Research on ventilation and supercavitation mechanism of high-speed surface-piercing hydrofoil | |
Wang YJ(王永九)1,2; Huang CG(黄晨光)1,2,3; Du TZ(杜特专)1,2; Huang RF(黄仁芳)1; Zhi YC4; Wang YW(王一伟)1,2; Xiao ZJ1; Bian ZD(卞真东)1,2 | |
Corresponding Author | Du, Tezhuan([email protected]) |
Source Publication | PHYSICS OF FLUIDS |
2022-02-01 | |
Volume | 34Issue:2Pages:17 |
ISSN | 1070-6631 |
Abstract | Flow structures and hydrodynamic performance of high-speed surface-piercing hydrofoils were studied by numerical simulation, with an emphasis on the interaction mechanism between supercavitation and natural ventilation. Compared with the available experimental data, the numerical method could predict the cavitation and ventilation well. The numerical simulation results show that the flow over hydrofoil with blunt trailing edge is more conducive to separating. The semi-ogive hydrofoil was used to explore the influence of angles of attack on ventilation and cavitation. The ventilation rate increases with the increase in the angles of attack. At small attack angles (alpha = 0 & DEG; and 2 & DEG;), the regional ventilated flow is found in supercavitation. The vortex street structures and twin vortices closure mode are formed in the closure region of the supercavity. At moderate attack angles (alpha = 6 & DEG; and 10 & DEG;), the thickness of the undisturbed liquid sheet (delta) becomes thinner and the natural supercavitation transits to fully ventilated supercavitation through the cavitation-induced ventilation, but the ventilation position is different because of Taylor instability. The hydrodynamic coefficients remain relatively stable in natural supercavitation and the lift coefficient reduce to half of the original value when the supercavitation is fully ventilated, which are caused by the pressure changes on the suction and pressure surfaces.& nbsp;& nbsp;(c)& nbsp;2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DOI | 10.1063/5.0081380 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000760749800002 |
WOS Keyword | CAVITATION SHEDDING DYNAMICS ; LARGE-EDDY SIMULATION ; NUMERICAL-SIMULATION ; PRESSURE FLUCTUATION ; FLOW ; ELIMINATION ; VALIDATION ; PROPELLER ; ENTRY |
WOS Research Area | Mechanics ; Physics |
WOS Subject | Mechanics ; Physics, Fluids & Plasmas |
Funding Project | National Natural Science Foundation of China[11872065] |
Funding Organization | National Natural Science Foundation of China |
Classification | 一类/力学重要期刊 |
Ranking | 1 |
Contributor | Du, Tezhuan |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/88719 |
Collection | 流固耦合系统力学重点实验室 |
Affiliation | 1.Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China; 3.Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China; 4.Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Dept Appl Mech & Engn, Guangzhou 510275, Peoples R China |
Recommended Citation GB/T 7714 | Wang YJ,Huang CG,Du TZ,et al. Research on ventilation and supercavitation mechanism of high-speed surface-piercing hydrofoil[J]. PHYSICS OF FLUIDS,2022,34,2,:17.Rp_Au:Du, Tezhuan |
APA | 王永九.,黄晨光.,杜特专.,黄仁芳.,Zhi YC.,...&卞真东.(2022).Research on ventilation and supercavitation mechanism of high-speed surface-piercing hydrofoil.PHYSICS OF FLUIDS,34(2),17. |
MLA | 王永九,et al."Research on ventilation and supercavitation mechanism of high-speed surface-piercing hydrofoil".PHYSICS OF FLUIDS 34.2(2022):17. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Jp2022FA540_2022_Res(15023KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment