超声速燃烧与多尺度涡结构相互作用关系 | |
Alternative Title | Interaction relationship between supersonic combustion and multiscale vortex structure |
孟凡钊![]() | |
Thesis Advisor | 连欢 |
2022-05-20 | |
Degree Grantor | 中国科学院大学 |
Place of Conferral | 北京 |
Subtype | 硕士 |
Degree Discipline | 流体力学 |
Keyword | 超声速燃烧 燃烧分区 多尺度湍流 |
Abstract | 单一或多种类型动力方式在更宽的空域和速域包线内稳定工作,是未来空天动力的发展趋势和方向。宽域来流条件下吸气式动力将面临多设计点带来的动态和多时空尺度流动问题,深入理解可为解决“推力陷阱”问题提供理论依据,支撑提升动力系统宽域工作性能。因此,可压缩湍流场的时空多尺度特性以及与超声速燃烧的多尺度耦合关系是本文关注的关键科学问题。 本文基于直连式燃烧地面实验技术,内窥光纤火焰传感器、激光诱导荧光OH-PLIF技术以及高速纹影等超声速燃烧与流动非接触测量技术,通过香浓熵非线性时间序列分析方法,对碳氢燃料超声速湍流燃烧火焰分区以及超声速燃烧释热与多尺度湍流涡结构的相互作用关系开展了研究。本文遍历了单边扩张燃烧室模型由超燃工作模态到近热雍塞工作状态的燃料质量流量和一定的来流变化条件。开展了固定当量比、动量通量比和来流马赫数的定常实验,以及变当量比和变马赫数的非定常实验。给出了碳氢燃料超声速燃烧分区实验测量结果,讨论了多尺度湍流涡结构作用,提出并验证了一种超声速燃烧与多尺度涡结构相互作用关系理论。 本文的第一章对研究现状进行了综述;第二章介绍了地面实验方法以及高时间分辨率的超声速燃烧与流动非接触测量技术;第三章报告了开展的碳氢燃料超声速燃烧分区的实验研究。提出了一种基于内窥光纤传感器测量CH*自发光时间序列信号,通过最小香农熵“唯一解”定义燃烧特征时间的方法,并获得了不同燃料当量比、通量比、来流马赫数实验条件下的超声速燃烧特征时间,实验研究表明碳氢燃料超声速燃烧在旋涡小火焰区域(B区),多尺度湍流涡结构发挥重要作用,在宽域湍流燃烧研究中需要着重关注宽域来流和多尺度流动特性;因此本文第四章进一步分析了超声速燃烧释热与多尺度涡结构相互作用关系。实验方面基于OH*自发光以及OH-PLIF测量技术获得了OH基外轮廓分形维数、基于内窥光纤传感器表征了局部当量比。实验研究表明,碳氢燃料超声速燃烧与多尺度湍流存在很强的相关性,中间过程主要涉及到燃烧释热—多尺度涡结构—局部当量比—燃烧强度—燃烧释热循环往复的过程。启发于实验研究结果,提出了一种超声速燃烧释热与多尺度涡结构相互作用理论分析方法,最终获得了超声速燃烧过程中湍流与燃烧释热相互作用规律。第五章对全文结论、创新点进行了总结,并给出了未来研究展望。 |
Other Abstract | Single or multiple types of power modes work stably within wider airspace and speed envelope, which is the development trend and direction of aerospace power in the future. Under the condition of wide-area inflow, aspirated power will face the dynamic and multi-space-time scale flow problems brought by multiple design points. In-depth understanding can provide a theoretical basis for solving the "thrust trap" problem and support the improvement of the wide-area working performance of the power system. Therefore, the spatiotemporal multi-scale properties of compressible turbulent flow fields and the multi-scale coupling relationship with supersonic combustion are the key scientific issues concerned in this paper. In this paper, based on the direct-connected combustion ground experiment technology, endoscopic fiber optic flame sensor, laser-induced fluorescence OH-PLIF technology, and high-speed schlieren and other supersonic combustion and flow non-contact measurement technologies, through the non-linear time series analysis method of fragrance entropy, the carbon The flame zoning of hydrogen fuel supersonic turbulent combustion and the interaction between supersonic combustion heat release and multi-scale turbulent eddy structure are studied. This paper traverses the fuel mass flow rate and certain inflow variation conditions of the unilateral expansion combustion chamber model from the scrambling working mode to the working state near the thermal plug. Steady experiments with fixed equivalence ratio, momentum flux ratio and incoming Mach number, and unsteady experiments with variable equivalence ratio and variable Mach number are carried out. The experimental measurement results of hydrocarbon fuel supersonic combustion zones are given, the effect of multi-scale turbulent vortex structure is discussed, and a theory of interaction between supersonic combustion and multi-scale vortex structure is proposed and verified. The first chapter of this paper summarizes the research status; the second chapter introduces the ground experimental method and the high time resolution supersonic combustion and flow non-contact measurement technology; the third chapter reports the carried out experiments of the supersonic combustion of hydrocarbon fuels. Research. A method is proposed to measure the CH* self-luminous time series signal based on the endoscope fiber optic sensor, and define the combustion characteristic time through the "unique solution" of the minimum Shannon entropy, and obtain different fuel equivalence ratios, flux ratios, and incoming Mach number experiments. The characteristic time of supersonic combustion under conditions, experimental studies show that supersonic combustion of hydrocarbon fuel in the vortex flamelet region (B area), multi-scale turbulent eddy structure plays an important role, in the study of wide-area turbulent combustion, it is necessary to focus on wide-area incoming flow and Therefore, the fourth chapter of this paper further analyzes the interaction between supersonic combustion heat release and multi-scale vortex structure. In the experiment, the fractal dimension of the outer contour of the OH group was obtained based on the OH* self-luminescence and OH-PLIF measurement technology, and the local equivalence ratio was characterized based on the endoscopic fiber sensor. Experimental studies show that there is a strong correlation between supersonic combustion of hydrocarbon fuel and multi-scale turbulence, and the intermediate process mainly involves the process of combustion heat release-multi scale vortex structure-local equivalence ratio-combustion intensity-combustion heat release cycle. Inspired by the experimental research results, a theoretical analysis method for the interaction between supersonic combustion heat release and multi-scale vortex structure is proposed, and the interaction law between turbulent flow and combustion heat release in the process of supersonic combustion is finally obtained. The fifth chapter summarizes the conclusions and innovations of the full text, and gives future research prospects. |
Language | 中文 |
Document Type | 学位论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/89150 |
Collection | 高温气体动力学国家重点实验室 |
Recommended Citation GB/T 7714 | 孟凡钊. 超声速燃烧与多尺度涡结构相互作用关系[D]. 北京. 中国科学院大学,2022. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
1-孟凡钊_硕士学位论文.pdf(6419KB) | 学位论文 | 开放获取 | CC BY-NC-SA | Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment