Artificial neural network based response surface for data-driven dimensional analysis | |
Xu ZY(许昭越)1,2; Zhang XL(张鑫磊)1,2; Wang SZ(王士召)1,2![]() ![]() | |
发表期刊 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
2022-06-15 | |
卷号 | 459页码:19 |
ISSN | 0021-9991 |
摘要 | The classical dimensional analysis method has limitations in determining the uniqueness and relative importance of the dimensionless quantities. A machine-learning based dimensional analysis method is proposed to address the limitations. The proposed method identifies unique and relevant dimensionless quantities by combining an artificial neural network with the data-driven dimensional analysis. We employ a fully connected neural network to construct the ridge function for the response surface in a physical system. The gradient of the response surface for active subspace analysis is computed based on a finite difference approximation. An effective approach is proposed to determine the independent variables of experimental measurements or numerical simulations for computing the gradient of the response surface. The proposed method is validated by analyzing benchmark pipe flows and a fluid-structure interaction system. The dominant dimensionless quantities obtained by the proposed method are consistent with those reported in the literature. The proposed method has the advantage of identifying the relatively important dimensionless quantities without referring to the complex theoretical equations. (C)& nbsp;2022 Elsevier Inc. All rights reserved. |
关键词 | Artificial neural network Response surface Data-driven dimensional analysis Machine learning Fluid-structure interaction |
DOI | 10.1016/j.jcp.2022.111145 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000793406800008 |
关键词[WOS] | METHODOLOGY ; DRAG |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
资助项目 | NSFC Basic Science Center Program for 'Multiscale Problems in Nonlinear Mechanics'[11988102] ; National Natural Science Foundation of China[11922214] ; National Natural Science Foundation of China[91752118] ; National Natural Science Foundation of China[91952301] |
项目资助者 | NSFC Basic Science Center Program for 'Multiscale Problems in Nonlinear Mechanics' ; National Natural Science Foundation of China |
论文分区 | 一类/力学重要期刊 |
力学所作者排名 | 1 |
RpAuthor | Wang, Shizhao |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://dspace.imech.ac.cn/handle/311007/89553 |
专题 | 非线性力学国家重点实验室 |
通讯作者 | Wang SZ(王士召) |
作者单位 | 1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China |
推荐引用方式 GB/T 7714 | Xu ZY,Zhang XL,Wang SZ,et al. Artificial neural network based response surface for data-driven dimensional analysis[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,459:19.Rp_Au:Wang, Shizhao |
APA | Xu ZY,Zhang XL,Wang SZ,&He GW.(2022).Artificial neural network based response surface for data-driven dimensional analysis.JOURNAL OF COMPUTATIONAL PHYSICS,459,19. |
MLA | Xu ZY,et al."Artificial neural network based response surface for data-driven dimensional analysis".JOURNAL OF COMPUTATIONAL PHYSICS 459(2022):19. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Jp2022FA306.pdf(2241KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论