Knowledge Management System of Institue of Mechanics, CAS
Surface Tension-Driven Flow and Its Correlation with Mass Transfer during L-DED of Co-Based Powders | |
Li ZY(李志永)1,2; Yu G(虞钢)1,2,3; He XL(何秀丽)1,2; Li SX(李少霞)1,2; Shu Z(舒壮)1,2 | |
Source Publication | METALS |
2022-05-01 | |
Volume | 12Issue:5Pages:18 |
Abstract | Laser direct energy deposition (L-DED) is one of the most promising additive manufacturing methods, which has been paid more and more attention in recent years. An improved heat and mass transfer model was developed here to analyze thermal behavior, driving force, surface tension-driven flow and its correlation with dilution during L-DED of Co-based powders to a 38MnVS substrate. Thermal behavior was firstly studied for its fundamental influence on fluid flow and mass transfer. Next, the roles of capillary force and thermal capillary force were characterized using both the dimensional analysis and simulation methods, and the mechanism of surface tension-driven flow was also qualitatively investigated. Finally, flow characteristics inside the melt pool were studied in detail and their correlation with the dilution phenomenon was analyzed based on the multi-component mass transfer model. The temperature gradient was found to be much larger at the front of the melt pool, and it took about 200 ms for the melt pool to reach a quasi-steady condition. Moreover, sharp changes in the curvature of the solid/liquid boundary were observed. Surface tension was demonstrated as the main driver for fluid flow and resulted in centrally outward Marangoni flow. Capillary force contributes to the reduction of the curvature of the free surface, and thermal capillary force (Marangoni force) dominated the Marangoni convection. Alloy elements from the powders, such as Co and Ni, were added to the front part of the melt pool and mainly diluted at the upper side of the rear region near the symmetric plane of the melt pool. Fundamental results in this work provide a valuable understanding of the surface tension-driven flow and its correlation with concentration dilution during the additive manufacturing process. |
Keyword | thermal behavior driving force fluid flow mass transfer additive manufacturing |
DOI | 10.3390/met12050842 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000803465200001 |
WOS Keyword | THERMAL-BEHAVIOR ; PHASE-CHANGE ; LASER ; DEPOSITION ; CONVECTION ; TRANSPORT ; MICROSTRUCTURE |
WOS Research Area | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS Subject | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
Funding Project | Beijing Municipal Commission of Science and Technology[Z181100003818015] ; National Natural Science Foundation of China[11672304] |
Funding Organization | Beijing Municipal Commission of Science and Technology ; National Natural Science Foundation of China |
Classification | 二类 |
Ranking | 1 |
Contributor | He, Xiuli |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/89505 |
Collection | 宽域飞行工程科学与应用中心 |
Affiliation | 1.Chinese Acad Sci, Wide Range Flight Engn Sci & Applicat Ctr, Inst Mech, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China; 3.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Li ZY,Yu G,He XL,et al. Surface Tension-Driven Flow and Its Correlation with Mass Transfer during L-DED of Co-Based Powders[J]. METALS,2022,12,5,:18.Rp_Au:He, Xiuli |
APA | Li ZY,Yu G,He XL,Li SX,&Shu Z.(2022).Surface Tension-Driven Flow and Its Correlation with Mass Transfer during L-DED of Co-Based Powders.METALS,12(5),18. |
MLA | Li ZY,et al."Surface Tension-Driven Flow and Its Correlation with Mass Transfer during L-DED of Co-Based Powders".METALS 12.5(2022):18. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2022FA405_2022_Sur(5277KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment