Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation | |
Luo,Yongcheng1,2,3; Xiao,Hanmin2,3; Liu,Xiangui2,3; Zheng TY(郑太毅)4 | |
Corresponding Author | Xiao, Hanmin([email protected]) ; Zheng, Taiyi([email protected]) |
Source Publication | COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
![]() |
2022-12-20 | |
Volume | 655Pages:10 |
ISSN | 0927-7757 |
Abstract | CO2-enhanced oil recovery (CO2-EOR) technology has shown great application potential in the development of tight reservoirs. Since the proportion of nano-pores in tight oil reservoirs exceeds 77%, it is necessary to further study the occurrence state of crude oil in nano-pores. In this paper, the molecular dynamics simulation was applied to study the adsorption and diffusion behaviors of multi-component crude oil in quartz (hydrophilic) nano-pores. Besides, the density discretization method was used to investigate the occurrence characteristics of crude oil, the proportion of movable fluid in nano-pores, and the effects of CO2 and polar molecules (C3H6O) on the adsorption characteristics of crude oil. The simulation results showed that the adsorption state of crude oil in the quartz nano-pores was in the form of 4 adsorption layers with a thickness of 0.45 nm each. In nano-pores, the oil molecules with longer molecular chains were more likely to aggregate and adsorb on the quartz surface. Among them, polar oil molecules have the strongest adsorption capacity on the quartz surface. Moreover, the crude oil potential energy and the self-diffusion coefficient gradually increased from the vicinity of the quartz wall and tended to be stable in the free layer. Meanwhile, the content of movable crude oil gradually augmented with the increasement of nanometer pore width and temperature. Furthermore, the pressure had little effect on the density distribution of crude oil in the pores. In contrast, the temperature had a more significant effect on the density distribution of the adsorption layer. At last, due to the more substantial adsorption capacity of CO2 on the rock surface, the crude oil adsorbed initially on the rock surface would be stripped off by CO2, converting from irreducible oil to moveable oil. |
Keyword | Adsorption Potential energy Self -diffusion coefficient Molecular dynamics |
DOI | 10.1016/j.colsurfa.2022.130320 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:000869977000001 |
WOS Keyword | ORDOS BASIN ; TIGHT OIL ; YANCHANG FORMATION ; ADSORPTION ; RESERVOIRS ; EQUILIBRIA ; CURVES ; ALKANE ; FLUIDS ; SAG |
WOS Research Area | Chemistry |
WOS Subject | Chemistry, Physical |
Funding Project | China National Petroleum Corpo- ration (CNPC) basic advanced reserve technology ; [2021DJ2201] |
Funding Organization | China National Petroleum Corpo- ration (CNPC) basic advanced reserve technology |
Classification | 二类 |
Ranking | 1 |
Contributor | Xiao, Hanmin ; Zheng, Taiyi |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/90487 |
Collection | 流固耦合系统力学重点实验室 |
Affiliation | 1.Univ Chinese Acad Sci, Coll Engn Sci, Beijing 100049, Peoples R China; 2.Univ Chinese Acad Sci, Inst Porous Flow & Fluid Mech, Langfang 065007, Peoples R China; 3.Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China; 4.Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Luo,Yongcheng,Xiao,Hanmin,Liu,Xiangui,et al. Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS,2022,655:10.Rp_Au:Xiao, Hanmin, Zheng, Taiyi |
APA | Luo,Yongcheng,Xiao,Hanmin,Liu,Xiangui,&郑太毅.(2022).Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation.COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS,655,10. |
MLA | Luo,Yongcheng,et al."Occurrence characteristics and influential factors of movable oil in nano-pores by molecular dynamics simulation".COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 655(2022):10. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2022FA003.pdf(11320KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment