IMECH-IR  > 非线性力学国家重点实验室
Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials
Alternative Title多晶体晶界扩散与晶界粘滞变形主导的力学弛豫
Duan CC(段闯闯); Wei YJ(魏宇杰)
Source PublicationSCIENCE CHINA-MATERIALS
2022-05
Volume65Issue:5Pages:1403-1412
ISSN2095-8226
Abstract

Grain boundary (GB) diffusion and viscous flow play dominant roles in mechanical relaxation of polycrystalline materials. The pioneering work of Zener and Ke, by accounting for relaxation in GBs by viscous shearing, predicts a single peak in the internal friction spectrum. Later investigations show the existence of two to three peaks in the internal friction spectrum when taking into account both GB diffusion and viscous flow for dissipation. In this paper, we further identify the characteristic relaxation modes in polycrystalline materials. We illustrate that competitive viscous flow and diffusion for normal stress relaxation give rise to distinct dependence of relaxation time on grain size. We construct an internal friction spectrum mapping based on the competitive deformation mechanisms including viscous flow in both normal and tangential directions and GB diffusion. The essential features of internal friction spectrum of polycrystalline materials from our analysis are consistent with available experimental observations. These findings may also be applicable to study relaxation dynamics of other material systems such as metallic glasses and porous materials.

Other Abstract

晶界扩散和晶界粘滞变形是多晶材料发生力学弛豫的重要原因, Zener和葛庭燧的开创性工作,分别解释和从实验上验证了晶界粘滞滑动引起的内耗峰.后续研究表明,当同时考虑晶界粘滞与扩散时,多晶体内耗谱上可能出现两个,甚至是三个内耗峰.本研究通过阐明晶界扩散与粘滞变形在晶界法向应力弛豫中的竞争关系,理论上给出了多内耗峰的物理机制、明确晶界变形的主导模式与内耗峰之间的关系,并揭示了多晶体弛豫时间的不同晶粒尺寸依赖性.本工作有助于金属玻璃、多孔介质等非均质材料力学弛豫行为的研究.

Keywordgrain boundary diffusion viscous flow internal friction spectrum polycrystalline materials Zener-Ke dissipation
Subject AreaMaterials Science, Multidisciplinary
DOI10.1007/s40843-021-1837-9
Indexed BySCI ; EI ; CSCD
Language英语
WOS IDWOS:000726264700001
Funding OrganizationNational Natural Science Foundation of China [11988102, 11790291]
CSCD IDCSCD:7279672
Classification二类/Q1
Ranking1
ContributorWei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China.
Citation statistics
Cited Times:1[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/90219
Collection非线性力学国家重点实验室
Corresponding AuthorWei YJ(魏宇杰)
Affiliation1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
Recommended Citation
GB/T 7714
Duan CC,Wei YJ. Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials[J]. SCIENCE CHINA-MATERIALS,2022,65,5,:1403-1412.Rp_Au:Wei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China.
APA Duan CC,&Wei YJ.(2022).Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials.SCIENCE CHINA-MATERIALS,65(5),1403-1412.
MLA Duan CC,et al."Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials".SCIENCE CHINA-MATERIALS 65.5(2022):1403-1412.
Files in This Item: Download All
File Name/Size DocType Version Access License
Jp2022FA407_2022_Gra(2497KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Lanfanshu
Similar articles in Lanfanshu
[Duan CC(段闯闯)]'s Articles
[Wei YJ(魏宇杰)]'s Articles
Baidu academic
Similar articles in Baidu academic
[Duan CC(段闯闯)]'s Articles
[Wei YJ(魏宇杰)]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Duan CC(段闯闯)]'s Articles
[Wei YJ(魏宇杰)]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Jp2022FA407_2022_Grain boundary diffusion and viscous flow governed mechanical relaxation in.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.