal calorimeter sensor. Accordingly, a dynamic correction method was proposed to compensate for the energy loss from the backside of the calorimeter element. The numerical results showed that the dynamic correction method significantly improved the measurement deviation, and the relative error was within 2.3% if the test time was smaller than 12 ms in the simulated cases. Detonation shock tunnel experiments confirmed the results of the dynamic correction method and demonstrated a practical method to obtain the dynamic correction coefficient. The accuracy and feasibility of the dynamic correction method were verified in a single detonation shock tunnel and under shock tube conditions. The NTC calorimeter exhibited good repeatability in all experiments. |
Keyword | calorimeter shock tunnel heat transfer measurement hypersonic |
DOI | 10.3390/app10176143 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000569598300001 |
WOS Keyword | SURFACE JUNCTION THERMOCOUPLES ; THERMAL PRODUCT |
WOS Research Area | Chemistry ; Engineering ; Materials Science ; Physics |
WOS Subject | Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied |
Funding Project | National Natural Science Foundation of China[11402275] ; National Natural Science Foundation of China[11902328] |
Funding Organization | National Natural Science Foundation of China |
Classification | 二类 |
Ranking | 1 |
Contributor | Wang, Qiu ; Zhang, Xiaoyuan |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/85250 |
Collection | 高温气体动力学国家重点实验室 |
Affiliation | 1.Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Zhang SZ,Wang Q,Li JP,et al. A Fast-Response Calorimeter with Dynamic Corrections for Transient Heat Transfer Measurements[J]. APPLIED SCIENCES-BASEL,2020,10,17,:22.Rp_Au:Wang, Qiu, Zhang, Xiaoyuan |
APA | 张仕忠,汪球,李进平,张晓源,&陈宏.(2020).A Fast-Response Calorimeter with Dynamic Corrections for Transient Heat Transfer Measurements.APPLIED SCIENCES-BASEL,10(17),22. |
MLA | 张仕忠,et al."A Fast-Response Calorimeter with Dynamic Corrections for Transient Heat Transfer Measurements".APPLIED SCIENCES-BASEL 10.17(2020):22. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2020345.pdf(8566KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment