Dynamic strength, reinforcing mechanism and damage of ceramic metal composites | |
Lin, Kuixin; Zeng, Meng; Chen, Hongmei; Tao, Xiaoma; Ouyang, Yifang; Du, Yong1; Peng Q(彭庆) | |
Source Publication | INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (IF:4.134[JCR-2018],3.963[5-Year]) |
2022-10 | |
Volume | 231Pages:107580 |
ISSN | 0020-7403 |
Abstract | Shock tolerance is desirable for ceramic particles-reinforced metal matrix composites in many applications, where the dislocation dynamics evolution under the extreme load is the key but still elusive. Herein, we have investigated the dislocation motion and interaction under shock loading of SiC/Al nanocomposites using molecular dynamics simulations. We have demonstrated that the plastic deformation occurs at an impact velocity (0.5 km/s) lower than the Hugoniot elastic limit of aluminum due to the reflected shear wave effect. The Al/SiC interfaces act as a dislocation emitter to control dislocation multiplication density and slip direction, opening a new pathway to achieve ultrahigh-strength via shock loading. When the impact velocity (1.0 or 1.5 km/s) exceeds the Hugoniot elastic limit, the effect of nanoparticles on dislocation structure has changed from multiplying to retarding dislocations. The spall strength of composites improves due to dislocations pile-up at interface. Instead, the damage in the matrix is exacerbated, owing to the enhanced residual peak stress and interface reflection waves. In addition, the effect of abnormal shock softening determined by atomic velocity is revealed, which could be suppressed by increasing impact energy dissipation. Meanwhile, dynamic compressive strength depends on pressure and dislocation structures evolution. Our atomistic insights might be helpful in designing advanced shock-tolerant materials. |
Keyword | Shock wave Dislocation dynamic Hugoniot elastic limit Nanocomposites |
Subject Area | Engineering, Mechanical ; Mechanics |
DOI | 10.1016/j.ijmecsci.2022.107580 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000856556000003 |
Funding Organization | National Natural Science Foundation of China [11964003] ; Guangxi Natural Science Foundation [2019GXNSFAA185058, 2018GXNSFAA281291] ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences [E1Z1011001] |
Classification | 一类 |
Ranking | 3+ |
Contributor | Ouyang, YF (corresponding author), Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China. |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/90173 |
Collection | 非线性力学国家重点实验室 |
Affiliation | 1.Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China 2.Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China 3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Lin, Kuixin,Zeng, Meng,Chen, Hongmei,et al. Dynamic strength, reinforcing mechanism and damage of ceramic metal composites[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,2022,231:107580.Rp_Au:Ouyang, YF (corresponding author), Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China. |
APA | Lin, Kuixin.,Zeng, Meng.,Chen, Hongmei.,Tao, Xiaoma.,Ouyang, Yifang.,...&彭庆.(2022).Dynamic strength, reinforcing mechanism and damage of ceramic metal composites.INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES,231,107580. |
MLA | Lin, Kuixin,et al."Dynamic strength, reinforcing mechanism and damage of ceramic metal composites".INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES 231(2022):107580. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2022FA124_2022_Dyn(27064KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment